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Bayesian Inference Preliminaries

Almost all of methods at the University of Sydney concern what is referred to

as frequentist inference. A major alternative to frequentist inference is Bayesian

inference named after Reverend Thomas Bayes (1701–1761).

For much of the 20th century Bayesian inference was heavily criticised, initially most

prominently by Fisher (grand-daddy of Statistics).

In the early years of Statistics there was a non-negligible probability that if Bayesian

statistician and a frequentist statistician were in the same room then a fist fight

would ensue.

Several landmark papers in the 1980s and early 1990s showed that Markov Chain

Monte Carlo methods were applicable to many Bayesian problems making many

practical problems computationally tractable.
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Reverend Thomas Bayes (1701 - 1761)

2 Born in Hertfordshire (London, England),

2 was a Presbyterian minister,

2 studied: theology and mathematics,

2 best known for Essay Towards Solving a

Problem in the Doctrine of Chances

2 where Bayes’ Theorem was first proposed.

2 Words: Bayes’ rule, Bayes’ Theorem,

Bayesian Statistics.
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In frequentist inference the properties of estimators are judged on their behaviour if

the experiment leading to the recorded data were repeated over and over.

Wasserman (2003) states the following postulates of frequentist inference:

F1. Probability refers to limiting relative frequencies. Probabilities are objective prop-

erties of the real world.

F2. Parameters are fixed, unknown constants. Because they are not fluctuating, no

useful probability statements can be made about parameters.

F3. Statistical procedure should be designed to have well-defined long run frequency

properties. For example, a 95% confidence interval should trap the true vale of

the parameter with a limiting frequency at least 95%.

Monte Carlo Methods: Lecture 1 6



An alternative, perhaps as popular, method for conducting statistical inferences is

Bayesian Inference. Bayesian inferential procedures are often far simpler to develop

and use and have been applied to problems where equivalent frequentist procedures

would be difficult to use.

Wasserman (2003) states the following postulates of Bayesian inference:

B1. Probability describes degree of belief, not limiting frequency. As such we can

make probability statements about lot of things, not just data which are subject

to variation. For example, I might say that “the probability that Albert Einstein

drank a cup of tea on August 1, 1948” is 0.35. This does not refer to any limiting

frequency. If reflects my strength of belief that the proposition is true.

B2. We can make probability statements about parameters, even though they are

fixed constants.

B3. We make inferences about a parameter θ by producing the probability distribution

for θ. Inferences, such as point estimates and interval estimates, may be extracted

from this distribution.
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The Bayes Song

There’s no Theorem like Bayes Theorem

Like no theorem we know

Everything about it is appealing

Every thing about it is a wow

Let out that a priori feeling

You’ve been concealing right up to now.

...

There’s no Theorem like Bayes Theorem

Like no theorem we know

George E. P. Box (1919–)

Monte Carlo Methods: Lecture 1 8



From the above statements we can see that the reason that Bayesian inference

is so controversial because is because it adopts a subjective notion of probability.

Consequently, Bayesian inferences may be considered subjective rather than objective

and subject to the user’s biases.

Bayesian methods do not make guarantees on the long term performance of proce-

dures.

Putting philosophical issues aside Bayesian methods for many aspects of inference

have been developed analogously to those developed for frequentist inference. Hence,

Bayesian methodology has its own versions of point estimation, confidence intervals

and hypothesis testing. Lets now get down to how Bayesian inference is performed.
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Bayesian Inference

Bayesian inference consists of calculating a distribution or distributions that describe

the parameters of a model. As one might expect this is determined via Bayes theorem

which, we remind the reader, may be stated, for discrete random variables X , as:

P(Θ = θi|X = x) =
P(X = x|Θ = θi)× P(Θ = θi)∑k
i=1 P(X = x|Θ = θi)× P(Θ = θi)

=
P(X = x,Θ = θi)

P(X = x)

where Θ ∈ {θ1, . . . , θk}.
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As one might expect the version for continuous variables uses density functions in

place of probabilities,

fΘ|X(θ|x) =
fX|Θ(x|θ)fΘ(θ)∫
fX|Θ(x|θ)fΘ(θ)dθ

=
fX,Θ(x, θ)

fX(x)
. (1)

where the joint distribution is defined by

fX,Θ(x, θ) = fX|Θ(x|θ)fΘ(θ)

and the marginal distribution of X is defined by

fX(x) =

∫
fX|Θ(x|θ)fΘ(θ)dθ =

∫
fX,Θ(x, θ)dθ. (2)

We will use the convention that all integrals without limits denote integrals over

the range of all allowable values of the integrated parameter. For example, if X ∼
Uniform(0, 1), then

∫ 1

0 fX(x)dx ≡
∫
fX(x)dx.

Note also that instead of fX(x; θ) we have written fX|Θ(x|θ). This reflects the

Bayesian philosophy that parameters, in this case θ, are random quantities.
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Ingredients of Bayesian Inference

There are various ingredients used to calculate the above probabilities using Bayes

theorem. Attached to these ingredients is the following terminology:

1. We choose a statistical model fX|Θ(x|θ), the model distribution, that reflects

our beliefs about x given a particular value of θ.

2. We choose a probability density fΘ(θ), called a prior distribution, that expresses

our beliefs about a parameter θ, before we have seen any data.

3. After observing data x1, . . . , xn, we update or modify our beliefs according to

this observed data. Mathematically this amounts to calculating the posterior

distribution, which, using Bayes theorem, is given by

fΘ|X1,...,Xn(θ|x1, . . . , xn) = fΘ|X(θ|x) =
fX,Θ(x, θ)

fX(x)
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Note that fX,Θ(x, θ) is referred to as the joint distribution while

fX(x) =

∫
fX,Θ(x, θ)dθ

is referred to as the marginal distribution. If we have n iid observations x1, . . . , xn,

then we replace fX|Θ in (1) with

fX1,...,Xn|Θ(x1, . . . , x1|θ) =

n∏
i=1

fX|Θ(xi|θ) = Ln(θ)

where Ln(θ) is the familiar likelihood function. The posterior density can then be

re-expressed as:

fΘ|X(θ|x) =
Ln(θ)fΘ(θ)∫
Ln(θ)fΘ(θ)dθ

=
Ln(θ)fΘ(θ)

cn
∝ Ln(θ)fΘ(θ)

where cn =
∫
Ln(θ)fΘ(θ)dθ is also called the normalising constant of the posterior

distribution. Note that while cn does depend on x it does not depend on θ.
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The main practical difficulty in Bayesian inference is either in the calculation of the

normalising constant cn (which may be used to obtain the posterior distribution) or

simulating values from fΘ|X(θ|x). We will consider these issues later.

In order to simplify notation we will, from now on, remove subscripting of densities,

i.e. fX|Θ(x|θ) will be written as f (x|θ). We will rely on context to remove ambiguity,

for example, the functions fX|Θ(x|θ) ≡ f (x|θ) and fX(x) ≡ f (x) are different

densities. This convention is used in almost all papers, books and other literature in

Bayesian statistics.
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Example [Bernoulli Model with Uniform Prior]: Let

X1, . . . , Xn ∼ Bernoulli(p).

Suppose that we use f (p) = 1, 0 ≤ p ≤ 1, i.e. the Uniform(0, 1) distribution, as

our prior for p. Suppose we then observe the values x1, . . . , xn, then,

f (p|x) ∝ Ln(p)f (p) = ps(1− p)n−s = p(s+1)−1(1− p)(n−s+1)−1 (3)

where s =
∑n

i=1 xi is the number of successes. By Bayes’ theorem, the posterior

has the form

f (p|x) =
ps(1− p)n−s∫ 1

0 p
s(1− p)n−sdp

(4)

since any constants with respect to p cancel from the numerator and denominator.

Now, recall that a random variable has a Beta distribution with parameters α and

β if its probability density function is given by

f (p;α; β) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1.
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Hence, since f (p;α; β) is a density, i.e.
∫ 1

0 f (p;α; β)dp = 1 for all α, β we have∫ 1

0

pα−1(1− p)β−1 =
Γ(α)Γ(β)

Γ(α + β)

for all α, β. So, if α = s + 1 and β = n− s + 1 we have

f (x) =

∫ 1

0

ps(1− p)n−sdp =
Γ(s + 1)Γ(n− s + 1)

Γ(n + 2)
,

so that

f (p|x) =
Γ(n + 2)

Γ(s + 1)Γ(n− s + 1)
p(s+1)−1(1− p)(n−s+1)−1.

or

p|x ∼ Beta(s + 1, n− s + 1).

Alternatively, we can see by examining (3) that f (p|x) ∝ p(s+1)−1(1− p)(n−s+1)−1

is proportional to a Beta density with parameters α = s + 1 and β = n − s + 1.

Using this method we obtain precisely the same solution without actually having to

calculate the integral
∫ 1

0 p
α−1(1− p)β−1.
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Example [Bernoulli Model with Beta Prior]: Consider the previous example.

Suppose that in the example that instead of using a uniform prior for p, we use

the prior p ∼ Beta(α, β). If you repeat the calculations used in the example, see

Exercises, you will see that

p|x ∼ Beta(α + s, β + n− s).
Note that the uniform prior is a special case of a Beta prior with α = β = 1.

Example [Poisson Model with Gamma Prior]: Let x follow a Poisson distri-

bution with rate θ so that

f (x|θ) =
θxe−θ

x!
, for x = 0, 1, 2, . . . ,

and for a vector of iid observations x = (x1, . . . , xn), the likelihood function is

Ln(θ) =

n∏
i=1

θxie−θ

xi!
∝ θse−nθ

where s =
∑n

i=1 xi. Suppose that we use the Gamma distribution as a prior for θ

parameter, i.e. θ ∼ Gamma(α, β) for some strictly positive constants α and β, so
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that

f (θ;α, β) =
βα

Γ(α)
θα−1e−βθ.

Note that

f (θ|x) =
Ln(θ)fΘ(θ)∫∞

0 Ln(θ)fΘ(θ)dθ
=

θα+s−1e−(β+n)θ∫∞
0 θα+s−1e−(β+n)θdθ

(5)

Now, since f (θ;α, β) is a density for all α, β we have
∫∞

0 θα−1e−βθ = Γ(α)
βα for all

α, β. Hence,

f (x) =

∫ ∞
0

θα+s−1e−(β+n)θ =
Γ(α + s)

(β + n)α+s

so that

f (θ|x) =
(β + n)α+s

Γ(α + s)
θα+s−1e−(β+n)θ, θ > 0,

or θ|x ∼ Gamma(α+ s, β + n). Again, we can see by examining (5) that f (θ|x) is

proportional to a Gamma density with parameters α̃ = α + s and β̃ = β + n.
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Example [Normal with Known Variance and Normal Prior on the Mean]:

Let X1, . . . , Xn|θ ∼ N(θ, σ2) where, for simplicity, we assume that σ2 is known.

Suppose we take as a prior θ ∼ N(a, b2). It can be shown, see Exercises, that the

posterior for θ is

θ|x ∼ N(θn, τ
2)

where

θn = wx + (1− w)a, w =

1

se2

1

se2
+

1

b2

,
1

τ 2
=

1

se2
+

1

b2

and se = σ/
√
n is the standard error of the maximum likelihood estimator x.

Monte Carlo Methods: Lecture 1 19



Priors

An important question which arises in Bayesian inference is: how does one choose the

prior distribution f (θ)? As with many aspects of Statistics there are several ways,

and reasons for choosing, different prior distributions. Prior distributions may be

categorised into several different, potentially overlapping, categories. We will cover

the following types of priors:

2 Conjugate

2 Informative

2 Non-informative

2 Improper

2 and Jeffery’s (objective) prior.

Priors can also be used to address identifiability problems of parameters and can be

used to induce desirable properties in Bayesian estimators.
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Conjugate Priors

One of the key difficulties in Bayesian inference is the calculation of the posterior

distribution. The calculation of the posterior distribution involves the calculation on

an integral. In the examples we have covered so far all of the expression for the

integrals required in the calculation of the posterior distribution were known, i.e. the

integrals were tractable.

The reason the posterior distributions were calculable in the examples we have seen

so far is due to a special relationship between the model distributions and the prior

distributions. This relationship is referred to as conjugacy. Two distributions are said

to be conjugate if the model distribution and the prior distribution share a common

functional form. More formally:

Definition: If F is a class if model distributions f (x|θ), and P is a class of prior

distributions for θ, then the class P so conjugate for F if

f (θ|x) ∈ P for all f (·|θ) ∈ F and f (·) ∈ P .
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This definition is purposefully vague: Choosing P to be the class of all distributions

then P is always conjugate to F regardless of which class of model distributions are

used. More interesting are natural conjugate prior families, which arise by taking P
to be the set of all densities having the same functional form as the likelihood.

Conjugate prior distributions have the practical advantage of computational conve-

nience and of being interpretable as additional data. It can be shown that, in general,

the exponential family of distributions are the only class of distributions that have

natural conjugate prior distributions, since apart from certain irregular cases, the

only distributions having a fixed number of sufficient statistics for all n are of the

exponential type.

Definition: The class F is an exponential family if all its members are of the form

f (xi|θ) = a(xi)b(θ) exp
{
c(θ)Td(xi)

}
.

The factors c(θ) and d(xi) are, in general, vectors of equal dimension to that of θ

whereas the functions a(xi) are b(θ) scalar function. The vector c(θ) is called the

‘natural parameter’ of the family F .
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The likelihood corresponds to a sequence x = (x1, . . . , xn) of iid observations is

Ln(θ) =

[
n∏
i=1

a(xi)

]
b(θ)n exp

{
c(θ)T

[
n∑
i=1

d(xi)

]}
.

For all n and x, this has a fixed form (as a function of θ):

Ln(θ) ∝ b(θ)n exp
{
c(θ)T t(x)

}
where t(x) =

n∑
i=1

d(xi).

where t(x) is a sufficient statistic for θ, because the likelihood for θ depends on the

data x only through the value of t(x).

Suppose that the prior density is of the form f (θ) ∝ b(θ)η exp
{
c(θ)Tν

}
for some

constants η and ν, then the posterior density is of the form

f (θ|x) ∝ b(θ)η+n exp
{
c(θ)T (ν + t(x))

}
which shows that this choice of prior is conjugate. Hence, if the normalising constant

of the prior is known, then the normalising constant for the posterior density will

also be known. This of great practical importance!
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Unfortunately, only a small number of model/prior distribution combinations are

conjugate. Some of the most common model/prior distribution combinations are

listed below:

Likelihood (x1, . . . , xn ∼) Prior Posterior (θ|x)

Bernoulli(θ) θ ∼ Beta(α, β) Beta(α + nx, β + n− nx)

Poisson(θ) θ ∼ Gamma(α, β) Gamma(α + nx, β + n)

N(θ, τ−1) with τ known θ ∼ N(b, c−1) N
(
cb+nτx
c+nτ ,

1
c+nτ

)
Gamma(k, θ) with k known θ ∼ Gamma(α, β) Gamma(α + nk, β + nx)

although many other conjugacy combinations are available.

In practice keeping to models which use conjugate distribution can be quite limiting.

A prior distribution which is not conjugate is called a non-conjugate prior. Unfortu-

nately, using a non-conjugate prior, even if it has a simple functional form, can lead

to awkward numerical problems as the following example demonstrates.
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Example [Non-conjugate Prior]: Suppose, for example, that X1, . . . , Xn ∼
Poisson(θ) random variables, and our beliefs are that θ definitely lies in the range

[1, 2], i.e. there is a Uniform(1, 2) prior on θ, with f (θ) = log(θ)/(2 log(2) − 1),

1 ≤ θ ≤ 2. Then the normalising constant is∫ 2

1

log(θ)

2 log(2)− 1
exp {−nθ} θnxdθ.

This integral can only be evaluated numerically, for example by using the trapezoid

rule, Simpson’s rule or some other method.

Monte Carlo Methods: Lecture 1 25



Informative Priors

One school of thought, called subjectivism says that the prior should reflect our

subjective opinion about θ (before that data is collected).

There are some cases where there is little alternative but to use subjective priors. For

example, there are some cases where expert opinion suggests that certain crimes,

for example sexual assault, are under-reported. In such circumstances relying on the

data alone may provide misleading results to those where priors are developed using

expert opinion.

While this may be possible or even desirable in some cases but it is impractical

in complicated problems, especially if there are many parameters in the model.

Moreover, injecting subjective opinion into the analysis is contrary to the goal of

making scientific inference as objective as possible.

Hence, an obvious alternative is to try to define some sort of “noninformative prior”.
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Noninformative and Improper Priors

Noninformative priors come under a variety of names. Here “noninformative” is

used as to mean the opposite of informative. However, as we will later see, there is

a sense in which all priors are informative and so researchers often use synonyms for

noninformative such as flat, diffuse or vague to described priors of this type.

The goal of noninformative priors is to choose the prior f (θ) so that no value of

θ has a larger value of f (θ) than any other value, i.e. we choose the prior f (θ) so

that θ is selected as objectively as possible by the data. This leads to the flat prior

f (θ) ∝ constant.

In the Bernoulli example, taking f (p) = 1 leads to p|x ∼ Beta(s + 1, n − s + 1).

After looking at some of the properties of the posterior this choice seemed to give

reasonable results.
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However, for more general problems, in particular when the domain of θ is not

bounded, the choice f (θ) ∝ constant is called an improper prior since∫
f (θ)dθ is not defined

and as such f (θ) is not a probability density in the usual sense. Nevertheless, we

can still formally carry out Bayes theorem and compute the posterior density by

multiplying the prior by the likelihood and calculating the normalising constant, i.e.

f (θ|x) =
Ln(θ)f (θ)∫
Ln(θ)f (θ)dθ

=
Ln(θ)∫
Ln(θ)dθ

.

However, the density f (θ|x) may or may not be a proper density. The following two

examples demonstrate this problem.
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Example: LetX1, . . . , Xn ∼ Bernoulli(p). Suppose we use the prior p ∼ Beta(0, 0),

i.e.

f (p) ∝ p−1(1− p)−1, 0 ≤ p ≤ 1.

then it is easy to verify, see Exercises, that f (p) is no longer a proper density.

Furthermore, it can be show that when s = 0 or s = n then the posterior distribution

is also improper.

Example: Suppose that X1, . . . , Xn ∼ N(θ, σ2) where the variance σ2 is known.

Suppose that we use the improper prior f (θ) ∝ 1. It can be shown, see Exercises,

that the posterior distribution is given by

θ|x ∼ N

(
x,
σ2

n

)
.

This is the distribution of the maximum likelihood estimator for a normal sample

when the variance is known.
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If the resulting posterior is not a well defined probability function alternative priors

should be sought. One such alternative is to seek a proper diffuse or vague prior.

We saw in the example of a normal model with known variance and a normal prior

on the mean that as b2 →∞ we obtained θ|x ∼ N(θ̂n, se2) the distribution of the

maximum likelihood estimator.

Hence, for continuous parameters defined on the whole real line, one option is

θ ∼ N(a, b2)

for some constant a and a suitably large value of b2. For positive continuous param-

eters is is common to use

θ ∼ Gamma(a, b) or equivalently θ−1 ∼ Inverse-Gamma(a, b).

where a and b are small positive constants, i.e. 10−4.

However, for either case many other proper diffuse or vague priors could be used in

practice.
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Jeffery’s Priors

Jeffery’s priors arise due to the following problem in Bayesian inference: priors are not,

in general, transformation invariant. This is demonstrated in the following example.

Example: LetX ∼ Bernoulli(p) and suppose we use the flat prior p ∼ Uniform(0,1).

This flat prior presumably represents our lack of information about p before the ex-

periment. Now let ψ = log(p/(1−p)). This is a transformation of p and the resulting

distribution of ψ is given by

f (ψ) =
eψ

(1 + eψ)2

which is the (standard) logistic distribution. The distribution f (ψ) is not flat. But

if we are ignorant about p then we should also be ignorant of ψ. Hence, we should

be using a flat prior for ψ. This is a contradiction. In short, the notion of a flat prior

is not well defined because a flat prior on a parameter does not imply a flat prior

on a transformed version of the parameter, i.e. flat priors are not transformation

invariant.
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This is a property which is not shared my maximum likelihood estimators and is one

of the criticisms levelled against Bayesian inference.

Jeffery came up with a rule which avoids this problem by choosing

f (θ) ∝ I(θ)1/2

where I(θ) is the Fisher information function for θ. This rule turns out to be trans-

formation invariant. There are other various reasons for thinking that this prior might

be a useful prior but we will not go into details here.

Example: Consider the Bernoulli model with parameter p. It can be shown that,

see Exercises, that

I(p) =
1

p(1− p)
.

Hence, Jefferys’ rule says to use the prior

f (p) ∝
√
I(p) = p−1/2(1− p)−1/2.

This turns out to be a Beta(1/2, 1/2) density and is very close to the uniform density.
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Note for multiparameter problems, i.e. where θ is not a one-dimensional parameter,

the Jefferys’ prior is defined to be

f (θ) ∝
√
|I(θ)|

where |A| denotes the determinant of a square matrix A and I(θ) is the Fisher

information matrix.

Monte Carlo Methods: Lecture 1 34



Using the Posterior Distribution

Now that we have seen a few examples of how to calculate Posterior distributions

you might be asking: why is the posterior distribution so important?

In Bayesian inference the posterior distribution is, roughly speaking, analogous to

the distribution of an estimator θ̂ in frequentist inference.

We can use the posterior distribution to:

2 Summarise various aspects of the posterior distribution of a parameter. For ex-

ample, to calculate the mean, mode and variance.

2 Calculate “confidence intervals” for a parameter of interest.

2 To perform model selection or “hypothesis testing”.
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Bayesian Point Estimation

There are a number of ways to summarise features of the posterior distribution. For

example, centre of the posterior distribution may be summarised my its mean, mode

or median. Each of these could be used as a Bayesian point estimate. The posterior

mean by be written as:

θn = E(θ|x) =

∫
θf (θ|x)dθ =

∫
θLn(θ)f (θ)dθ∫
Ln(θ)f (θ)dθ

.

whereas the posterior mode is given by

θ̃n = argmaxθ {f (θ|x)} .

Either θn or θ̃n might be thought of as Bayesian point estimators. The spread of the

posterior distribution might be summarised, for example, by its variance or standard

deviation. The posterior variance by be written as:

Var(θ|x) =

∫
(θ − E(θ|x))2f (θ|x)dθ.
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Example [Bernoulli Model with Uniform Prior – Continued]: Reminder:

p|x ∼ Beta(s + 1, n + 1− s).

The posterior mean of p, i.e. the mean of p|x, is given by E(p|x), which, using

properties of the Beta distribution, is given by

E(p|x) =
s + 1

n + 2
≈ s

n
for large n

The posterior variance of p is given by

Var(p|x) =
(s + 1)(n− s + 1)

(n + 2)2(n + 3)
≈ s(n− s)

n3
for large n.

The maximum likelihood estimator for p when observations are binomial is s/n

and it can be shown that Var(p̂) ≈ s(n − s)/n3. This would suggest, at least for

this particular example, that the posterior distribution p|x has similar asymptotic

properties to the maximum likelihood estimator from frequentist statistics.
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Example [Bernoulli Model with Beta Prior – Continued]: Reminder p|x ∼
Beta(s + α, n − s + β). It is sometimes useful to look at the posterior mean as a

function of the maximum likelihood estimator and the prior mean. For this example,

E[p|x] =
α + s

α + β + n

it can be shown, see Exercises, that

E[p|x] =

(
n

α + β + n

)
s

n
+

(
α + β

α + β + n

)(
α

α + β

)
=

(
n

α + β + n

)
p̂ +

(
α + β

α + β + n

)
p0

where the maximum likelihood estimator is given by p̂ = s/n and the prior mean

is p0 = α/(α + β). From the above equation we can see that as n → ∞ we have

E[p|x]→ p̂, i.e. the prior mean loses influence on the posterior mean as we observe

more and more data. However, when n = 0 we have no observed x values and all

we have to rely on is the prior mean p0. Hence, we see that E[p|x] is a tradeoff

between the maximum likelihood estimator and the prior.
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Example [Poisson Model with Gamma Prior – Continued]: Reminder θ|x ∼
Gamma(α + s, β + n). The posterior mean of θ, i.e. the mean of θ|x, is given by

E(θ|x), which, using properties of the Gamma distribution, is given by

E(θ|x) =
α + s

β + n
≈ s

n
for large n.

Again, the maximum likelihood estimator for θ when observations are Poisson is s/n.

Hence, the posterior mean of θ, E(θ|x), is an asymptotically consistent estimator

of θ.
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Asymptotic Properties

In the above examples we saw that the posterior mean exhibited desirable asymptotic

properties. In fact it can be shown that in general, under appropriate regularity

conditions, that for any parameter θ,(
θ − E(θ|x)√

Var(θ|x)

∣∣∣∣∣x
)
→ N(0, 1)

which is often used to justify approximating the posterior distribution with a normal

distribution. This is more formally expressed in the following theorem:

Theorem: Let θ̂n be the maximum likelihood estimator and let ŝe = 1/

√
nI(θ̂n).

Under appropriate regularity conditions, the posterior is approximately normal with

mean θ̂n and standard deviation ŝe, i.e.

θ|x ∼ N(θ̂n, ŝe)

Hence, θn ≈ θ̂n.

Monte Carlo Methods: Lecture 1 40



Example [Normal with Known Variance and Normal Prior on the Mean

– Continued]: Reminder:

θ|x ∼ N(θn, τ
2)

where se = σ/
√
n,

θn = wx + (1− w)a, w =

1

se2

1

se2
+

1

b2

,
1

τ 2
=

1

se2
+

1

b2

Note that w → 1 and τ/se → 1 as n → ∞. So for large n, the posterior is

approximately N(x, se2) as stated in the above theorem. Note the same is true if n

is fixed but we allow b2 →∞ which corresponds to letting the prior becoming flat.
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Bayesian Confidence Intervals

We may also use the posterior distribution to obtain a Bayesian interval estimates.

One particular approach is to find constants L and R such that∫ L

−∞
f (θ|x)dθ =

∫ ∞
R

f (θ|x)dθ = α/2

where α is a specified level, i.e. 0.05. Let C = (L,R) then

P(θ ∈ C|x) =

∫ R

L

f (θ|x)dθ = 1− α.

The interval C is a 1−α posterior interval or credible interval or sometimes credible

region.
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Example [Normal with Known Variance and Normal Prior on the Mean

– Continued]: Reminder θ|x ∼ N(θn, τ
2). Suppose we wish to use the above

method to find a 95% credible interval for this example. This means we want to find

an interval C = (c, d) such that P(θ ∈ C|X) = 0.95 for some constants c and d,

i.e.

P(θ < c|X) = 0.025 and P(θ > d|X) = 0.025.

Hence, c satisfies

P(θ < c|X) = P

(
θ − θn
τ

<
c− θn
τ

∣∣∣∣∣X
)

= Φ

(
c− θn
τ

)
= 0.025.

We know that Φ(−1.96) ≈ 0.025. Hence, (c− θn)/τ ≈ −1.96 so c ≈ θn − 1.96τ .

Using similar arguments d = θn + 1.96τ . So a 95% credible interval is given by

θn ± 1.96τ.

Since, θn ≈ θ̂n and τ ≈ se, the 95% credible interval is approximated by θ̂n±1.96se

which is the frequentist confidence interval.
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General Credible Intervals

In general credible intervals are more formally defined as follows:

Definition: Suppose that θ ∈ Ω and C is a subset of Ω. Then C is a 1−α credible

interval for θ if

P(θ ∈ C|X) = 1− α.
Note:

2 By the above definition the 1−α credible interval initially described above is by

no means the only 1− α credible interval.

2 The initially described credible interval aims to make the two tail areas to be

of size α/2. This particular strategy works well when the posterior density is

unimodal. In most situations in practice the posterior density is unimodal and so

such a strategy is sensible.
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For a given value of α we want to divide the possible values of θ into ‘more plausible’

and ‘less plausible’ values. Suppose that θ1 and θ2 are two values of θ. It is natural

to say that θ1 is more plausible than θ2 if

f (θ1|x) > f (θ2|x).

This suggests the requirement,

f (θ1|x) > f (θ2|x) for all θ1 ∈ C and θ2 /∈ C.
so that any value of θ included in C is at least as probable as any excluded value.

Definition: A 1− α credible interval C that satisfies

f (θ1|x) > f (θ2|x) for all θ1 ∈ C and θ2 /∈ C.
is called a 1− α highest posterior density (HPD) credible interval.

Note that if f (θ1|x) is symmetric, unimodal and continuous over the real line then

the interval C ∈ (L,R) has the property f (L|x) = f (R|x).
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Bayesian Model Selection

Model selection from a Bayesian perspective is quite a subtle topic. Like it frequentist

inference there are numerous methods for selecting a model. Some Bayesian meth-

ods are analogous to frequentist counterparts (albeit with a different interpretation).

Frequentist Bayesian

Hypothesis Testing Bayes Factors

AIC or BIC Deviance Information Criterion (DIC)

Penalised likelihood Sparsity inducing priors

We will only consider the briefest of introductions here.
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Bayesian Hypothesis Testing

Suppose that one of two hypotheses H0 and H1 are true. Let P(Hi) denote the prior

probability that Hi is the true hypothesis, and, after sample data x has been ob-

served, P(Hi|x) denotes the posterior probability that Hi is true given the observed

data. Bayesian hypothesis testing aims determine the posterior odds,

Q∗ =
P(H0|x)

P(H1|x)
.

Hence, the conclusion from a Bayesian analysis might be a statement of the form

“H0 is Q∗ times more likely to be true than H1.”

Alternatively, as P(H0|x) + P(H1|x) = 1, we might conclude that

“Q∗/(1 + Q∗) and 1/(1 + Q∗) are the probabilities that H0 and that H1 is

true respectively.”
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Notice that, unlike the hypothesis testing approaches in frequentest inference, in

Bayesian hypothesis testing the hypotheses have equal status, i.e. in the frequentist

approach the null hypothesis is retained unless there is evidence against it. Now,

P(H0|x) ∝ P(H0)f (x|H0)

so

Q∗ =
P(H0)

P(H1)

f (x|H0)

f (x|H1)
= Q×B

where

Q =
P(H0)

P(H1)

are the prior odds of the competing hypotheses and

B =
f (x|H0)

f (x|H1)

is called the Bayes factor.

Monte Carlo Methods: Lecture 1 49



The prior odds, Q, represent our beliefs, before collecting the data, as to which

hypothesis is true. Often set to 1 to represent impartiality between the hypotheses,

so that each hypothesis is considered to be equally likely, a priori. Primary interest

is centred on the Bayes factor, B, since this determines how the data have changed

our beliefs as to which hypothesis is true.

This approach can be used in a variety of situations. Here, however, we restrict our

attention to the situation where f (x|θ) is the model distribution for each hypothesis,

but the hypotheses differ in the values they specify for θ. The cases to be considered

are:

1. Both H0 and H1 are simple hypotheses.

2. Both H0 and H1 are composite hypotheses.

3. H0 is a simple hypothesis and H1 is a composite hypothesis.
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Both H0 and H1 are Simple Hypotheses

If both H0 and H1 are simple hypotheses, they have the form

H0 : θ = θ0 vs H1 : θ = θ1

and the Bayes factor is just B = f (x|θ0)/f (x|θ1) which coincides with the likeli-

hood ratio in frequentist inference.

Example: Suppose that X1, X2, . . . , Xn are observations form an exponential dis-

tribution with parameter θ. Then the Bayes factor is given by

B =
θn0 exp {−nθ0x}
θn1 exp {−nθ1x}

=

(
θ0

θ1

)n
exp {(θ1 − θ0)nx} .

For particular values of θ0, θ1, n and x we can calculate the Bayes factor.
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Both H0 and H1 are Composite Hypotheses

If both H0 and H1 are composite hypotheses, we have

H0 : θ ∈ ω vs H1 : θ ∈ Ω− ω
where θ ∈ Ω and ω is some subset of Ω. For each hypothesis a prior distribution

must be specified. Denote these prior densities by fk(θ|Hk), k ∈ {0, 1}. Then

f (x|H0) =

∫
ω

f (x|θ)f0(θ|H0)dθ

and

f (x|H1) =

∫
Ω−ω

f (x|θ)f1(θ|H1)dθ

(similarly for f (x|H0)) and

B =
f (x|H0)

f (x|H1)
=

∫
ω

f (x|θ)f0(θ|H0)dθ∫
Ω−ω

f (x|θ)f1(θ|H1)dθ
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If f0(θ|H0) = f1(θ|H1) = f (θ) then

B =

∫
ω

f (x|θ)f (θ)

f (x
dθ∫

Ω−ω

f (x|θ)f (θ|H)

f (x
dθ

=

∫
ω

f (θ|x)dθ∫
Ω−ω

f (θ|x)dθ
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Example: As part of a quality inspection program, five components are selected

at random from a batch of components and tested. The number of components

that fail, X , follows the binomial distribution, X ∼ Binomial(5, θ), and from base

experience θ has a Beta distribution f (θ) = 30θ(1− θ)4, 0 ≤ θ ≤ 1. For one batch,

no failure were found when five of its components were tested. For this batch we

wish to test the hypotheses

H0 : θ ≤ 0.2 vs H1 : θ > 0.2.

The observed value of X is 0. This leads to the posterior distribution

f (θ|X) = 11θ(1− θ)9.

Thus,

Q∗ =

∫ 0.2

0 11θ(1− θ)9dθ∫ 1

0.2 11θ(1− θ)9dθ
=

0.6779

0.3221
= 2.10.

Note that for this problem we used the same priors for both hypotheses. In general

the priors use for both hypotheses could be different.
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H0 is a Simple Hypothesis and H1 is a Composite Hypothesis

If H0 is a simple hypothesis and H1 is a composite hypothesis, we might have

H0 : θ = θ0 vs H1 : θ 6= θ0

Combining the results from previous two subsections we obtain

B =
f (x|θ0)∫

θ 6=θ0
f (x|θ)f1(θ|H1)dθ

.

Example: Suppose that we have X1, . . . , Xn from a Poisson distribution with mean

θ. Suppose that we wish to test the hypothesis H0 : θ = θ0 against H1 : θ 6= θ0 and

the prior distribution for θ is the distribution

f (θ|H1) = α
(α1+1)
2 θα1 exp{−α2θ}/Γ(α1 + 1).
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To obtain the Bayes factor or we require f (x|θ0) = θnx0 exp{−nθ0}/
∏n

i=1 xi! and∫
θ 6=θ0

f (x|θ1)f1(θ|H1)dθ =

∫ ∞
0

[
θnx exp{−nθ}/∏n

i=1 xi!

][
α

(α1+1)
2 θα1 exp{−α2θ}

Γ(α1 + 1)

]
dθ

=
α

(α1+1)
2 Γ(α1 + nx + 1)

(n + α2)α1+nx+1Γ(α1 + 1)(
∏n

i=1 xi!)

×
∫ ∞

0

(n + α2)α1+nx+1θα1+nx exp{−(n + α2)θ}dθ
Γ(α1 + nx + 1)

where the fact that θ 6= θ0 has been ignored, as this does not affect the value of

the integral. Thus (see Exercises),

B =
θnx0 exp(−nθ0)(n + α2)α1+nx+1Γ(α1 + 1)

αα1+1
2 Γ(α1 + nx + 1)

.

As a specific illustration suppose that the random sample consists of six observations:

3, 1, 6, 2, 5, 2, θ0 = 2.0, α1 = 2.6, α2 = 0.6 and that we believe both hypotheses

are equally true then substitution into the formula gives B = 0.77 so the posterior

odds are 0.385 and we have firmer belief that H1 is the true hypothesis.
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Deviance Information Criterion

The Deviance Information Criterion (DIC), is a way of scoring models, similar in

spirit to the AIC and BIC criterion (which you may have heard about), in order to

determine which models are preferable. The DIC is defined by:

DIC = −2 log f (x|θ̃) + 2PD

where x is the vector of observed data, θ̃ is some Bayesian point estimate of θ̃

(usually either the poterior mean, median or mode) and PD is an estimate of the

dimension of the model and is given by

PD = Eθ|x [−2 log f (x|θ)] + 2 log f (x|θ̃).

Hence,

DIC = −4Eθ|x [log f (x|θ)] + 2 log f (x|θ̃).
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Note:

2 The DIC was derived for Bayesian models and DIC behaves more similarly to

AIC than BIC.

2 Bayes factors only work when proper priors are used! DIC can be used even if

improper priors are used.

2 The DIC is often calculated automatically by packages such as WinBUGS.

2 PD is not invariant to reparametrisation!

2 Can integrate out a subset of parameters, i.e. could start with f (x|θ, ξ) and

calculate the DIC based on

f (x|θ) =

∫
f (x|θ, ξ)f (ξ).

In this case θ is called the focus for the DIC.
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Example [Normal with Known Variance and Normal Prior on the Mean]:

Let X1, . . . , Xn|θ ∼ N(θ, σ2) where, for simplicity, we assume that σ2 is known.

Suppose we take as a prior θ ∼ N(a, b2). Then, θ|x ∼ N(µ, τ 2) where

µ = wx + (1− w)a, w =
1

se2

(
1

se2
+

1

b2

)−1

,
1

τ 2
=

1

se2
+

1

b2

and se = σ/
√
n is the standard error of the maximum likelihood estimator x. Let

θ̃ = E(θ|x) = µ then the log-“likelihood” term is log f (x|µ) = −n
2 log(2πσ2) −

1
2σ2

∑n
i=1(xi − µ)2 and

Eθ|x [log f (x|θ)] = −n
2 log(2πσ2)− 1

2σ2Eθ|x

[
n∑
i=1

(xi − θ)2

]

= −n
2 log(2πσ2)− 1

2σ2Eθ|x

[
nτ 2 +

n∑
i=1

(xi − µ)2

]
.

Hence, PD =
nτ 2

σ2
=

n
σ2

n
σ2 + 1

b2

= 1−
(

1 +
bn

σ2

)−1

.
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Sparsity Inducing Priors

Definition: A sparsity inducing prior is any prior with a discontinuous derivative at

zero.

There has been a lot of recent activity concerning sparsity inducing priors. These

priors encourage point estimators of their corresponding parameters towards 0. Es-

timators with these priors can have the following properties:

2 Consistency.

2 Robustness.

2 If the true value of the parameter is 0 then these estimators can converge to 0

at a faster rate than the MLE.
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Example: One of the first examples of a sparsity inducing prior in the literature is

the famous spike and slab prior. Suppose

yi|β, σ2 ∼ N(β0 + β1xi1 + . . . + βpxip, σ
2).

A spike and slab prior for βi uses:

βi|γi ∼ γiN(0, σ2
β) + (1− γi)δ0

and γi|ρ ∼ Bernoulli(ρ) with prior, ρ ∼ Beta(A,B) where δ0 is a point mass at 0

and σ2
β, A and B are constants.

Note that f (γi|y) can be interpreted as the posterior probability that the covariate

xi contributes to the model.
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Tongue in Cheek Proof that all Frequentists are Bayesian

2 Consider any model f (x|θ).

2 Let f (θ) ∝ 1.

2 Let θ̂Bayes = mode(f (θ|x))

2 Then
θ̂Bayes = argmaxθ(f (θ|x))

= argmaxθ(f (x|θ))

= θ̂MLE.
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Summary

Why Bayesian inference is good for you:

2 Has a solid decision-theoretic framework.

2 Intuitively combines the prior distribution (prior beliefs and/or experience) with

the likelihood (experiment) to obtain the posterior distribution (accumulated

information).

2 The plug-in principle is avoided (uncertainty is properly propagated through the

model).

2 Newly developed MCMC methods may computations tractable for practically all

models. Software (such as WinBUGS) is available for this.

2 Focus shifts from model estimation to model appropriateness.
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