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SUMMARY

Bayesian hierarchical models are attractive structures for conducting regression anal-
yses when the data are subject to missingness. However, the requisite probability calcu-
lus is challenging and Monte Carlo methods typically are employed. We develop an al-
ternative approach based on deterministic variational Bayes approximations. Both para-
metric and nonparametric regression are treated. We demonstrate that variational Bayes
can achieve good accuracy, but with considerably less computational overhead. The main
ramification is fast approximate Bayesian inference in parametric and nonparametric re-
gression models with missing data.

Keywords: Bayesian inference; Directed acyclic graphs; Incomplete data; Mean field ap-
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1 Introduction

Bayesian inference for parametric regression has a long history (e.g. Box & Tiao, 1973;
Gelman, Carlin, Stern & Rubin, 2004). Mixed model representations of smoothing splines
and penalized splines afford Bayesian inference for nonparametric regression (e.g. Rup-
pert, Wand & Carroll, 2003). Whilst this notion goes back at least to Wahba (1978), re-
cent developments in Bayesian inference methodology, especially Markov Chain Monte
Carlo (MCMC) algorithms and software, has led to Bayesian approaches to nonparamet-
ric regression becoming routine. See, for example, Crainiceanu, Ruppert & Wand (2005)
and Gurrin, Scurrah & Hazelton (2005). There is also a large literature on Bayesian non-
parametric regression using regression splines with a variable selection approach (e.g.
Denison, Holmes, Mallick & Smith, 2002). The present article deals only with penalized
spline nonparametric regression, where hierarchical Bayesian models for nonparametric
regression are relatively simple.

When the data are susceptible to missingness a Bayesian approach allows relatively
straightforward incorporation of standard missing data models (e.g. Little & Rubin, 2004;
Daniels & Hogan, 2008), resulting in a larger hierarchical Bayesian model. Inference via
MCMC is simple in principle, but can be costly in processing time. For example, on the
third author’s laptop computer (Mac OS X; 2.33 GHz processor, 3 GBytes of RAM), ob-
taining 10000 MCMC samples for a 25-knot penalized spline model, and sample size of
500, takes about 2.6 minutes via the R language (R Development Core Team, 2010) pack-
age BRugs (Ligges et al. 2010). If 30% of the predictor data are reset to be missing com-
pletely at random and the appropriate missing data adjustment is made to the model then
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10000 MCMC draws takes about 7.3 minutes; representing an approximate three-fold in-
crease. The situation worsens for more complicated nonparametric and semiparametric
regression models. MCMC-based inference, via BRugs, for the missing data/bivariate
smoothing example in Section 7 of Wand (2009) requires about a week on the aforemen-
tioned laptop.

This paper is concerned with fast Bayesian parametric and nonparametric regression
analysis in situations where some of the data are missing. Speed is achieved by using
variational approximate Bayesian inference, often shortened to variational Bayes. This is
a deterministic approach that yields approximate inference, rather than ‘exact’ inference
produced by an MCMC approach. However, as we shall see, the approximations can be
very good. An accuracy assessment, described in Section 3.4, showed that variational
Bayes achieves better than 80% accuracy for the main model parameters.

Variational Bayes is now part of mainstream Computer Science methodology (e.g.
Bishop, 2006) and are used in problems such as speech recognition, document retrieval
(e.g. Jordan, 2004) and functional magnetic resonance imaging (e.g. Flandin & Penny,
2007). Recently, they have seen use in statistical problems such as cluster analysis for
gene-expression data (Teschendorff et al., 2005) and finite mixture models (McGrory &
Titterington, 2007). Ormerod & Wand (2010) contains an exposition on variational Bayes
from a statistical perspective. A pertinent feature is their heavy algebraic nature. Even
relatively simple models require significant notation and algebra for description of vari-
ational Bayes.

To the best of our knowledge, the present article is the first to develop and investi-
gate variational Bayes for regression analysis with missing data. In principle, variational
Bayes methods can be used in essentially all missing data regression contexts: e.g. gener-
alized linear models, mixed models, generalized additive models, geostatistical models
and their various combinations. It is prudent, however, to start with simpler regression
models where the core tenets can be elucidated without excessive notation and algebra.
Hence, the present paper treats the simplest parametric and nonparametric regression
models: single predictor with homoscedastic Gaussian errors. The full array of missing
data scenarios: missing completely at random (MCAR), missing at random (MAR) and
missing not at random (MNAR) are treated. For parametric regression with probit miss-
ing data mechanisms, we show that variational Bayes is purely algebraic, without the
need for quadrature or Monte Carlo-based approximate integration. The nonparamet-
ric regression extension enjoys many of the assets of parametric regression, but requires
some univariate quadrature. Comparisons with MCMC show quite good accuracy, but
with computation in the order of seconds rather than minutes. The upshot is fast ap-
proximate Bayesian inference in parametric and nonparametric regression models with
missing data.

Section 2 summarises the variational Bayes approach. Inference in the simple linear
regression model with missing data is the focus of Section 3. In Section 4 we describe
extension to nonparametric regression. Some closing discussion is given in Section 5.

1.1 Notation

If P is a logical condition then I(P) = 1 if P is true and I(P) = 0 if P is false. We use Φ
to denote the standard normal distribution function.

Column vectors with entries consisting of sub-scripted variables are denoted by a
bold-faced version of the letter for that variable. Round brackets will be used to denote
the entries of column vectors. For example x = (x1, . . . , xn) denotes a n × 1 vector with
entries x1, . . . , xn. The element-wise product of two matrices A and B is denoted by
A�B. We use 1d to denote the d× 1 column vector with all entries equal to 1. The norm
of a column vector v, defined to be

√
vT v, is denoted by ‖v‖. Scalar functions applied to
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vectors are evaluated element-wise. For example,

Φ(a1, a2, a3) ≡ (Φ(a1), Φ(a2), Φ(a3)).

The density function of a random vector u is denoted by p(u). The conditional density
of u given v is denoted by p(u|v). The covariance matrix of u is denoted by Cov(u). A
d× 1 random vector x has a Multivariate Normal distribution with parameters µ and Σ,
denoted by x ∼ N(µ,Σ), if its density function is

p(x) = (2π)−d/2|Σ|−1/2 exp{−1
2(x− µ)TΣ−1(x− µ)}.

A random variable x has an Inverse Gamma distribution with parameters A,B > 0,
denoted by x ∼ IG(A,B) if its density function is p(x) = BAΓ(A)−1x−A−1e−B/x, x > 0.
If yi has distribution Di for each 1 ≤ i ≤ n, and the yi are independent, then we write
yi

ind.∼ Di.

2 Elements of Variational Bayes

Variational Bayes methods are a family of approximate inference techniques based on the
notions of minimum Kullback-Leibler divergence and product assumptions on the pos-
terior densities of the model parameters. They are known as mean field approximations
in the statistical physics literature (e.g. Parisi, 1988). Detailed expositions on variational
Bayes may be found in Bishop (2006, Sections 10.1–10.4) and Ormerod & Wand (2010). In
this section we describe the elements of variational Bayes.

Consider a generic Bayesian model with parameter vector θ ∈ Θ and observed data
vector y. Bayesian inference is based on the posterior density function

p(θ|y) =
p(y,θ)
p(y)

.

We will suppose that y and θ are continuous random vectors, which conforms with the
models in Sections 3 and 4. Let q be an arbitrary density function over Θ. Then the
marginal likelihood p(y) satisfies p(y) ≥ p(y; q) where

p(y; q) ≡ exp
∫

Θ
q(θ) log

{
p(y,θ)
q(θ)

}
dθ.

The gap between log{p(y)} and log{p(y; q)} is known as the Kullback-Leibler divergence
and is minimized by

qexact(θ) = p(θ|y),

the exact posterior density function. However, for most models of practical interest,
qexact(θ) is intractable and restrictions need to be placed on q to achieve tractability. Varia-
tional Bayes relies on product density restrictions:

q(θ) =
M∏
i=1

qi(θi) for some partition {θ1, . . . ,θM} of θ.

Under this restriction, the optimal densities (with respect to minimum Kullback-Leibler
divergence) can be shown to satisfy

q∗i (θi) ∝ exp{E−θi
log p(y,θ)}, 1 ≤ i ≤M, (1)

where E−θi
denotes expectation with respect to the density

∏
j 6=i qj(θj). Conditions (1)

give rise to iterative schemes for obtaining the simultaneous solutions over each member
of the partition.
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An alternative form for the solutions is

q∗i (θi) ∝ exp{E−θi
log p(θi|rest)}, 1 ≤ i ≤M, (2)

where
rest ≡ {y,θ1, . . . ,θi−1,θi+1, . . . ,θM}

is the set containing the rest of the random vectors in the model, apart from θi. The
distributions θi|rest, 1 ≤ i ≤ M , are known as the full conditionals in the MCMC litera-
ture. Gibbs sampling (e.g. Robert & Casella, 2004) involves successive draws from these
full conditionals. We prefer (2) to (1), since it lends itself to considerable simplification
because of graph theoretic results which we describe next.

2.1 Directed Acyclic Graphs and Markov Blanket Theory

The missing data regression models of Sections 3 and 4 are hierarchical Bayesian models,
and hence can be represented as probabilistic directed acyclic graphs (DAGs). DAGs
provide a useful ‘road map’ of the models structure, and aid the algebra required for
variational Bayes. Random variables or vectors correspond to nodes while directed edges
(i.e. arrows) convey conditional dependence. The observed data components of the DAG
are sometimes called evidence nodes, whilst the model parameters correspond to hidden
nodes. Bishop (2006, Chapter 8) and Wasserman (2004, Chapter 17) provide very good
summaries of DAGs and their probabilistic properties. Figures 1 and 6 contain DAGs for
models considered in the present paper.

The formulation of variational Bayes algorithms greatly benefit from a DAG-related
known concept known as Markov blanket theory. First we define the Markov blanket of a
node on a DAG:

Definition. The Markov blanket of a node on a DAG is the set of children, parents and co-parents
of that node. Two nodes are co-parents if they have at least one child node in common.

Markov blankets are important in the formulation of variational Bayes algorithms be-
cause of:

Theorem (Pearl, 1988). For each node on a probabilistic DAG, the conditional distribution of
the node given the rest of the nodes is the same as the conditional distribution of the node given its
Markov blanket.

For our generic Bayesian example, this means that

p(θi|rest) = p(θi|Markov blanket of θi).

It immediately follows that

q∗i (θi) ∝ exp{E−θi
log p(θi|Markov blanket of θi)}, 1 ≤ i ≤M. (3)

For large DAGs, such as those in Figure 6, (3) yields considerable algebraic economy. In
particular, it shows that the q∗i (θi) require only local calculations on the model’s DAG.

3 Simple Linear Regression with Missing Predictor Data

In this section we confine attention to the simple linear regression model with homoscedas-
tic Gaussian errors. For complete data on the predictor/response pairs (xi, yi), 1 ≤ i ≤ n,
this model is

yi = β0 + β1 xi + εi, εi
ind.∼ N(0, σ2

ε).
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We couch this in a Bayesian framework by taking

β0, β1
ind.∼ N(0, σ2

β) and σ2
ε ∼ IG(Aε, Bε)

for hyperparameters σ2
β, Aε, Bε > 0. Use of these conjugate priors simplifies the varia-

tional Bayes algebra. Other priors, such as those described by Gelman (2006), may be
used. However, they result in more complicated variational Bayes algorithms.

Now suppose that the predictors are susceptible to missingness. Bayesian inference
then requires a probabilistic model for the xis. We will suppose that

xi ∼ N(µx, σ2
x) (4)

and take µx ∼ N(0, σ2
µx

) and σ2
x ∼ IG(Ax, Bx) for hyperparameters σ2

x, Ax, Bx > 0. If
normality of the xis cannot be reasonably assumed then (4) should be replaced by an
appropriate parametric model. The variational Bayes algorithm will need to be changed
accordingly. For concreteness and simplicity we will assume that (4) is reasonable for the
remainder of the article.

For 1 ≤ i ≤ n let Ri be a binary random variable such that

Ri =
{

1, if xi is observed,
0, if xi is missing.

Bayesian inference for the regression model parameters differs according to the depen-
dence of the distribution of Ri on the observed data (e.g. Gelman et al. 2004, Section 17.2).
We will consider three missingness mechanisms:

1. P (Ri = 1) = p for some constant 0 < p < 1. In this case the missing-data mech-
anism is independent of the data, and the xis are said to be missing completely at
random (MCAR). Under MCAR, the observed data are a simple random sample of
the complete data.

2. P (Ri = 1|φ0, φ1, yi) = Φ(φ0 + φ1 yi) for parameters φ0, φ1
ind.∼ N(0, σ2

φ) and hyperpa-
rameter σ2

φ > 0. In this case, the missing-data mechanism depends on the observed
yis but not on the missing xis. Inference for the regression parameters β0, β1 and
σ2

ε is unaffected by the φ0 and φ1 or the conditional distribution Ri|φ0, φ1, yi The xis
are said to be missing at random (MAR). In addition, the independence of the pri-
ors for (φ0, φ1) from those of the regression parameters means that the missingness
is ignorable (Little & Rubin, 2004).

3. P (Ri = 1|φ0, φ1) = Φ(φ0+φ1 xi) for parameters φ0, φ1
ind.∼ N(0, σ2

φ) and hyperparam-
eter σ2

φ > 0 In this case, the missing-data mechanism depends on the unobserved
xis and inference for the regression parameters β0, β1 and σ2

ε depends on the φ0 and
φ1 and Ri|φ0, φ1, yi. The xis are said to be missing not at random (MNAR).

Define the matrices

X =

 1 x1
...

...
1 xn

 , Y =

 1 y1
...

...
1 yn

 , β =
[

β0

β1

]
and φ =

[
φ0

φ1

]
.

Then the three missing data models can be summarized as follows:
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yi|xi,β, σ2
ε

ind.∼ N
(
Xβ, σ2

ε

)
, xi|µx, σ2

x
ind.∼ N(µx, σ2

x),

β ∼ N(0, σ2
βI), µx ∼ N(0, σ2

µx
), σ2

ε ∼ IG(Aε, Bε), σ2
x ∼ IG(Ax, Bx).

Ri|φ, xi, yi
ind.∼


Bernoulli(p), model with xi MCAR,
Bernoulli[Φ{(Y φ)i}], model with xi MAR,
Bernoulli[Φ{(Xφ)i}], model with xi MNAR,

φ ∼ N(0, σ2
φI).

(5)

Of course, for the model with xi MCAR, the assumption Ri|φ
ind.∼ Bernoulli(p) simplifies

to Ri
ind.∼ Bernoulli(p) and φ is superfluous.

The following additional notation is useful in the upcoming sections. Let nobs denote
the number of observed xis and nmis be the number of missing xis. Let xobs be the nobs× 1
vector containing the observed xis and xmis be nmis × 1 vector containing the missing xis.
We re-order the data so that the observed data is first. Hence, the full vector of predictors
is

x ≡
[

xobs

xmis

]
.

Finally, let yxmis,i be the value of the response variable corresponding to xmis,i.

3.1 Incorporation of Auxiliary Variables

It is now well-established that Bayesian models with probit regression components ben-
efit from the introduction of auxiliary variables. This was demonstrated by Albert &
and Chib (1993) for inference via Gibbs sampling and by Girolami & Rogers (2006) for
variational Bayes inference. Appropriate auxiliary variables are:

ai|φ ∼ N((Y φ)i, 1) for the model with xi MAR,

and ai|φ ∼ N((Xφ)i, 1) for the model with xi MNAR.
(6)

A consequence of (6) is

P (Ri = r|ai) = I(ai ≥ 0)rI(ai < 0)1−r, r = 0, 1.

As will become clear in Section 3.3, variational Bayes becomes completely algebraic (i.e.
without the need for numerical integration or Monte Carlo methods) if auxiliary variables
are incorporated into the model.

3.2 Directed Acyclic Graphs Representations

Figure 1 provides DAG summaries of the three missing data models, after the incorpo-
ration of the auxiliary variables a = (a1, . . . , an) given by (6). To enhance clarity, the
hyperparameters are suppressed in the DAGs.

The DAGs in Figure 1 show the interplay between the regression parameters and
missing data mechanism parameters. For the MCAR model the observed data indicator
vector R = (R1, . . . , Rn) is completely separate from the rest of the DAG. Delineation
between the MAR and MNAR is more subtle, but can be gleaned from the directed edges
in the respective DAGs and graph theoretical results. The Markov blanket theorem of
Section 2.1 provides one way to distinguish MAR from MNAR. Table 1 lists the Markov
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predictor MCAR

yβ

xmis

µx

R

σε
2

xobs

σx
2

predictor MAR

yβ

xmis

µx

R

σε
2

xobs

σx
2

φ

predictor MNAR

yβ

xmis

µx

R

σε
2

xobs

σx
2

φ

Figure 1: DAGs for the three missing data models for simple linear regression, given by (5)
Shaded nodes correspond to the observed data.

blankets for each hidden node under the two missing-data models. Under MAR, there is
a separation between the two hidden node sets

{β, σ2
ε ,xmis, µx, σ2

x} and {a,φ}

in that their Markov blankets have no overlap. It follows immediately that Bayesian
inference for the regression parameters based on Gibbs sampling or variational Bayes is
not impacted by the missing-data mechanism. In the MNAR case, this separation does
not occur since, for example, the Markov blanket of xmis includes {a,φ}.

node Markov blanket under MAR Markov blanket under MNAR
β {y, σ2

ε ,xmis,xobs} {y, σ2
ε ,xmis,xobs}

σ2
ε {y,β,xmis,xobs} {y,β,xmis,xobs}

xmis {y,β, σ2
ε ,xobs, µx, σ2

x} {y,β, σ2
ε ,xobs, µx, σ2

x,a,φ}
µx {xmis,xobs, σ

2
x} {xmis,xobs, σ

2
x}

σ2
x {xmis,xobs, µx} {xmis,xobs, µx}

a {y,R,φ} {xmis,xobs,R,φ}
φ {a,y} {xmis,xobs,a}

Table 1: The Markov blankets for each node in the DAGs of Figure 1.

One can also use d-separation theory (Pearl, 1988; see also Section 8.2 of Bishop, 2006)
to establish that, under MAR,

{β, σ2
ε ,xmis, µx, σ2

x} ⊥⊥ {a,φ}|{y,xobs,R}

where u ⊥⊥ v|w denotes conditional independence of u and v given w. The key to this
result is the fact that all paths from the nodes in {β, σ2

ε ,xmis, µx, σ2
x} to those in {a,φ}

must pass through the y node. In Figure 1 we see that the y node has ‘head-to-tail’ pairs
of edges that block the path between a and the regression parameters.

3.3 Approximate Inference via Variational Bayes

We will now provide details on approximate inference for each of the simple linear re-
gression missing data models. As we shall see, variational Bayes boils down to iterative
schemes for the parameters of the optimal q densities. The current subsection does lit-
tle more than listing algorithms for variational Bayes inference. Section 3.4 addresses
accuracy of these algorithms.
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For a generic random variable v and density function q(v) let

µq(v) ≡ Eq(v), and σ2
q(v) ≡ Varq(v).

Also, in the special case that q(v) is an Inverse Gamma density function we let

(Aq(v), Bq(v)) ≡ shape and rate parameters of q(v)

In other words, v ∼ IG(Aq(v), Bq(v)). Note the relationship µq(1/v) = Aq(v)/Bq(v). For a
generic random vector v and density function q(v) let µq(v) ≡ Eq(v) and

Σq(v) ≡ Covq(v) = covariance matrix of v under density q(v).

To avoid notational clutter we will omit the asterisk when applying these definitions to
the optimal q∗ densities.

3.3.1 MCAR model

For the MCAR model we impose the product density restriction

q(β, σ2
ε ,xmis, µx, σ2

x) = q(β, µx) q(σ2
ε , σ

2
x) q(xmis).

However, d-separation theory (e.g. Section 10.2.5 of Bishop, 2006) can be used to show
that induced products q(β, µx) = q(β)q(µx) and q(σ2

ε , σ
2
x) = q(σ2

ε)q(σ
2
x) arise in the solu-

tions. Application of (2) for each component of the induced product leads to the optimal
densities taking the form

q∗(β) = Bivariate Normal density,
q∗(σ2

ε) = Inverse Gamma density,
q∗(xmis) = product of nmis univariate Normal densities,
q∗(µx) = univariate normal density

and q∗(σ2
x) = Inverse Gamma density.

(7)

The optimal parameters may be obtained iteratively, using Algorithm 1. The updates
for Eq(xmis)(X) and Eq(xmis)(X

T X) are the same for all algorithms in Section 3.3, so we
list them here:

Eq(xmis)(X)←
[

1 xobs

1 µq(xmis)

]
,

Eq(xmis)(X
T X)←

[
n 1T xobs + 1T µq(xmis)

1T xobs + 1T µq(xmis) ‖xobs‖2 + ‖µq(xmis)‖
2 + nmisσ

2
q(xmis)

]
.

(8)

For the MCAR model, log{p(y; q)} takes the form

log p(y; q) = 1
2(nmis + 3)− (n− 1

2nmis) log(2π) + nmis
2 log(σ2

q(xmis)
) + 1

2 log | 1
σ2

β
Σq(β)|

− 1
2σ2

β
{‖µq(β)‖2 + tr(Σq(β))}+ 1

2 log(σ2
q(µx)/σ2

µx
)− 1

2(µ2
q(µx) + σ2

q(µx))/σ2
µx

+Aε log(Bε)−Aq(σ2
ε) log(Bq(σ2

ε)) + log Γ(Aq(σ2
ε))− log Γ(Aε)

+Ax log(Bx)−Aq(σ2
x) log(Bq(σ2

x)) + log Γ(Aq(σ2
x))− log Γ(Ax).

Note that, within each iteration of Algorithm 1, this expression applies only after each of
the parameter updates have been made.

Derivation of (7) and Algorithm 1 is discussed in Appendix A.
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Initialize: µq(1/σ2
ε), µq(1/σ2

x) > 0, µq(β)(2× 1) and Σq(β)(2× 2).
Cycle:

σ2
q(xmis)

← 1
/[

µq(1/σ2
x) + µq(1/σ2

ε)

{
µ2

q(β1) + (Σq(β))22
}]

for i = 1, . . . , nmis:

µq(xmis,i) ← σ2
q(xmis)

[
µq(1/σ2

x)µq(µx) + µq(1/σ2
ε){yxmis,iµq(β1) − (Σq(β))12 − µq(β0)µq(β1)}

]
update Eq(xmis)(X) and Eq(xmis)(X

T X) using (8)

Σq(β) ←
{
µq(1/σ2

ε)Eq(xmis)(X
T X) + 1

σ2
β
I
}−1 ; µq(β) ← Σq(β)µq(1/σ2

ε)Eq(xmis)(X)T y

σ2
q(µx) ← 1/

(
nµq(1/σ2

x) + 1/σ2
µx

)
; µq(µx) ← σ2

q(µx)µq(1/σ2
x)(1T xobs + 1T µq(xmis))

Bq(σ2
ε) ← Bε+ 1

2‖y‖
2−yT Eq(xmis)(X)µq(β)+

1
2 tr{Eq(xmis)(X

T X)(Σq(β)+µq(β)µ
T
q(β))}

Bq(σ2
x) ← Bx + 1

2(‖xobs − µq(µx)1‖2 + ‖µq(xmis) − µq(µx)1‖2 + nσ2
q(µx) + nmisσ

2
q(xmis)

)

µq(1/σ2
ε) ← (Ax + 1

2n)/Bq(σ2
ε) ; µq(1/σ2

x) ← (Aε + 1
2n)/Bq(σ2

x)

until the increase in p(y; q) is negligible.

Algorithm 1: Iterative scheme for obtaining the parameters in the optimal densities q∗(β),
q∗(σ2

ε), q∗(µx), q∗(σ2
x) and q∗(xmis,i) for the MCAR simple linear regression model.

3.3.2 MAR model

For the MAR model we impose the product density restriction

q(β, σ2
ε ,xmis, µx, σ2

x,φ,a) = q(β, µx,φ)q(σ2
ε , σ

2
x)q(xmis)q(a) (9)

As with the MCAR model, we have the induced products q(β, µx,φ) = q(β)q(µx)q(φ)
and q(σ2

ε , σ
2
x) = q(σ2

ε)q(σ
2
x). Application of (2) leads to the optimal densities for β, σ2

ε ,xmis, µx

and σ2
x have the same form as the MCAR model, given by (7).

The missing-data mechanism parameters have optimal densities

q∗(φ) = N((Y T Y + 1
σ2

φ
I
)−1

, (Y T Y + 1
σ2

φ
I
)−1

Y T µq(a))

q∗(a) =
[∏n

i=1

{
I(ai≥0)

Φ((Y µq(φ))i)

}yi
{

I(ai<0)
1−Φ((Y µq(φ))i)

}1−yi
]

×(2π)−n/2 exp{−1
2‖a− Y µq(φ)‖2}.

(10)

The optimal parameters can be found iteratively via Algorithm 2. Appendix A dis-
cusses its derivation.
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Initialize: µq(1/σ2
ε), µq(1/σ2

x) > 0, µq(β)(2× 1) and Σq(β)(2× 2).
Cycle:

σ2
q(xmis)

← 1
/[

µq(1/σ2
x) + µq(1/σ2

ε)

{
µ2

q(β1) + (Σq(β))22
}]

for i = 1, . . . , nmis:

µq(xmis,i) ← σ2
q(xmis)

[
µq(1/σ2

x)µq(µx)+µq(1/σ2
ε)

{
yxmis,iµq(β1) − (Σq(β))12 − µq(β0)µq(β1)

}
]

update Eq(xmis)(X) and Eq(xmis)(X
T X) using (8)

Σq(β) ←
{
µq(1/σ2

ε)Eq(xmis)(X
T X) + 1

σ2
β
I
}−1 ; µq(β) ← Σq(β)µq(1/σ2

ε)Eq(xmis)(X)T y

σ2
q(µx) ← 1/

(
nµq(1/σ2

x) + 1/σ2
µx

)
; µq(µx) ← σ2

q(µx)µq(1/σ2
x)(1T xobs + 1T µq(xmis))

Bq(σ2
ε) ← Bε+ 1

2‖y‖
2−yT Eq(xmis)(X)µq(β)+

1
2 tr{Eq(xmis)(X

T X)(Σq(β)+µq(β)µ
T
q(β))}

Bq(σ2
x) ← Bx + 1

2(‖xobs − µq(µx)1‖2 + ‖µq(xmis) − µq(µx)1‖2 + nσ2
q(µx) + nmisσ

2
q(xmis)

)

µq(1/σ2
ε) ← (Aε + 1

2n)/Bq(σ2
ε) ; µq(1/σ2

x) ← (Ax + 1
2n)/Bq(σ2

x)

Σq(φ) ←
(
Y T Y + 1

σ2
φ
I
)−1; µq(φ) ← Σq(φ)Y

T µq(a)

µq(a) ← Y µq(φ) + (2R− 1)�
(2π)−1/2 exp{−1

2(Y µq(φ))2}
Φ((2R− 1)� (Y µq(φ)))

until the increase in p(y; q) is negligible.

Algorithm 2: Iterative scheme for obtaining the parameters in the optimal densities q∗(β), q∗(σ2
ε)

q∗(µx), q∗(σ2
x), q∗(xmis,i) and q∗(φ) for the MAR simple linear regression model.

For the MAR model, log{p(y; q)} takes the form

log p(y; q) = 1
2(nmis + 5)− (n− 1

2nmis) log(2π) + nmis
2 log(σ2

q(xmis)
) + 1

2 log | 1
σ2

β
Σq(β)|

− 1
2σ2

β
{‖µq(β)‖2 + tr(Σq(β))}+ 1

2 log(σ2
q(µx)/σ2

µx
)− 1

2(µ2
q(µx) + σ2

q(µx))/σ2
µx

+Aε log(Bε)−Aq(σ2
ε) log(Bq(σ2

ε)) + log Γ(Aq(σ2
ε))− log Γ(Aε)

+Ax log(Bx)−Aq(σ2
x) log(Bq(σ2

x)) + log Γ(Aq(σ2
x))− log Γ(Ax)

+1
2‖Y µq(φ)‖2 − 1

2 tr{Y T Y (µq(φ)µ
T
q(φ) + Σq(φ))}

+RT log{Φ(Y µq(φ)) + (1−R)T log{1− Φ(Y µq(φ))}
+1

2 log | 1
σ2

φ
Σq(φ)| − 1

2σ2
φ
{‖µq(φ)‖2 + tr(Σq(φ))}.

Note that, within each iteration of Algorithm 2, this expression applies only after each
of the parameter updates have been made.

3.3.3 MNAR model

For the simple linear regression model with predictors MNAR model we again impose
the product density restriction (9). The regression model parameters have the same dis-
tributional forms as the MCAR and MAR cases (given by (7)). However, the parameters
of q∗(xmis) depend on the missing-data mechanism parameters.
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The missing-data mechanism parameters have the same form as (10), but with Y re-
placed by Eq(xmis)(X). Also, for 1 ≤ i ≤ nmis, axmis,i denotes the entry of a corresponding
to xmis,i.

Initialize: µq(1/σ2
ε), µq(1/σ2

x) > 0, µq(β)(2× 1) and Σq(β)(2× 2).
Cycle:

σ2
q(xmis)

← 1
/[

µq(1/σ2
x) + µq(1/σ2

ε)

{
µ2

q(β1) + (Σq(β))22
}

+ µ2
q(φ1) + (Σq(φ))22

]
for i = 1, . . . , nmis:

µq(xmis,i) ← σ2
q(xmis)

[
µq(1/σ2

x)µq(µx) + µq(1/σ2
ε)

{
yxmis,iµq(β1) − (Σq(β))12 − µq(β0)µq(β1)

}
+µq(axmis,i )

µq(φ1) − (Σq(φ))12 − µq(φ0)µq(φ1)

]
.

update Eq(xmis)(X) and Eq(xmis)(X
T X) using (8)

Σq(β) ←
{
µq(1/σ2

ε)Eq(xmis)(X
T X) + 1

σ2
β
I
}−1 ; µq(β) ← Σq(β)µq(1/σ2

ε)Eq(xmis)(X)T y

σ2
q(µx) ← 1/

(
nµq(1/σ2

x) + 1/σ2
µx

)
; µq(µx) ← σ2

q(µx)µq(1/σ2
x)(1T xobs + 1T µq(xmis))

Bq(σ2
ε) ← Bε+ 1

2‖y‖
2−yT Eq(xmis)(X)µq(β)+

1
2 tr{Eq(xmis)(X

T X)(Σq(β)+µq(β)µ
T
q(β))}

Bq(σ2
x) ← Bx + 1

2(‖xobs − µq(µx)1‖2 + ‖µq(xmis) − µq(µx)1‖2 + nσ2
q(µx) + nmisσ

2
q(xmis)

)

µq(1/σ2
ε) ← (Aε + 1

2n)/Bq(σ2
ε) ; µq(1/σ2

x) ← (Ax + 1
2n)/Bq(σ2

x)

Σq(φ) ←
{
Eq(xmis)(X

T X) + 1
σ2

φ
I
}−1; µq(φ) ← Σq(φ)Eq(xmis)(X)T µq(a)

µq(a) ← Eq(xmis)(X)µq(φ) + (2R− 1)�
(2π)−1/2 exp{−1

2(Eq(xmis)(X)µq(φ))2}
Φ((2R− 1)� (Eq(xmis)(X)µq(φ)))

until the increase in p(y; q) is negligible.

Algorithm 3: Iterative scheme for obtaining the parameters in the optimal densities q∗(β), q∗(σ2
ε)

q∗(µx), q∗(σ2
x), q∗(xmis,i) and q∗(φ) for the MNAR simple linear regression model.

For the MNAR model log{p(y; q)} is given by

log p(y; q) = 1
2(nmis + 5)− (n− 1

2nmis) log(2π) + nmis
2 log(σ2

q(xmis)
) + 1

2 log | 1
σ2

β
Σq(β)|

− 1
2σ2

β
{‖µq(β)‖2 + tr(Σq(β))}+ 1

2 log(σ2
q(µx)/σ2

µx
)− 1

2(µ2
q(µx) + σ2

q(µx))/σ2
µx

+Aε log(Bε)−Aq(σ2
ε) log(Bq(σ2

ε)) + log Γ(Aq(σ2
ε))− log Γ(Aε)

+Ax log(Bx)−Aq(σ2
x) log(Bq(σ2

x)) + log Γ(Aq(σ2
x))− log Γ(Ax)

+1
2‖Eq(xmis)(X)µq(φ)‖2 − 1

2 tr{Eq(xmis)(X
T X)(µq(φ)µ

T
q(φ) + Σq(φ))}

+RT log{Φ(Eq(xmis)(X)µq(φ)) + (1−R)T log{1− Φ(Eq(xmis)(X)µq(φ))}
+1

2 log | 1
σ2

φ
Σq(φ)| − 1

2σ2
φ
{‖µq(φ)‖2 + tr(Σq(φ))}.

Note that, within each iteration of Algorithm 3, this expression applies only after each of
the parameter updates have been made.
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3.4 Assessment of Accuracy

We now turn attention to the issue of accuracy of variational Bayes inference for models
(5). Algorithms 1–3 provide speedy approximate inference for the model parameters, but
come with no guarantees of achieving an acceptable level of accuracy.

Let θ denote a generic univariate model parameter. There are numerous means by
which the accuracy of a variational Bayes approximate density q∗(θ) can be measured
with respect to the exact posterior density p(θ|y). Kullback-Leibler distance is an obvious
choice but can be dominated by the tail-behaviour of the densities involved (e.g. Hall,
1987). We recommend working with the L1 loss, or integrated absolute error (IAE) of q∗,
given by

IAE(q∗) =
∫ ∞

−∞

∣∣ q∗(θ)− p(θ|y)
∣∣ dθ.

This error measure has the attractions of being (a) invariant to monotone transformations
on the parameter θ and (b) a scale-independent number between 0 and 2 (e.g. Devroye &
Györfi, 1985). The second of these motivates the accuracy measure

accuracy(q∗) = 1− {IAE(q∗)/ sup
q a density

IAE(q)} = 1− 1
2 IAE(q∗). (11)

Note that 0 ≤ accuracy(q∗) ≤ 1 and will be expressed as a percentage in the examples to
follow.

Computation of accuracy(q∗) is a little challenging, since it depends on the posterior
p(θ|y) that we are trying to avoid by using approximate inference methods. However,
MCMC with sufficiently large samples can be used to approximate p(θ|y) arbitrarily well.
The accuracy assessments that we present in this section are based on MCMC samples
obtained using BRugs (Ligges et al. 2010) with a burnin of size 10000. A thinning factor
of 5 was applied to post-burnin samples of size 50000. This resulted in MCMC samples
of size 10000 for density estimation. Density estimates were obtained using the binned
kernel density estimate bkde() function in the R package KernSmooth (Wand & Rip-
ley, 2009). The bandwidth was chosen using a direct plug-in rule, corresponding to the
default version of dpik(). These density estimates act as a proxy for the exact posterior
densities. For sample sizes as large as 10000 and well-behaved posteriors the quality of
these proxies should be quite good. Nevertheless, it must be noted that they are subject
to errors inherent in density estimation and bandwidth selection.

Due to space considerations, our accuracy assessments are limited to the MCAR and
MNAR models.

3.4.1 MCAR model

We ran a simulation study to assess the accuracy of Algorithm 1. Throughout the simu-
lation study we fixed

n = 500, β0 = β1 = 1, µx = 1
2 and σ2

x = 1
36 . (12)

The noise and missing-data levels were varied according to

σε ∈ {0.05, 0.2, 0.8} and p ∈ {0.6, 0.8}. (13)

The values of σε correspond to low, medium and high noise scenarios. Having p = 0.8
corresponds to moderate (20%) missingness while p = 0.6 corresponds to more severe
(40%) missingness. The hyperparameters were set at

σ2
β = σ2

µx
= 10−8 and Aε = Bε = Ax = Bx = 1

100 . (14)

Algorithm 1 was terminated when the relative increase in log{p(y|q)}was less than 10−10.
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Figure 2 summarises the accuracy results based on 100 data sets simulated according
to (12) and (13). For moderate missingness (p = 0.8) we see that variational Bayes is very
accurate, with all accuracy values above 90% regardless of the noise level. For severe
missingness (p = 0.6) there is some degradation in the accuracy of variational Bayes, but
it stays about 83% for all replications.
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Figure 2: Summary of simulation for simple linear regression with predictor MCAR. For each
setting, the accuracy values are summarized as a boxplot.

Figure 3 allows appreciation for the accuracy of variational Bayes in this context. It
corresponds to a typical realization from the simulation study with σε = 0.2 and p = 0.8.

3.4.2 MNAR model

In our simulation for MNAR model, the missingness was controlled by the two pair of
probit coefficients:

(φ0, φ1) = (2.95,−2.95) and (φ0, φ1) = (0.85,−1.05).

In each case, the probability of missingness increases as a function of the covariate. For
the first pair the missingness probability ranges from 0.0 to 0.5 with an average of 0.25.
For the second pair the range is 0.2 to 0.58 with an average of 0.39, representing more
severe missingness. The hyperparameter for (φ0, φ1) was set at σ2

φ = 10−8.
Figure 4 summarizes the accuracy results based on 100 simulated data sets while Fig-

ure 5 plots the variational Bayes and MCMC approximate posteriors for a typical realiza-
tion from the simulation study with σε = 0.2 and (φ0, φ1) = (2.95,−2.95).

The parameters corresponding to the regression part of the model (β0, β1, σ
2
ε) show

high accuracy, with almost all accuracy levels above 80%. The accuracy drops consider-
ably when the amount of missing data is large or when the data are noisy. This might
be expected since there is a decrease in the amount of information about the parameters.
The accuracy of the missing covariates is high in all situations, even when the missing
data percentage is very large.
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Figure 3: Variational Bayes approximate posteriors for the regression model parameters and three
missing xis for simple linear regression with predictors MCAR. The regression parameters are
(β0, β1, σε) = (1, 1, 0.2) and the probability of the xis being observed is p = 0.8. The vertical lines
correspond to the true values of the parameters from which the data were simulated (described in
the text). The MCMC posteriors are based on samples of size 10000 and kernel density estimation.
The accuracy values correspond to the definition given at (11).

The variational Bayes approximations generally are poor for the missingness mecha-
nism parameters φ0 and φ1. This is due to strong posterior correlation between φ and a in
probit auxiliary variable models, as is reported in Section 2.1 of Holmes & Held (2006), for
example. This deficiency of variational Bayes is isolated to the lower nodes of the right-
most DAG in Figure 1 and can only be remedied through a more elaborate variational
approximation – for example, one that allows posterior dependence between φ and a.
Such elaboration will bring computational costs, which need to be traded off against the
importance of making inference about the MNAR parameters. In many applied contexts,
these parameters are not of primary interest.

3.5 Speed Comparisons

While running the simulation studies described in Section 3.4 we kept track of the time
taken for each model to be fitted. The results are summarized in Table 3.5. The computer
involved used the Mac OS X operating system with a 2.33 GHz processor and 3 GBytes
of random access memory.

As with most speed comparisons, some caveats need to be taken into account. Firstly,
the MCMC and variational Bayes answers were computed using different programming
languages. The MCMC model fits were obtained using the BUGS inference engine (Lunn
et al. 2000) with interfacing via the package BRugs (Ligges, et al. 2010) in the R comput-
ing environment (R Development Core Team, 2010). The variational Bayes model fits
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Figure 4: Summary of simulation for simple linear regression with predictor MNAR. For each
setting, the accuracy values are summarized as a boxplot.

MAR models MNAR models
MCMC (5.89,5.84) (33.8,33.9)
var. Bayes (0.0849,0.0850) (0.705,0.790)
ratio (76.6,78.7) (59.5,67.8)

Table 2: 99% Wilcoxon confidence intervals based on computation times, in seconds, from the
simulation study described in Section 3.4.

were implemented using R. Secondly, no effort was made to tailor MCMC scheme to the
models at hand. Thirdly, as detailed in Section 3.4, both methods had arbitrarily cho-
sen stopping criteria. Despite these caveats, Table 3.5 gives an impression of the relative
computing times involved if an ‘off-the-shelf’ MCMC implementation is used.

Caveats aside, the results indicate that variational Bayes is at least 60 times faster than
MCMC across all models. Hence, a model that takes minutes to run in MCMC takes only
seconds with variational Bayes approximation.

4 Nonparametric Regression with Missing Predictor Data

We now describe extension to nonparametric regression with missing predictor data. The
essence of this extension is replacement of the linear mean function

β0 + β1 x by f(x)

where f is a smooth flexible function. There are numerous approaches to modelling
and estimating f . The one which is most conducive to inference via variational Bayes is
penalized splines with mixed model representation. This involves the model

f(x) = β0 + β1 x +
K∑

k=1

ukzk(x), uk
ind.∼ N(0, σ2

u) (15)
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Figure 5: Variational Bayes approximate posteriors for the regression model parameters and three
missing xis for simple linear regression with predictors MNAR. The regression parameters are
(β0, β1, σε) = (1, 1, 0.2) and the probability of xi being observed is Φ(φ0+φ1xi) where (φ0, φ1) =
(2.95,−2.95). The vertical lines correspond to the true values of the parameters from which the
data were simulated (described in the text). The MCMC posteriors are based on samples of size
10000 and kernel density estimation. The accuracy values correspond to the definition given at
(11).

where the {zk(·) : 1 ≤ k ≤ K} are an appropriate set of spline basis functions. Several op-
tions exist for the zk. Our preference is suitable transformed O’Sullivan penalized splines
(Wand & Ormerod, 2008) since this leads to approximate smoothing splines; which have
good boundary and extrapolation properties.

From the graphical model standpoint, moving from parametric regression to non-
parametric regression using mixed model-based penalized splines simply involves en-
larging the DAGs from parametric regression. Figure 6 shows the nonparametric regres-
sion DAGs for the three missing data mechanisms treated in Section 3. Comparison with
Figure 1 shows the only difference is the addition of the σ2

u node, and replacement of
β by (β,u). Note that (β,u) could be broken up into separate nodes, but the update
expressions are simpler if these two random vectors are kept together.

The variational Bayes algorithms for the DAGs in 6 simply involve modification of the
Algorithms 1–3 to accommodate the additional nodes and edges. However, the spline
basis functions give rise to non-standard forms and numerical integration is required.
We will give a detailed account of this extension in the MNAR case only. The MCAR and
MAR cases require similar arguments, but are simpler.
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Figure 6: DAGs for the three missing data models for nonparametric regression with mixed
model-based penalized spline modelling of the regression function; given by (15). Shaded nodes
correspond to the observed data.

Define the 1× (K + 2) vector

Cx ≡ (1, x, z1(x), · · · , zK(x))

corresponding to evaluation of penalized spline basis functions at an arbitrary location
x ∈ R. Then the optimal densities for the xmis,i, 1 ≤ i ≤ nmis, take the form

q∗(xmis,i) ∝ exp(−1
2Cxmis,iΛmis,iC

T
xmis,i

) (16)

where the (K + 2) × (K + 2) matrices Λmis,i, 1 ≤ i ≤ nmis correspond to each entry
of xmis = (xmis,1, . . . , xmis,nmis

) but does not depend on xmis,i. A derivation of (16) and
expressions for the Λmis,i, are given in Appendix B.

The right-hand side of (16) does not have a closed-form integral, so numerical inte-
gration is required to obtain the normalizing factors and required moments. We will take
a basic quadrature approach. In the interests of computational efficiency, we use the same
quadrature grid over all 1 ≤ i ≤ nmis. Let

g = (g1, . . . , gM )

be an equally-spaced grid of size M in R. An example of numerical integration via
quadrature is ∫ ∞

−∞
z1(x) dx ≈

M∑
j=1

wjz1(gj) = wT z1(g)

where w = (w1, . . . , wM ) is vector of quadrature weights. Examples of w for common
quadrature schemes are

w =
{

1
2 δ × (1, 2, 2, . . . , 2, 2, 1), for the trapezoidal rule,
1
3 δ × (1, 4, 2, 4, 2, . . . , 2, 4, 2, 4, 1), for Simpson’s rule,

where δ = (gM −g1)/(M−1) is the distance between successive grid-points. Next, define
the M × (K + 2) matrix:

Cg ≡

 1 g1 z1(g1) · · · zK(g1)
...

...
...

...
...

1 gM z1(gM ) · · · zK(gM )

 =

 Cg1

...
CgM

 . (17)

For a given quadrature grid g, Cg contains the totality of basis function evaluations re-
quired for variational Bayes updates.
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For succinct statement of quadrature approximations to Eq(xmis)(C) and Eq(xmis)(C
T C)

the following additional matrix notation is useful:

Qg ≡ [exp(−1
2CgjΛmis,iC

T
gj

)
1≤j≤M

]1≤i≤nmis and C ≡
[

Cobs

Cmis

]
where Cobs corresponds to the xobs component of C and Cmis corresponds to the xmis

component of C. Clearly

Eq(xmis)(C) ≡
[

Cobs

Eq(xmis)(Cmis)

]
and Eq(xmis)(C

T C) = CT
obsCobs + Eq(xmis)(C

T
misCmis).

Then we have the following efficient quadrature approximations:

Eq(xmis)(Cmis) ≈
Qg diag(w) Cg

1T ⊗ (Qgw)
and Eq(xmis)(C

T
misCmis) ≈ CT

g diag

(
nmis∑
i=1

(eT
i Qg)�w

eT
i Qgw

)
Cg

with ei denoting the nmis× 1 vector with 1 in the ith position and zeroes elsewhere. Since
there are exponentials in entries of Qg some care needs to be taken to avoid overflow and
underflow. Working with logarithms is recommended.

Algorithm 4 chronicles the iterative scheme for nonparametric regression with pre-
dictors MNAR. The lower bound on the marginal log-likelihood is

p(y; q) = (1
2nmis − n) log(2π) + 1

2(K + 5 + nmis)− log(σ2
β)− 1

2σ2
β

[
‖µq(β)‖2 + tr(Σq(β))

]
+1

2 log |Σq(β,u)|+ 1
2 log{σ2

q(µx)/σ2
µx
} − 1

2σ2
µx
{µ2

q(µx) + σ2
q(µx)} −

Qgdiag(w) log(Qg)

1T⊗(Qgw)

+Aε log(Bε)− log Γ(Aε)−Aq(σ2
ε) log(Bq(σ2

ε)) + log(Aq(σ2
ε))

+Au log(Bu)− log Γ(Au)−Aq(σ2
u) log(Bq(σ2

u)) + log(Aq(σ2
u))

+Ax log(Bx)− log Γ(Ax)−Aq(σ2
x) log(Bq(σ2

x)) + log(Aq(σ2
x))

+1
2‖Eq(xmis)(X)µq(φ)‖2 − 1

2 tr
[
Eq(xmis)(X

T X)(µq(φ)µ
T
q(φ) + Σq(φ)

]
+RT log Φ(Eq(xmis)(X)µq(φ)) + (1−R)T log{1− Φ(Eq(xmis)(X)µq(φ))}

+1
2 log | 1

σ2
φ
Σq(φ)| − 1

2σ2
φ

{
‖µq(φ)‖2 + tr(Σq(φ))

}

4.1 Illustration

Our first illustation involves data simulated according to

yi ∼ N(f(xi), σ2
ε), f(x) = sin(4πx), xi ∼ N(1

2 , 1
36) and σ2

ε = 0.35, 1 ≤ i ≤ 300

and with 20% of the xis removed completely at random. This simulation setting, with
identical parameters, was also used in Wand (2009).

We applied the MCAR analogue of Algorithm 4 and compared the results with MCMC
fitting via BRugs. The penalized splines used the truncated linear spline basis with 30
knots: zk(x) = (x − κk)+, 1 ≤ k ≤ 30, with the knots equally-spaced over the range of
the observed xis. Truncated linear splines were used to allow straightforward coding in
BUGS. If a comparison with MCMC is not being done then O’Sullivan splines are rec-
ommended for variational Bayesian inference in this context. The hyperparameters were
set at the values given in (14). The MCMC sampling involved a burnin of size 20000,
and a thinning factor of 20 applied to post-burnin samples of size 200000 resulting in
samples of size 10000 being retained for inference. In addition, we used the over-relaxed
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Set M , the size of the quadrature grid, and g1 and gM , the quadrature grid limits. The
interval (g1, gM ) should contain each of the observed xis. Obtain g = (g1, . . . , gM ) where
gj = g1 + (j − 1)δ, 1 ≤ j ≤ M , and δ = (gM − g1)/(M − 1). Obtain the quadrature
weights w = (w1, . . . , wM ) and set Cg using (17). Initialize: µq(1/σ2

ε), µq(1/σ2
x) > 0, µq(µx),

µq(β,u)((K +2)×1), Σq(β,u)((K +2)× (K +2)) µq(φ)(2×1), Σq(φ)(2×1) and µq(a)(n×1).
Cycle:

update Λmis,i, 1 ≤ i ≤ nmis, using (18) and (19)

Qg ← [exp(−1
2CgjΛmis,iC

T
gj

)
1≤j≤M

]1≤i≤nmis ; Eq(xmis)(C)←


Cobs

Qg diag(w) Cg

1T ⊗ (Qgw)


for i = 1, . . . , nmis:

µq(xmis,i) ← {Eq(xmis)(Cmis)}i2 ; σ2
q(xmis,i)

←
Qg diag(w) (g − µq(xmis,i)1)2

1T ⊗ (Qgw)

Eq(xmis)(C
T C)← CT

obsCobs + CT
g diag

(∑nmis
i=1

(eT
i Qg)�w

eT
i Qgw

)
Cg

Σq(β,u) ←
{
µq(1/σ2

ε)Eq(xmis)(C
T C) + 1

σ2
β
I
}−1 ; µq(β,u) ←

Σq(β,u)µq(1/σ2
ε)Eq(xmis)(C)T y

σ2
q(µx) ← 1/

(
nµq(1/σ2

x) + 1/σ2
µx

)
; µq(µx) ← σ2

q(µx)µq(1/σ2
x)(1T xobs + 1T µq(xmis))

Bq(σ2
ε) ← Bε + 1

2‖y‖
2 − yT Eq(xmis)(C)µq(β,u) + 1

2 tr{Eq(xmis)(C
T C)(Σq(β,u) +

µq(β,u)µ
T
q(β,u))}

Bq(σ2
u) ← Bu + 1

2{‖µq(u)‖2 + tr(Σq(u))}

Bq(σ2
x) ← Bx+1

2

(
‖xobs − µq(µx)1‖2 + ‖µq(xmis) − µq(µx)1‖2 + nσ2

q(µx) +
nmis∑
i=1

σ2
q(xmis,i)

)

µq(1/σ2
ε) ← (Aε + 1

2n)/Bq(σ2
ε) ; µq(1/σ2

x) ← (Ax + 1
2n)/Bq(σ2

x) ; µq(1/σ2
u) ←

(Au + 1
2K)/Bq(σ2

u)

Σq(φ) ←
{
Eq(xmis)(X

T X) + 1
σ2

φ
I
}−1; µq(φ) ← Σq(φ)Eq(xmis)(X)T µq(a)

µq(a) ← Eq(xmis)(X)µq(φ) + (2R− 1)�
(2π)−1/2 exp{−1

2(Eq(xmis)(X)µq(φ))2}
Φ((2R− 1)� (Eq(xmis)(X)µq(φ)))

until the increase in p(y; q) is negligible.

Algorithm 4: Iterative scheme for obtaining the parameters in the optimal densities q∗(β,u),
q∗(σ2

ε) q∗(σ2
u) q∗(µx), q∗(σ2

x), q∗(xmis,i) and q∗(φ) for the MNAR nonparametric regression
model.

form of MCMC (Neal, 1998). In BRugs this involves setting overRelax=TRUE in the
modelUpdate() function. Using these settings, all chains appeared to behave reason-
ably well.

The resulting posterior densities for the model parameters and four randomly chosen
missing xi values are shown in Figure 7. The vertical lines correspond to the true values,
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except σ2
u where ‘truth’ is not readily defined. Good to excellent accuracy of variational

Bayes is apparent for all posterior densities. There is some noticeable discordance in the
case of σ2

u. This is perhaps due to some lack of identifiability for this parameter.
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Figure 7: Variational Bayes approximate posteriors for the regression model parameters and four
missing xis for nonparametric regression with predictors MCAR. The vertical lines correspond to
the true values of the parameters from which the data were simulated (described in the text). The
MCMC posteriors are based on samples of size 10000 and kernel density estimation. The accuracy
values correspond to the definition given at (11).

A novel aspect of this example is the multimodality of the posteriors for the xmis,i. This
arises from the the periodic nature of f , since more than one x conforms with a particular
y. It is noteworthy that the variational Bayes approximations are able to handle this
multimodality quite well

We then applied Algorithm 4 to data simulated according to

yi ∼ N(f(xi), σ2
ε), f(x) = sin(4πx2), xi ∼ N(1

2 , 1
36) and σ2

ε = 0.35, 1 ≤ i ≤ 500

and the observed predictor indicators generated according to

Ri ∼ Bernoulli(Φ(φ0 + φ1 xi)) with φ0 = 3 and φ1 = −3.

The hyperparameters were as in (14) and σ2
φ = 10−8. We also ran an MCMC analysis

using BRugs. The spline basis functions and MCMC sample sizes were the same as
those used in the MCAR example. Figure 8 shows resulting posterior density functions.
As with the parametric regression examples, variational Bayes is seen to have good to
excellent performance for all parameters except φ0 and φ1.

Our last example involves two variables from Ozone data-frame (source: Breiman &
Friedman, 1985) in the R package mlbench (Leisch & Dimitriadou, 2009). The response
variable is daily maximum one-hour-average ozone level and the predictor variable is
daily temperature (degrees Fahrenheit) at El Monte, California, USA. The Ozone data-
frame is such that 5 of the response values are missing and 137 of the predictor values
are missing. So that we could apply the methodology of the current section, directly we
omitted the 5 records for which the response was missing. This resulted in a sample size
of n = 361 with nmis = 137 missing predictor values.

Preliminary checks shown the normality assumption for the predictors and errors,
along with homoscedasticity, to be quite reasonable. We then assumed MNAR nonpara-
metric regression model and fed the stardized data into to Algorithm 4. MCMC fitting of
the same model via BRugs was also done for comparison. The results were then trans-
formed to the original scale. Figure 9 shows resulting posterior density functions approx-
imations.
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Figure 8: Variational Bayes approximate posteriors for the regression model parameters and five
missing xis for nonparametric regression with predictors MNAR. The vertical lines correspond to
the true values of the parameters from which the data were simulated (described in the text). The
MCMC posteriors are based on samples of size 10000 and kernel density estimation. The accuracy
values correspond to the definition given at (11).

In Figure 10 the fitted function estimates for all three examples are shown. Good
agreement is seen between variational Bayes and MCMC.

Finally, it is worth noting that these three penalized spline examples had much bigger
speed increases for variational Bayes compared with MCMC in BUGS. The total elapsed
time for the variational Bayes analysis was 75 seconds. For BRugs, with the MCMC
sample sizes described above, the three examples required 15.5 hours to run. This corre-
sponds to a speed-up in the order of several hundreds.

5 Discussion

We have derived variational Bayes algorithms for fast approximate inference in para-
metric and nonparametric regression with missing predictor data. The central finding of
this paper is that, for using regression models with missing predictor data, variational
Bayes inference achieves good to excellent accuracy for the main parameters of interest.
Poor accuracy is realized for the missing data mechanism parameters. As we note at
the end of Section 3.4.2, better accuracy for these auxiliary parameters maybe achievable
with a more elaborate variational scheme – in situations where they are of interest. The
nonparametric regression examples illustrate that variational Bayes approximates multi-
modal posterior densities with a high degree of accuracy.

The article has been confined to single predictor models so that the main ideas could
be maximimally elucidated. Numerous extensions could be made relatively straightfor-
wardly, based on the methodology developed here. Examples include: missing response
data, multiple regression and additive models and additive mixed models.
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Figure 9: Variational Bayes approximate posteriors for the regression model parameters and four
missing xis for nonparametric regression applied to the ozone data with predictors MNAR. The
MCMC posteriors are based on samples of size 10000 and kernel density estimation. The accuracy
values correspond to the definition given at (11). Summary of nonparametric regression for ozone
data with with predictor MNAR.
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Figure 10: Posterior mean functions and corresponding pointwise 95% credible sets for all
three nonparametric regression examples. The grey curves correspond to MCMC-based inference,
whilst the black curves correspond to variational Bayesian inference.

Appendix A: Derivation of Algorithms 1, 2 and 3

The derivations for Algorithms 1, 2 and 3 are similar to each other. Hence, we only
give the full derivation for the most complicated one – Algorithm 3. Adjustments for
Algorithms 1 and 2 are relatively simple.

The full conditionals

As a first step, we determine the full conditionals of each node in the right-most DAG of
Figure 1. These involve manipulations that have become standard in the Gibbs sampling
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literature (e.g. Robert & Casella, 2004). Note that the calculations can be made simpler
by appealing to the Markov blanket theorem and the content of Table 1. For example,

p(β|rest) = p(β|Markov blanket of β) = p(β|y, σ2
ε ,xmis,xobs)

∝ p(y|β, σ2
ε ,xmis,xobs)p(β) ∝ exp(− 1

2σ2
ε
‖y −Xβ‖2 − 1

2σ2
β
‖β‖2).

Algebraic manipulation of the exponent leads to

p(β|rest) ∼ N
((

1
σ2

ε
XT X + 1

σ2
β
I
)−1 1

σ2
ε
XT y,

(
1
σ2

ε
XT X + 1

σ2
β
I
)−1
)
.

Continuing in this fashion we obtain:

p(σ2
ε |rest) ∼ IG(Aε + 1

2n, Bε + 1
2‖y −Xβ‖2),

p(µx|rest) ∼ N

(
(1T x)/σ2

x

n/σ2
x + 1/σ2

µx

,
1

n/σ2
x + 1/σ2

µx

)
,

p(σ2
x|rest) ∼ IG(Ax + 1

2n, Bx + 1
2‖x− µx1‖2),

p(xmis|rest) ∼ product of N

(
µx/σ2

x + (β1/σ2
ε)(yxmis,i − β0) + φ1(ai − φ0)

1/σ2
x + β2

1/σ2
ε + φ2

1

,
1

1/σ2
x + β2

1/σ2
ε + φ2

1

)
densities over 1 ≤ i ≤ nmis,

p(φ|rest) ∼ N
((

XT X + 1
σ2

φ
I
)−1

XT y,
(
XT X + 1

σ2
φ
I
)−1
)

and p(a|rest) = (2π)−n/2
n∏

i=1

[{
I(ai ≥ 0)
Φ((Xφ)i)

}Ri
{

I(ai < 0)
1− Φ((Xφ)i)

}1−Ri

exp{−1
2(ai − φ0 − φ1xi)2}

]
.

Expressions for Eq(xmis)(X) and Eq(xmis)(X
T X)

The correspond to the updates given at (8).
Derivation:

The results for Eq(xmis)(X) and the (1, 1), (1, 2) and (2, 1) entries of Eq(xmis)(X
T X)

follow from

Eq(xmis)(x) =
[

xobs

Eq(xmis)(xmis)

]
=
[

xobs

µq(xmis)

]
.

The (2,2) entry of Eq(xmis)(X
T X) is

Eq(xmis)(x
T x) = {Eq(xmis)(x)}T Eq(xmis)(x)+tr{Covq(x)} = ‖xobs‖2+‖µq(xmis)‖

2+
nmis∑
i=1

Varq(xmis,i).

The stated result then follows from the fact that Varq(xmis,i) = σ2
q(xmis)

for each 1 ≤ i ≤
nmis.

Expression for q∗(β)

q∗(β) ∼ N(µq(β),Σq(β))

where

Σq(β) =
{

µq(1/σ2
ε)Eq(xmis)(X

T X) + 1
σ2

β
I

}−1

and µq(β) = Σq(β)µq(1/σ2
ε)Eq(xmis)(X)T y.

Derivation:
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With V ≡ ( 1
σ2

ε
XT X + 1

σ2
β
I)−1 we have

q∗(β) ∝ exp{E−β log p(β|rest)}
∝ exp

(
Eq(σ2

ε)q(xmis){−
1
2 [{β − V (1/σ2

ε)X
T y}T V −1{β − V (1/σ2

ε)X
T y}]

)
∝ exp

(
Eq(σ2

ε)q(xmis){−
1
2 [βT {(1/σ2

ε)X
T X + (1/σ2

β)}β − 2βT (1/σ2
ε)X

T y}]
)

∝ exp
(
−1

2 [βT {µq(1/σ2
ε)Eq(xmis)(X

T X) + (1/σ2
β)}β − 2βT µq(1/σ2

ε)Eq(xmis)(X)T y}]
)
.

The result then follows after completion of the square in the exponent.

Expression for q∗(σ2
ε)

q∗(σ2
ε) ∼ IG(Aε + 1

2n, Bq(σ2
ε))

where

Bq(σ2
ε) = Bε + 1

2‖y‖
2 − yT Eq(xmis)(X)µq(β) + 1

2 tr{Eq(xmis)(X
T X)(Σq(β) + µq(β)µ

T
q(β))}.

Note that µq(1/σ2
ε) = (Ax + 1

2n)/Bq(σ2
ε).

Derivation:
From the expression for p(σ2

ε |rest), application of (2) leads to

q∗(σ2
ε) ∼ IG(Aε + 1

2n, Bε + 1
2Eq(xmis)q(β)‖y −Xβ‖2).

Noting that
‖y −Xβ‖2 = ‖y‖2 − 2yT Xβ + tr(XT XββT ).

and taking expectations with respect to q(xmis)q(β) we obtain the stated result.

Expression for q∗(µx)

q∗(µx) ∼ N(µq(µx), σ
2
q(µx))

where

σ2
q(µx) = 1/

(
nµq(1/σ2

x) + 1/σ2
µx

)
and µq(µx) = σ2

q(µx)µq(1/σ2
x)(1

T xobs + 1T µq(xmis)).

Derivation:
This is similar to the derivation of q∗(β), but is simpler.

Expression for q∗(σ2
x)

q∗(σ2
x) ∼ IG(Ax + 1

2n, Bq(σ2
x))

where

Bq(σ2
x) = Bx + 1

2(‖xobs − µq(µx)1‖2 + ‖µq(xmis) − µq(µx)1‖2 + nσ2
q(µx) + nmisσ

2
q(xmis)

).

Note that µq(1/σ2
x) = (Ax + 1

2n)/Bq(σ2
x).

Derivation:
From the result for the full conditional of σ2

x:

q∗(σ2
x) ∼ IG(Ax + 1

2n, Bx + 1
2Eq‖x− µx1‖2).

To obtain an explicit expression for Eq‖x− µx1‖2 first note that

‖x− µx1‖2 = ‖xobs − µx1‖2 + ‖xmis − µx1‖2.
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Then
Eq‖xobs − µx1‖2 = ‖xobs − µq(µx)1‖2 + nobsσ

2
q(µx).

Also, by independence of xmis and µx (under the q densities)

Eq‖xmis − µx1‖2 = ‖µq(xmis) − µq(µx)1‖2 + nmis(σ2
q(xmis)

+ σ2
q(µx)).

Combining we get

Eq‖x− µx1‖2 = ‖xobs − µq(µx)1‖2 + ‖µq(xmis) − µq(µx)1‖2 + nσ2
q(µx) + nmisσ

2
q(xmis)

.

The stated result then follows immediately.

Expression for q∗(xmis,i)

For 1 ≤ i ≤ nmis:
q∗(xmis,i) ∼ N(µq(xmis,i), σ

2
q(xmis)

)

where

σ2
q(xmis)

= 1
/[

µq(1/σ2
x) + µq(1/σ2

ε)

{
µ2

q(β1) + (Σq(β))22
}

+ µ2
q(φ1) + (Σq(φ))22

]
and

µq(xmis,i) = σ2
q(xmis)

[
µq(1/σ2

x)µq(µx) + µq(1/σ2
ε)

{
yxmis,iµq(β1) − (Σq(β))12 − µq(β0)µq(β1)

}
+µq(axmis,i )

µq(φ1) − (Σq(φ))12 − µq(φ0)µq(φ1)

]
.

Derivation:
First note that, since

q∗(xmis) ∝ exp{E−xmis log p(xmis|rest)},

q∗(xmis) inherits the product structure of p(xmis|rest). Therefore, it suffices to work with
p(xmis,i|rest) and q∗(xmis,i). Let

v ≡ 1
/
(1/σ2

x + β2
1/σ2

ε + φ2
1).

Then

q∗(xmis,i) ∝ exp{E−xmis,i log p(xmis,i|rest)}

∝ exp
{

E−xmis,i

(
− 1

2v
[xmis,i − v{µx/σ2

x + (β1/σ2
ε)(yxmis,i − β0) + φ1(axmis,i − φ0)}]2

)}
∝ exp

(
− 1

2

[
x2

mis,iEq(1/σ2
x + β2

1/σ2
ε + φ2

1)

−2xmis,iEq{µx/σ2
x + (β1/σ2

ε)(yxmis,i − β0) + φ1(axmis,i − φ0)}
])

where the Eq s in the previous expression are assumed to be over the joint q-densities of
the respective random variables. The first of these expectations is

Eq(1/σ2
x + β2

1/σ2
ε + φ2

1) = µq(1/σ2
x) + µq(1/σ2

ε)

{
µ2

q(β1) + (Σq(β))22
}

+ µ2
q(φ1) + (Σq(φ))22

whilst the second one is

Eq{µx/σ2
x + (β1/σ2

ε)(yxmis,i − β0) + φ1(axmis,i − φ0)} =
µq(1/σ2

x)µq(µx) + µq(1/σ2
ε)

{
yxmis,iµq(β1) − (Σq(β))12 − µq(β0)µq(β1)

}
+µq(axmis,i )

µq(φ1) − (Σq(φ))12 − µq(φ0)µq(φ1).

The result then follows after completion of the square in the exponent.
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Expression for q∗(φ)

q∗(φ) ∼ N(µq(φ),Σq(φ))

where

Σq(φ) =
{
Eq(xmis)(X

T X) + (1/σ2
φ)I
}−1

and µq(φ) = Σq(φ)Eq(xmis)(X)T µq(a).

Derivation:
This is similar to the derivation of q∗(β), but is simpler.

Expression for q∗(a) and its mean

q∗(a) =

 n∏
i=1

{
I(ai ≥ 0)

Φ((Xµq(φ))i)

}Ri
{

I(ai < 0)
1− Φ((Xµq(φ))i)

}1−Ri


×(2π)−n/2 exp{−1
2‖a−Xµq(φ)‖2}.

From this we get

µq(a) = Eq(xmis)(X)µq(φ) +
(2π)−1/2(2R− 1)� exp{−1

2(Eq(xmis)(X)µq(φ))2}
Φ((2R− 1)� (Eq(xmis)(X)µq(φ)))

.

Derivation:
If Ri = 1 then

q∗(ai) ∝ expEq(xmis,φ)[−1
2{ai − (Xφ)i}2], ai ≥ 0

∝ exp
(
−1

2

[
ai − {Eq(xmis)(X)µq(φ)}i

]2)
, ai ≥ 0.

Hence, if Ri = 1, then

q∗(ai) =
(2π)−1/2 exp

(
−1

2 [ai − {Eq(xmis)(X)µq(φ)}i]2
)

Φ({Eq(xmis)(X)µq(φ)}i)
, ai ≥ 0.

Similarly, if Ri = 0, then

q∗(ai) =
(2π)−1/2 exp

(
−1

2 [ai − {Eq(xmis)(X)µq(φ)}i]2
)

1− Φ({Eq(xmis)(X)µq(φ)}i)
, ai < 0.

The expression for q∗(a) is obtained after applying these results to each factor in p(a|rest).
The µq(a) expression follows from the following results concerning means of trun-

cated normal density functions:∫ ∞

0
x

(2π)−1/2 exp{−1
2(x− µ)2}

Φ(µ)
dx = µ +

(2π)−1/2e−µ2/2

Φ(µ)

and ∫ 0

−∞
x

(2π)−1/2 exp{−1
2(x− µ)2}

1− Φ(µ)
dx = µ− (2π)−1/2e−µ2/2

Φ(−µ)
.
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Appendix B: Derivation of (16) and Expression for Λmis,i

First note that p(xmis,i|rest) satisfies

p(xmis,i|rest) ∝ exp

{
− 1

2σ−2
ε Cxmis,i

[
β
u

][
β
u

]T
Cxmis,i + σ−2

ε yxmis,iCxmis,i

[
β
u

]
−1

2σ−2
x x2

mis,i + σ−2
x µxxmis,i − 1

2φ2
1x

2
mis,i +

(
axmis,iφ1 − φ0φ1

)
xmis,i

}

where, for 1 ≤ i ≤ nmis, axmis,i is the entry of a corresponding to xmis,i. The expression for
q(xmis,i) is then given by

q(xmis,i) ∝ exp

{
− 1

2µq(1/σε2 )Cxmis,i(µq(β,u)µ
T
q(β,u) + Σq(β,u))CT

xmis,i
+ µq(1/σ2

ε)yxmis,iCxmis,iµq(β,u)

−1
2µq(1/σ2

x)x
2
mis,i + µq(1/σ2

x)µq(µx)xmis,i − 1
2(µ2

q(φ1) + {Σq(φ)}22)x2
mis,i

+
(
µq(axmis,i )

µq(φ1) − µq(φ0)µq(φ1) − {Σq(φ)}12
)

xmis,i

}
.

Expression (16) then follows, using the Cx notation and the definitions

Λmis,i ≡ Λ1 + Λ2,mis,i + Λ3,mis,i (18)

with

Λ1≡ µq(1/σ2
ε)(µq(β,u)µ

T
q(β,u) + Σq(β,u)),

Λ2,mis,i≡


0 −µq(1/σ2

x)µq(µx) −µq(1/σ2
x)yxmis,iµ

T
q(u)

−µq(1/σ2
ε)yxmis,iµq(β1)

−µq(1/σ2
x)µq(µx) − µq(1/σ2

ε)yxmis,iµq(β1) µq(1/σ2
x) 0

−µq(1/σ2
x)yxmis,iµq(u) 0 0



and Λ3,mis,i≡


0 µq(φ0)µq(φ1) + {Σq(φ)}12 0

−µq(axmis,i )
µq(φ1)

µq(φ0)µq(φ1) + {Σq(φ)}12 µ2
q(φ1) + {Σq(φ)}22 0

−µq(axmis,i )
µq(φ1)

0 0 0

 .

(19)
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