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Abstract

Variational methods for approximate Bayesian inference provide fast, flexible, deterministic alter-
natives to Monte Carlo methods. Unfortunately, unlike Monte Carlo methods, variational approx-
imations cannot, in general, be made to be arbitrarily accurate. This paper develops grid-based
variational approximations which endeavor to approximate marginal posterior densities in a spirit
similar to the Integrated Nested Laplace Approximation (INLA) of Rue, Martino & Chopin (2009)
but may be applied in situations where INLA cannot be used. The method can greatly increase
the accuracy of a base variational approximation, although not in general to arbitrary accuracy.
The methodology developed is at least reasonably accurate on all of the examples considered in
the paper.

Key words: Bayesian Inference, Variational approximation, Kullback-Liebler divergence, Markov
chain Monte Carlo.

1. Introduction

Markov chain Monte Carlo (MCMC) methods are a mainstay in Bayesian inference but can be
painfully slow from the end user’s perspective. Variational methodology for approximate Bayesian
inference is emerging as viable alternative to MCMC methods when such methods become compu-
tationally infeasible. Originating mainly from Computer Science with the work of MacKay (1995)
relatively accessible summaries of variational approximations may be found in Jordan, Ghahra-
mani, Jaakkola & Saul (1999), Bishop (2006, Chapter 10) and an introduction from a statistical
perspective can be found in Ormerod & Wand (2010a). These approaches should become easier to
use with the emergence of a variational approximation-based software package named Infer.NET
(Minka, Winn, Guiver & Kannan, 2008) which claims to be capable of handling a wide variety of
statistical problems.

Ormerod & Wand (2010a) distinguish between a number of different types of variational ap-
proximations which together constitute a richer class of techniques than Laplace’s method and
its extensions (Breslow & Clayton, 1993; Rue, Martino & Chopin, 2009). These methods include
what is most commonly called Variational Bayes, which we call product variational approxima-
tions (PVA) since the same techniques can be used in frequentist settings (see, for instance, Hall,
Humphreys & Titterington 2002; Ormerod & Wand 2009; Hall, Ormerod & Wand, 2010; Ormerod
& Wand 2010b). Particular variational approximations, depending on the problem at hand, can
be hundreds of times faster than MCMC methods. Furthermore, implementation of these methods
is often elegant, adding to their practical appeal.

Unfortunately, unlike MCMC methods, variational approximations cannot, in general, be made
to be arbitrarily accurate. In several contexts variational approximations can be shown to be
overconfident, i.e. they underestimate posterior variances. This overconfidence has been observed
both numerically and theoretically in different settings (see for instance Wang & Titterington,
2006; Bishop, 2006; Cassonni & Marin, 2006; Rue, Martino & Chopin, 2009). For some problems
this potential inaccuracy can rule out their use in practice.

In this paper grid-based variational approximations (GBVA) are developed which endeavor
to approximate marginal posterior densities in a spirit similar to the Integrated Nested Laplace
Approximation (INLA) of Rue, Martino & Chopin (2009). However, GBVA uses variational ap-
proximations in place of the Laplace-based approximations used by INLA and so may be used
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in situations where INLA (which focuses on Gaussian latent effect models) cannot be used. The
method can greatly increase the accuracy of a base variational approximation, although not in
general to arbitrary accuracy. The methodology developed also has the advantage that only the
marginal posterior distributions of interest need to be calculated, potentially resulting huge effi-
ciency gains over MCMC methods.

Section 2 gives an overview of GBVA. Section 3 briefly describes PVAs and their corresponding
product-type GBVAs. Section 4 illustrates this methodology for a pathological example where
PVAs exhibit extreme overconfidence and demonstrates that a product-type GBVA can avoid
this issue. Section 5 illustrates parametric variational approximations and their corresponding
parametric-type GBVAs on, perhaps the simplest model where INLA cannot be applied, a lin-
ear regression model where a binary covariate contains missing values. Section 6 describes a
parametric-type GBVAs and shows for a particular example where GBVA and INLA are directly
comparable that the GBVA method can attain slightly greater accuracy is a reasonable amount of
time. Concluding remarks are given in Section 7.

1.1. Notation
Integrals without limits are assumed to be over the entire space of the integrand argument. We

use 1d to denote the d × 1 column vector with all entries equal to 1. For a d × 1 vector a we let
a−i denote the (d − 1) × 1 vector a with the ith entry removed and diag(a) the d × d diagonal
matrix containing the entries of a along the main diagonal. For square matrices A1, . . . ,Ak we let
blockdiag(A1, . . . ,Ak) denote the block diagonal matrix with ith block equal to Ai. The matrix
A−i denotes the matrix A with the ith column removed. Scalar functions applied to vectors are
evaluated element-wise, e.g. exp([a1, a2]T ) ≡ [exp(a1), exp(a2)]T . The derivative vector Dxf(x),
is the 1 × d matrix with ith entry ∂f(x)/∂xi. The corresponding Hessian matrix is given by
Hxf(x) = Dx{Dxf(x)}T . For a p× q matrix A we define vec(A) to be the pq × 1 vector obtained
by stacking the columns of A underneath each other from left to right and vech(A) to be vec(A)
with the columns above the diagonal deleted. We let Dd denote the duplication matrix of order
d defined by the relationship vec(A) = Ddvech(A) for a symmetric d × d matrix A. The density
function of a random vector u is denoted by p(u). The conditional density of u given v is denoted
by p(u|v). A random variable x has an inverse-gamma distribution with parameters s > 0 and
r > 0 is denoted x ∼ IG(s, r) if its density function is p(x) = rsΓ(s)−1x−s−1 exp(−r/x), x > 0.

2. Grid Based Variational Approximations

Most of Bayesian inference is concerned with the calculation of the posterior density p(H|E) =
p(E ,H)/

∫
p(E ,H)dH where E denotes the set of all observed or evidence variables, for example

the response variables and covariates, and H denotes all unobserved or hidden variables, for ex-
ample model parameters, latent and auxiliary variables or missing data. Integrals are replaced by
summands over all combinations of discrete values for discrete random variables. For all but the
simplest of problems the direct calculation of the quantity p(H|E) is problematic due to the pres-
ence of analytically intractable integrals (or computationally intractable summands over discrete
variables). The marginal posterior densities may be written as

p(θi|E) =
∫

p(E ,H)dH−i∫
p(E ,H)dH =

p(E , θi)∫
p(E , θi)dθi

where p(E , θi) =
∫

p(E ,H)dH−i (1)

where θi is a low-dimensional subset of H and H−i denotes the subset of H \ θi. Equation (1)
demonstrates that calculation of p(θi|E) can be broken into two steps: 1. Marginalization: requiring
calculation of p(E , θi) and 2. Normalization: requiring calculation of p(E) =

∫
p(E , θi)dθi.

Suppose that θi is a scalar so that normalization can be accurately and efficiently performed
using one-dimensional quadrature via p(θij |E) ≈ p(E , θij)/

∑N
j=1 wjp(E , θij) for some weights

w1, . . . , wN and abscissae (or grid) G = {θi1, . . . , θiN} over the effective domain of p(θi|E). Provided
that p(θi|E) is “not too rough” we can then accurately approximate p(θi|E) via interpolation. The
main computational hurdle for such an approach is that it involves N (typically difficult) marginal-
ization steps.

Grid-based variational approximations overcome this computational hurdle via the steps:

1. Select a Grid. Select a grid G = {θi1, . . . , θiN} covering the effective domain of p(θi|E).
2. Approximate Marginalization. For each θij approximate p(E , θij) by p̃(E , θij) via some type

of variational approximation.
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3. Interpolation. Find a function q̃(θi) such that log(q̃(θij)) ≈ log(p̃(E , θij)), 1 ≤ j ≤ N .
4. Approximate Normalization. Approximate p(θi|E) by q(θi) ≡ q̃(θi)

/ ∫
q̃(θi)dθi where

∫
q̃(θi)dθi

is approximated via numerical quadrature.

An overview of this methodology is illustrated in Figure 1. The twofold motivation behind this
procedure is (1) we anticipate that p(E , θi) is “not too rough” so that accurate interpolation of
p(E , θi) can be made between adjacent p(E , θij) values and (2) variational approximations are a
fast, flexible, reasonably accurate alternative to accurate but slow marginalization methods.

For simplicity we select the grid G for the parameter θi based on an initial variational approxi-
mation, say q(θi) of p(θi|E), but compensate for the fact that sometimes such approximations can
be overconfident. Often q(θi) takes the form of a known parametric density, e.g. normal with
mean µ and covariance σ2, in which case we would write q(θi) = N(µ, σ2) for short. If the initial
variational approximation is q(θi) = N(µ, σ2) or q(θi) = Beta(a, b) then we set G to the N equally
spaced points between

〈
θi

〉−5
√

Varq(θi) and
〈
θi

〉
+5

√
Varq(θi) where

〈
θi

〉
and Varq(θi) denote the

mean and variances of θi with respect to q. Similarly, if q(θi) ∼ IG(a, b) or q(θi) ∼ Gamma(a, b)
then we set G to the N logarithmically-spaced points between max(

〈
θi

〉− 5
√

Varq(θi), 10−3) and〈
θi

〉
+ 10

√
Varq(θi). Note that all expressions for the expectations

〈 · 〉 used in this paper well
known and are summarized in Appendix A for convenience.

The INLA method described in Rue et al. (2009) uses a similar approach with Laplace-like
methods for approximate marginalization. However, their method is quite involved due to the fact
that the authors strive both for speed and high accuracy. The grid based variational approximations
offer a simpler approach to INLA which may be attractive to situations where the INLA cannot
be applied, i.e. to non-latent effect models. The method proposed by Rue et al. (2009), and the
one presented here, might be categorized as nested approximations.
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Figure 1: An illustrative overview of grid-based variational approximations. (a) – A variational approximation
is obtained. The variational approximation is used to select a grid of values over the approximate domain of the
marginal posterior density. (b) – The unnormalized marginal posterior density is approximated via variational
methods over the grid. (c) – An interpolant is found which is used to perform approximate normalization.

2.1. Comparing Accuracy of Marginal Posterior Approximations
A comparison of the accuracies of various marginal posterior approximations requires calcula-

tion of highly accurate marginal posterior approximations. To this end, for each of the examples in
the following sections, we used the R package BRugs (Ligges et al., 2009) to obtain 505, 000 MCMC
samples for the model in question. The first 5, 000 samples we used as burn-in and a thinning
factor of 5 was used leaving 105 samples for inference. For such a high Monte Carlo sample size
we would expect these MCMC based approximations to be fairly accurate.

Let p(θi|E) be the posterior density of interest, qMCMC(θi) be the MCMC “gold standard” and
q(θi) be an alternative approximation. Comparisons of accuracy between various methods were
made via the L2 or integrated square error, denoted ISE(θi) =

∫
[q(θi)− p(θi|E)]2 dθi which we

approximate by
∫ θiN

θi1
[q(θi)− qMCMC(θi)]

2
dθi via a composite Simpson’s rule with 10, 001 abscissa.

As with all comparisons some caveats need to be taken into account. Firstly, the MCMC, INLA,
variational (VA) and GBVA results were computed using different programming languages. The
MCMC model fits were obtained using the BUGS inference engine (Lunn et al. 2000) with interfacing
via the package BRugs (Ligges, et al. 2009) in the R computing environment (R Development Core
Team, 2008). The INLA package in R uses similar interfacing with C code (Martino, & Rue, 2009).
The VA and GBVA methods described in this paper where implemented almost entirely in R.
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Furthermore, no effort was made to tailor MCMC to the models at hand and each algorithm uses
different termination conditions. Finally, any time recorded are merely indicative of the times each
algorithm took on a typical 2010 computer. Comparisons of these methods should be made with
these facts in mind.

3. Grid Based Product Variational Approximations

In the most common type of variational approximation, called amongst other things Product
Variational Approximations (PVA), probability calculus is simplified by assuming selected sets of
the model parameters are conditionally independent given the data. Such approximations do not
take into account for all of the variability in the problem and tend to be overconfident. On the
positive side PVA have elegant implementations, are reasonably flexible and are extremely efficient
to use in practice. Furthermore, we can modify this type of variational method to be part of a
GBVA approach with relative ease.

3.1. Product Variational Approximations
The PVA method is one way of dealing with the analytically intractable integrals required to

calculate p(H|E) and (1). Like most variational approximations the PVA method uses the Kullback-
Leibler distance between an arbitrary density q(H) and the posterior density p(H|E) defined by
KL(q(H), p(H|E)) =

∫
q(H) log {q(H)/p(H|E)} dH noting that KL(q(H), p(H|E)) is strictly posi-

tive and zero if and only if q(H) = p(H|E) almost everywhere (Kullback & Leibler, 1951). The
PVA of p(H|E) corresponds to minimizing KL subject to a factorization constraint on q(H), i.e.

min
q(H)

KL(q(H), p(H|E)) subject to q(H) =
M∏

i=1

q(θi) (2)

where H = {θ1, . . . , θM} is some chosen partition of the hidden variables.
It can be shown, either using properties of the Kullback-Leibler distance or using calculus of

variations, that the optimal q(θi)s for this problem, sometimes called q-densities, satisfy

q(θi) ∝ exp {E−θi log p(θi|E ,θ1, . . . , θi−1, θi+1, . . . , θM )} , 1 ≤ i ≤ M, (3)

where E−θi denotes expectations with respect to the density
∏

j 6=i q(θj).
A second useful result is the existence of a simple expressions for a lower bound on the marginal

log-likelihood log p(E). It is easy derive from the Kullback-Leibler distance that

log p(E) ≥ log p(E) ≡
∫

q(H) log
{

p(E ,H)
q(H)

}
dH. (4)

Combining (3) and (4) the following iterative scheme may be used to solve for the q(θi)s:

Algorithm 1: Product Variational Approximation
Initialize q(θ2), . . . , q(θM ).
Cycle:

q(θ1) ← exp {E−θ1 log p(θ1|E , θ2, . . . , θM )}∫
exp {E−θ1 log p(θ1|E ,θ2, . . . , θM )} dθ1

...

q(θM ) ← exp {E−θM log p(θM |E , θ1, . . . , θM−1)}∫
exp {E−θM

log p(θM |E , θ1, . . . , θM−1)} dθM

until the change in log p(E) becomes negligible.

This scheme has the advantage that log p(E) is guaranteed to increase with every update and the
q(θi)s converge to at least a local maximiser of log p(E). Upon convergence the q(θi)s can used to
approximate the marginal posteriors p(θi|E). If conjugate priors are used the q(θi)s will belong to
recognizable distributions and the updates in Algorithm 1 reduce to updating the parameters of
the q-densities. In Computer Science, such an approach has become known as variational message
passing (Winn & Bishop, 2005).
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3.2. Grid Based Variational Approximations
The main element missing in the approach described in Section 2 is how to approximate p(E , θij)

for fixed θij . To this end we calculate a lower bound p(E ,θij) for p(E , θij) which can be efficiently
calculated by replacing E and H with {E , θij} and H−i respectively in (2)–(4). Algorithm 1
can be altered in a similar manner all the time treating θij as a fixed observed value. Note that
computational times can be significantly reduced by using the q-densities from θij as initial densities
for θi,j+1. Examples of product-type GBVAs are described in Sections 4 and 5.

4. A Pathological Case for Product Variational Approximations

Consider the model

y|u ∼ N(u, σ2I), u ∼ N(0, τ−1I) and τ ∼ Gamma(s, r) (5)

where y is the observed data and we will use the prior hyperparameters σ2 = 100, s = 0.01 and
r = 0.01. For this model E = {y} and H = {u, τ}. This model is important because this example
has been used to criticize PVA (see for example, Rue et al., 2009) and is illustrative of both when
PVA performs badly and where their GBVA-based modifications can perform well.

4.1. Product Variational Approximation
Consider the PVA to the model (5) corresponding to the partition H = {u, τ} so that q(H) =

q(u)q(τ). Using (3) we find the q-densities are of the form

q(u) = N{[〈τ〉
+ σ−2

]−1
σ−2y,

[〈
τ
〉

+ σ−2
]−1

I} and q(τ) = Gamma
{
s + n

2 , r + 1
2

〈‖ν‖2〉} (6)

where
〈 · 〉 denotes expectations with respect to the q-densities and using (4) the corresponding

lower bound for log p(y) is given by

log p(y) = −n
2 log(2πσ2)− 1

2σ2

[‖y‖2 − 2yT
〈
u
〉

+
〈‖u‖2〉] + n

2

〈
log

(
τ
2π

)〉− 1
2

〈
τ
〉〈‖u‖2〉

+s log(r)− log Γ(s) + (s− 1)
〈
log(τ)

〉− r
〈
τ
〉− 〈

log q(τ)
〉− 〈

log q(u)
〉
.

(7)

Using (6) and (7) Algorithm 1 can be used to fit the q-densities. Often Algorithm 1 is expressed
as a sequence of update equations. For example, let us denote the mean and covariance of q(u) as
µ and Σ respectively and the shape and rate of q(τ) by S and R respectively. Then (µ,Σ, S, R)
are updated via

Σ(t+1) ← [〈τ〉+ σ−2
]−1

I, µ(t+1) ← σ−2Σ(t)y

S(t+1) ← s + n
2 and R(t+1) ← r + 1

2

[
‖µ(t)‖2 + tr(Σ(t))

] (8)

where µ(0), Σ(0), S(0) and R(0) are chosen initial values. Defining new variables corresponding
to the arguments of each q-density can be quite cumbersome, especially for more complicated
examples. Henceforth, we will only derive the q-densities themselves, (e.g. (6)), from which it is
trivial to find the appropriate update formula (e.g. (8)). Rue et al. (2009) used the updates (8)
to show that as σ2 →∞ the densities q(τ) and p(τ |y) have the same means but that the variance
of q(τ) is too small by a factor of O(n). This suggests that this variational approximation will be
crude for large values of σ2 or n.

4.2. Grid Based Variational Approximation for p(τ |y)
Consider a product-type GBVA for p(τ |y) where we apply (2)–(4) with E = {y, τ} andH = {u}.

Under this situation only the updates for q(u) are applied since τ is observed. Since u is the only
unobserved variable these updates converge in one iteration. Also it can easily be shown that
q(u) = N(σ−2(τ + σ−2)−1y, (τ + σ−2)−1I) = p(u|y, τ) and

log p(y, τ) = − 1
2

{
n log

(
2π(σ2 + τ−1)

)
+ ‖y‖2

σ2+τ−1

}
+ log p(τ) = log p(y, τ) (9)

for all y, τ and σ2. Since, in this case, p(y, τ) = p(y, τ) we can evaluate p(y, τ) over a grid
of τ values and approximate p(y), and hence p(τ |y), with high precision using one-dimensional
quadrature.
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4.3. Grid Based Variational Approximation for p(ui|y)
Consider a product-type GBVA for p(ui|y) where E = {y, ui} and we apply (2)–(4) with the

partition H = {u−i, τ} (so that q(H) = q(u−i)q(τ)). These choices give rise to the q-densities

q(u−i) = N
{

y−i

1+σ2〈τ〉 ,
[〈τ〉+ σ−2

]−1
I
}

and q(τ) = Gamma
{
s + n

2 , r + 1
2

[
u2

i +
〈‖u−i‖2

〉]}

and p(y, ui) can be approximated by p(y, ui) by replacing p(y) and 〈log q(u)〉 with p(y, ui) and
〈log q(u−i)〉 respectively in (7). Following the methodology outlined in Section 2, we can evaluate
p(y, ui) over a grid of uis and then use interpolation and quadrature to approximate p(ui|y).

4.4. Comparisons
To illustrate the relative computational times and accuracies of the posterior approximations of

p(τ |y) and some of the p(ui|y)s we simulated 20 dataset from y|u ∼ N(u, σ2I) and u ∼ N(0, 10I)
(so that the true value of τ was 1/10) with sample sizes n = 100, n = 200 and n = 400. We
compared the times and ISEs of the variational approximation described in Section 4.1 (VA),
the corresponding product-type GBVAs described in Section 4.2 and 4.3 (using 10, 30 and 50
grid points) and MCMC methods (using 103 and 104 samples). The results are illustrated in
Figures 2 and 3 while Figure 4 illustrates some typical approximations of various marginal posterior
approximations.

From Figures 2, 3 and 4 a number of conclusions can be entertained. Firstly, although VA is
fast and its approximation of the p(ui|y)s are accurate, its approximation of p(τ |y) is relatively
crude. Furthermore, as is consistent with the theory of Rue et al. (2009), q(τ) becomes increasingly
inaccurate as n increases. Secondly, GBVA is, on average, more accurate than MCMC approxima-
tions using 103 and 104 samples, regardless of the number of grid points used by GBVA. However,
for the p(ui|y)s little accuracy is gained by using GBVA over VA.

In terms of speed, if all of the posterior densities are required, GBVA is around 20 times faster
than MCMC approximations using 105 samples. However, if we were willing to settle for MCMC
approximations using only 103 samples then MCMC methods become faster than GBVAs, albeit
with a loss in accuracy. On the other hand, if only 10 posterior densities where of interest, then
GBVA would be hundreds of times faster than the MCMC method. Furthermore, if we were to
only calculate p(τ |y) using GBVA and VA to calculate the p(ui|y)s then accurate approximation
of all of the posterior densities can be calculated in a way hundreds of times faster than MCMC
methods, with little, if any, loss of accuracy.
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Figure 2: Boxplots of times (in log(seconds)) for 30 simulations of model (5) using VA, GBVA (with 10, 30 and
50 grid points) and MCMC with 105 methods with simulation settings described in Section 4.4.

5. Linear Regression with Missing Binary Covariate

Consider the following model which falls outside the scope of the models INLA can handle but
where GBVA can be used. Suppose that yi = β0 + β1bi + εi, 1 ≤ i ≤ n, where εi

ind.∼ N(0, σ2
ε),

1 ≤ i ≤ n, and b is binary covariate (some of which are missing). For simplicity, using the
terminology of Rubin (1976), we will assume that the bis are missing completely at random (so
that the missing data mechanism is ignorable). Furthermore, suppose that the bis are 0 or 1 with
a fixed probability ρ. Thus, we might consider the model

yi|bi, β, σ2
ε ∼ N((Xβ)i, σ

2
ε) and bi|ρ ∼ Bernoulli(ρ), 1 ≤ i ≤ n (10)

where X = [1n,b], b = [b1, . . . , bn] and β = [β0, β1]T . We will also use the priors β ∼ N(0, σ2
βI),

σ2
ε ∼ IG(s, r) and ρ ∼ Unif(0, 1) where σ2

β = 108, s = 0.01 and r = 0.01 are constants. Finally, we
denote the vector of observed bis as bobs and the vector of missing bis as bmis.
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Figure 3: Boxplots of approximate errors (in log(ISE) based on MCMC with 105 samples) for 30 simulations of
model (5) using VA, GBVA (with 10, 30 and 50 grid points) and MCMC (with 103 and 104 samples) methods with
simulation settings described in Section 4.4.

5.1. Product Variational Approximation
Following the methodology described in Section 3 the q-densities corresponding to the partition

H = {β, σ2
ε , ρ,bmis} are given by

q(β) = N
{[〈

σ−2
ε

〉〈
XT X

〉
+ σ−2

β I
]−1〈

σ−2
ε

〉〈
X

〉T
y,

[〈
σ−2

ε

〉〈
XT X

〉
+ σ−2

β I
]−1

}
,

q(σ2
ε) = IG

{
s + n

2 , r + 1
2

[
‖y‖2 − 2yT

〈
X

〉〈
β

〉
+ tr(

〈
XT X

〉〈
ββT

〉
)
]}

,

q(ρ) = Beta
{
1 + 1T

n 〈b〉 , 1 + n− 1T
n 〈b〉

}
and q(bi) = Bernoulli {ηi} (if bi ∈ H)

(11)

where the ith row of
〈
X

〉
is [1, bi] if bi ∈ E and [1, ηi] if bi ∈ H, η = [η1, . . . , ηn],

〈
XT X

〉
=

[
n 1T

n

〈
b
〉

1T
n

〈
b
〉

1T
n

〈
b
〉

]
, 1T

n

〈
b
〉

= 1T
nobs

bobs + 1T
nmis

η and

logit(ηi) =
〈
σ−2

ε

〉 [〈
β1

〉
yi −

〈
β0β1

〉− 1
2

〈
β2

1

〉]
+

{
ψ(1 + 1T

n

〈
b
〉
)− ψ(1 + n− 1T

n

〈
b
〉
), if ρ ∈ H,

log(ρ)− log(1− ρ), if ρ ∈ E .

We can now use (4) to derive a lower bound log p(y,bobs) on log p(y,bobs) where

log p(y,bobs) = −n
2

〈
log(2πσ2

ε)
〉− 1

2

〈
σ−2

ε

〉 [
‖y‖2 − 2yT

〈
X

〉〈
β

〉
+ tr(

〈
XT X

〉〈
ββT

〉
)
]

−p
2 log(2πσ2

β)− 1
2σ2

β

〈‖β‖2〉 + 1T
n

〈
b
〉〈

log(ρ)
〉

+ (n− 1T
n

〈
b
〉
)
〈
log(1− ρ)

〉

+s log(r)− log Γ(s)− (s + 1)
〈
log(σ2

ε)
〉− r

〈
σ−2

ε

〉
−〈

log q(β)
〉− 〈

log q(σ2
ε)

〉− 〈
log q(ρ)

〉− 〈
log q(bmis)

〉
.

(12)
Now that we have (11) and (12) we can use Algorithm 1 to fit the q-densities in an efficient and
robust manner.

5.2. Grid Based Variational Approximations
The product-type GBVA corresponding to the PVA described in Section 5.1 can be obtained with
a few modifications. In order to find the GBVA for parameter θ ∈ {β0, β1, σ

2
ε , ρ} say, we need

to approximate p(y,xobs, θ). Using the partition H \ θ defined in Section 5.1 the q-densities are
identical to those in (11) except when θ is βi for i = {0, 1}. In this case the q(β−i) is given by
q(β−i) ∼ N{[〈σ−2

ε

〉〈
XT
−iX−i

〉
+σ−2

β ]−1
〈
σ−2

ε

〉[〈
X−i

〉T
y−〈

XT
i X−i

〉
βi], [

〈
σ−2

ε

〉〈
XT
−iX−i

〉
+σ−2

β ]−1}.
The corresponding lower bound log p(y,xobs, θ) can be easily calculated by using E = {y,xobs, θ}
and H = {β, σ2

ε , ρ,bmis} \ θ. The q-densities can then be sequentially updated until the differ-
ence in log p(y,xobs, θ) is negligible. The final value of log p(y,xobs, θ) can be used to approxi-
mate log p(y,xobs, θ). Then using the methodology described in Section 2 we can approximate
log p(θ|y,xobs).
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Figure 4: Approximate posterior densities based on VA, MCMC and GBVA methods for simulated data (based on
settings described in Section 4.4) for τ and the first 4 uis for model (5). Note that all of the approximate posterior
densities corresponding to the uis are almost indistinguishable.

5.3. Comparisons
To compare the accuracy of the PVA described in Section 5.1 and the corresponding product-

type GBVA described in Section 5.2 we consider a simulation from the model (10) where 30 datasets
with n = 200 points are generated with β0 = −1, β1 = 2, σ2

ε = 2, ρ = 1/2 and 50% points are
removed completely at random. Box plots of times and ISEs of the variational approximation
(VA), GBVA (with 10, 30 and 50 grid points) and MCMC methods (using 103 and 104 samples)
are illustrated in Figure 5 while the most relevant approximate posterior densities are illustrated
in Figure 6. We also considered different combinations of n, σ2

ε and percentage of points removed
at random. However, the results from these simulations were very similar to the results illustrated
in Figure 5 and are not shown.

Form Figure 5 we see that the proposed GBVA is both faster more accurate than the MCMC
method. However, the times and ISEs for the GBVA methods do not include the calculation of the
posterior distributions of the missing bmis because these are probably not of interest. In Figure 6
we see that the proposed GBVA method gives posterior distributions which are indistinguishable
to those given by the MCMC method with 105 samples.

Finally we note that the VA and GBVA algorithms scale very well to large n values. For
n = 106 with 50% of xs randomly removed the VA, GBVA and MCMC (with 104 posterior
samples) methods took 15 seconds, 10 minutes and 44 hours of computing time respectively.

6. Logistic Random Intercept Model

So far we have only considered models where product variational approximations give rise to
q-densities which take the form of known distributions, i.e. conjugate models. In many situations,
for example some latent effect models, this is not the case. Thus, in order to compare the INLA
method (which deals solely with Gaussian latent effect models) with a GBVA alternative, a different
variational method to the product type needs to be pursued.

Ormerod & Wand (2010a) described several such approaches including tangent and parametric
variational approximations. Tangent-type GBVAs, based on the work of Jaakkola & Jordan (2000)
where first considered in Ormerod & Wand (2008) with limited success and will not be pursued
again here.

Parametric variational approximations, similarly to PVA methods minimize (2) with the addi-
tional constraint that one or more of the q-densities take a known parametric form, i.e.

min
q(H)

KL(q(H), p(H|E)) subject to q(H) =
M∏

i=1

q(θi; ξi) (13)
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Figure 5: A boxplot of the times (in log(seconds)) and total approximate errors (in log(ISE) based on MCMC with
105 samples) for 30 simulations of model (10) with setting described in Section 5.3 using VA, GBVA (with 10, 30
and 50 grid points) and MCMC (with 103 and 104 samples) methods using simulation settings described in Section
5.3.
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Figure 6: Approximate posterior densities based on VA, MCMC and GBVA methods for β0, β1, σ2
ε and ρ for model

(10) with setting described in Section 5.3.

where the q(θi; ξi)s are now some conveniently chosen densities parameterized by ξi. This approach
originated from the work of Barber & Bishop (1998) where q(H) was restricted to be a multivari-
ate Gaussian density and appeared shortly after in Seeger (2000), and more recently in Opper
& Archambeau (2009) and Ormerod & Wand (2010a-b) who called these Gaussian Variational
Approximations (GVA).

To fix ideas consider the bacteria dataset which may be obtained from the R package MASS
(Venables & Ripley, 2008). The bacteria datasets records tests of the presence of the bacteria
H. influenzae in children with a history of otitis media in Northern Territory, Australia (Leach,
2000). The children were randomized into three groups: placebo, drug, and drug with active
encouragement to comply. The presence of H. influenzae was checked at weeks 0, 2, 4, 6 and 11
to 30 and recorded as weekij . If a particular check was missed no data was recorded for that
week. High or low compliance of the patient in taking the treatment are indicated by the variables
drugHiij and drugLoij respectively. The logistic random intercept model we considered for this
dataset is described by

logit {P (yij = 1|β, ui)} = β0 + β1drugLoij + β2drugHiij + β3weekij + ui

for 1 ≤ i ≤ 50, 1 ≤ j ≤ ni, where ni takes values from 2 to 5. We assume that the uis are normally
distributed random effects with mean 0 and precision τ . We place the priors β ∼ N(0, σ2I) and
τ ∼ Γ(s, r) on β and τ respectively for known constants σ2 = 108, s = 0.01 and r = 0.01.

6.1. Parametric Variational Approximation
Before considering the parametric variational approximation for this model first consider the

PVA corresponding to the partition q(ν, τ) = q(ν)q(τ) where ν = [βT ,uT ]T . Applying (3) we

9



find q(ν) ∝ exp{yT Cν − 1T
n b(Cν) − 1

2νT Bν} and q(τ) = Gamma{s + m
2 , r + 1

2

〈‖u‖2〉} where
b(x) = log(1 + ex), B = blockdiag(σ−2I,

〈
τ
〉
I), y = [y11, . . . , y1n1 , y21, . . . , ymnm ]T and

C =




1 drugLo11 drugHi11 week11 1 0 · · · 0
...

...
...

...
...

...
. . .

...
1 drugLo1n1

drugHi1n1
week1n1 1 0 · · · 0

1 drugLo21 drugHi21 week21 0 1 · · · 0
...

...
...

...
...

...
. . .

...
1 drugLomnm

drugHimnm
weekmnm

0 0 · · · 1




.

Unlike the previous examples not all q-densities, in this case q(ν), take the form of known para-
metric densities. Instead, using the optimal q-densities as a guide, we calculate the lower bound
log p(y; ξ) on log p(y) via (4) with q(ν) = N(µ,Σ) and q(τ) = Gamma(S,R) in order to obtain

log p(y; ξ) = yT C
〈
ν
〉− 1T

n

〈
b(Cν)

〉− 1
2 tr

(
B

〈
ννT

〉)− m+p
2 log(2π)− p

2 log(σ2) + m
2

〈
log(τ)

〉
+s log(r)− log Γ(s) + (s− 1) 〈log(τ)〉 − r

〈
τ
〉− 〈

log q(ν)
〉− 〈

log q(τ)
〉

(14)
where ξ = (µ, vech(Σ), S,R) are additional variational parameters. Note that the calculation
of

〈
b(Cν)

〉
and its derivatives requires approximation of one dimensional integrals, the details

of which are summarized in the Appendix. We call q(ν) = N(µ,Σ) the Gaussian Variational
Approximation of p(ν|y).

Note that p(y) ≥ p(y; ξ) for all ξ. Hence, maximizing p(y; ξ) with respect to ξ and reduces
the gap between p(y) and p(y; ξ). Differentiating log p ≡ log p(y; ξ) with respect to ξ we obtain

Dµ log p = CT
[
y − 〈

b′(Cν)
〉]−Bµ

Dvech(Σ) log p = 1
2vec

[
Σ−1 −CT diag(

〈
b′′(Cν)

〉
)C−B

]T
Dm.

(15)

The Hessian matrix corresponding to µ is Hµµ log p = −CT diag(
〈
b′′(Cν)

〉
)C − B. We see from

the second line of (15) that the first order optimality conditions for Σ are satisfied when Σ =
[CT diag(

〈
b′′(Cν)

〉
)C + B]−1. We use this condition as a fixed point update for Σ by setting Σ

to [CT diag(
〈
b′′(Cν)

〉
)C + B]−1 at the beginning of each iteration. This guarantees that Σ is

symmetric positive definite and can then be used in a Newton-Raphson update of µ. The optimal
values for S and R are the same as those for the PVA. This leads to Algorithm 2 below.

Algorithm 2: Variational Approximation for
the Logistic Random Intercept Model

Initialize µ, Σ, S = s + m
2 and R.

Cycle:
Σ ← [

CT diag(
〈
b′′(Cν)

〉
)C + B

]−1

µ ← µ + Σ
{
CT

[
y − 〈

b′(Cν)
〉]−Bµ

}
; R ← r + 1

2

〈‖u‖2〉
until the change in p(y; ξ) becomes negligible.

Note that GVA is similar in spirit to the Laplace’s method, however, as noted in Bishop (2006)
and Ormerod & Wand (2010b), empirical evidence suggests that GVA is typically better at ap-
proximating posterior means than Laplace’s method. This in turn suggests that a GBVA based
on a GVA may perform better than INLA in this context.

6.2. Grid Based Variational Approximations
The GBVA for p(τ |y) requires only a little modification of Algorithm 2. In this case we treat τ

as observed so that we do not apply the update for R. Furthermore, the only modification required
to calculate log p(y, τ ; ξ) is to omit the term

〈
log q(τ)

〉
in (14).

Finally, consider the GBVA to p(βi|y) where we approximate p(β−i|y, βi) by q(β−i), a multi-
variate Gaussian density with mean µ and covariance Σ. Using (4) withH = {β−i} and E = {y, βi}
we can derive p(y, βi; ξ), a lower bound on p(y, βi), is given by (14) where we replace log p(y; ξ)
with log p(y, βi; ξ) and treat the appropriate element of ν as observed. Following a similar line or
argument to that described in Section 6.1 using a fixed value for βi leads to Algorithm 2 with C
replaced with C−i and B replaced with B−i.

The final value for p(y, βi; ξ) obtained from Algorithm 3 is used as an approximation to p(y, βi)
which can be used as part of a grid-based approximation as described in Section 2.
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6.3. Comparisons
For the bacteria dataset described in Section 6.1 the main parameters of interest are the βis

and τ . Figure 7 illustrates the approximate posterior densities and values for these parameters
based on VA (based on the variational approximation described in Section 6.1), MCMC (based on
105 samples), GBVA (based on the grid-based variational approximations described in Section 6.2
with 10 grid points per parameter) and the INLA-R implementation of the INLA method. Table 1
displays the ISEs for the parameters of interest based on VA, GBVA and INLA methods and the
times that each of these methods took.
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Figure 7: Approximate posterior densities based on VA, MCMC, GBVA and INLA methods for β0, . . . , β3 and τ
for model (10) with setting described in Section 5.3.

Method β0 β1 β2 β3 τ Time (s)
VA 0.023 0.002 0.001 0.025 1.396 0.09
GBVA 0.003 0.002 0.001 0.008 0.029 7.08
INLA 0.006 0.004 0.005 0.074 0.057 1.95
MCMC (103) 0.004 0.003 0.001 0.018 0.008 43.16

Table 1: Integrated square error (ISE) values based on MCMC with 105 samples for the main parameters of interest
and times for the random intercept model of the Bacteria dataset using the VA, GBVA, INLA and MCMC methods.

From Table 1 we note that GBVA offers a slight improvement over both VA and INLA for all of
the βis, although each of the methods is quite accurate for these parameters. The GBVA method
significantly improves over VA for the τ parameter, but perhaps only offers a slight improvement
over INLA for this parameter. This suggests that GBVA may offer a slight improvement over INLA
in an acceptable amount of time. Furthermore, if q(βi)s is fit using VA and q(τ) is fit using GBVA
the total time taken is 0.4 seconds. This combination gives a slight improvement in accuracy over
INLA and less than half the time with little loss of accuracy when compared to INLA. Finally,
we see that there is a speed versus accuracy tradeoff when comparing these methods to MCMC.
While the VA, GBVA and INLA methods are faster, for this particular example, they do not offer
an advantage in terms of accuracy when compared to the MCMC method with 103 samples.

The reduced accuracy of both approximations of p(τ |y) stems from the fact that both methods
use similar but different Gaussian approximations to p(ui|y). Ormerod & Wand (2010b) demon-
strated that for a frequentist model of a similar dataset that some of the p(ui|y)s are severely
skewed so that a Gaussian approximation is of the p(ui|y)s is not sufficiently accurate. A similar
inaccuracy in the precision of INLA has also been encountered in similar models by Fong, Rue &
Wakefield (2010).

The GBVA and INLA methods for this example are very similar but differ in some important
aspects which account for GBVA being about four times slower than INLA. The fact that INLA
is faster than GBVA stems from three main differences between the two methods. Firstly, GBVA
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was programmed in R while INLA, implemented in the low-level programming language C. Secondly,
Algorithm 2 requires 3

∑m
i=1 ni one-dimensional integral approximations each iteration.

7. Discussion

This paper describes a new method called grid-based variational approximations for calculating
approximate marginal posterior densities. We have shown that the method is extremely fast and
reasonably accurate on all of the models considered in this paper, and is a particularly attractive
alternative to MCMC methods, especially when only a few marginal posterior densities are of
interest and the model cannot be fit using INLA.

Several modifications can be envisaged for superior performance. Firstly, grid points could
be chosen adaptively. If the grid could be chosen in such a way that as few as possible grid
points are chosen then computational times might be greatly reduced. Secondly, the algorithm
could be modified for approximation of higher dimensional marginal posterior densities. Such a
modification, perhaps along the lines of the INLA method of Rue et al. (2009), might also yield
superior speed and accuracy. These modifications could lead to an attractive alternative method
to INLA for problems where the INLA method cannot be used.

Appendix

Expectations with respect to the q-densities are denoted by 〈θ〉 in this paper, for some vector θ.
In an effort to reduce notation we summarize the expectations appearing in this paper here. Note
that if θ is observed, i.e. θ ∈ E , then 〈f(θ)〉 = f(θ) for any vector valued function f , otherwise,
i.e. when θ ∈ H, the expectations are summarized below.

If q(ν) = N(µ,Σ) then
〈
ν
〉

= µ and
〈‖ν‖〉 = ‖µ‖ + tr(Σ). Similarly, if q(ν−i) = N(µ,Σ)

the ith element of
〈
ν
〉

is νi and the remaining elements are µ and
〈‖ν‖〉 = ν2

i + ‖µ‖ + tr(Σ). If
q(σ2) ∼ IG(S, R) then

〈
σ−2

〉
= S/R and

〈
log(σ2)

〉
= log(R)−ψ(S) where ψ(x) = [d log Γ(t)/dt]t=x

is the digamma function and Γ(x) is the gamma function (see Abramowitz & Stegun, 1964, Chapter
6 for details). Let τ ∼ Gamma(S,R) then

〈
τ
〉

= S/R and
〈
log(τ)

〉
= ψ(S) − log(R). Let

ρ ∼ Beta(α, β) then
〈
ρ
〉

= α
α+β ,

〈
log(ρ)

〉
= ψ(α)−ψ(α + β) and

〈
log(1− ρ)

〉
= ψ(β)−ψ(α + β).

Finally, if bi ∼ Bernoulli(η) then
〈
bi

〉
= η.

Shannon’s entropy (or simply entropy) of a density q(θ) is defined as − ∫
q(θ) log q(θ)dθ =

−〈log q(θ)〉 where larger entropy values characterize great randomness of a random vector with
density q(θ). These entropies are frequently used in this paper to calculate values of log p(E) for
different configurations of E . Nadarajah & Zografos (2003) contains entropy expressions for all the
distributions used in this paper.

In Section 6.1 expectations of the form
〈
b(r)(Cν)

〉
, r = 0, 1, 2, were encountered where b(x) =

log(1 + exp(x)) and q(ν) = N(µ,Σ) or q(ν−i) = N(µ,Σ). Firstly let,

B(r)(µ, σ2) =
∫

b(r)(x)(2πσ2)−1/2 exp
{− 1

2σ2 (x− µ)2
}

dx.

Then it is fairly easy to show that
〈
b(r)(cT ν)

〉
= B(r)(cT µ, cT Σc) if q(ν) = N(µ,Σ) and〈

b(r)(cT ν)
〉

= B(r)(ciνi + cT
−iµ, cT

−iΣc−i) if νi is fixed and q(ν−i) = N(µ,Σ). Secondly, note
that ∂

∂µB(r)(µ, σ2) = B(r+1)(µ, σ2) and ∂
∂σ2 B(r)(µ, σ2) = 1

2B(r+2)(µ, σ2). Gauss-Hermite quadra-
ture can then be use to approximate B(r)(µ, σ2) (see Ormerod & Wand, 2010b, for details).
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