(Last adjustments: December 6, 2017)

Workshop on statistical challenges in astronomy –Hierarchical models in Stan

Presenter

Dr. John T. Ormerod

School of Mathematics & Statistics F07

University of Sydney

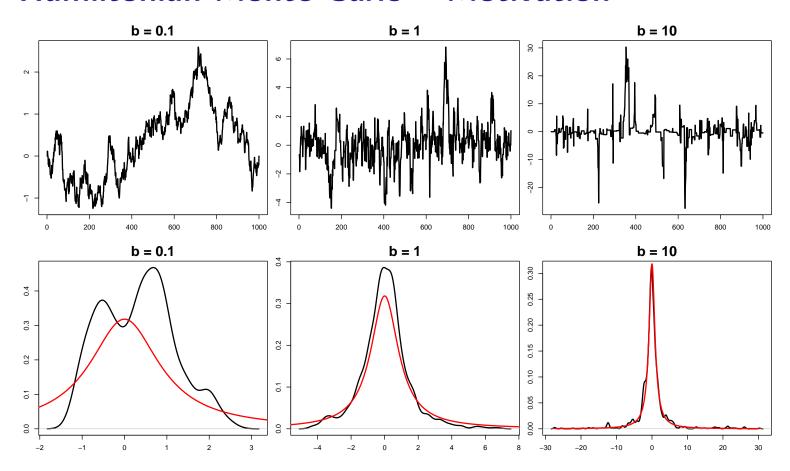
(w) 02 9351 5883

(e) john.ormerod (at) sydney.edu.au

Hamiltonian Monte Carlo – Motivation

- □ One of the inherent problems with Gibbs sampling and Metropolis-Hastings MCMC methods is that, for particular problems, the Markov Chains samples can exhibit high amounts of autocorrelation leading to random walk behaviour.
- □ Zigging and zagging whole moving thought the target distribution. Reparameterization and other tricks can improve the situation, but for complex models it can be a time consuming problem to tune all of the proposals in the model.

Hamiltonian Monte Carlo – Motivation



Hamiltonian Monte Carlo or Hybrid Monte Calro (HMC) borrows an idea from physics to suppress the coal random walk behaviour in the Metropolis-Hastings algorithm, thus allowing it to move much more rapidly through the target distribution.

- \Box For each parameter θ_j in the parameter space we introduce a "momentum" variable ϕ_j .
- \Box Both θ and ϕ are updated together in a new Metropolis-Hastings algorithm in which the jumping distribution for θ is largely determined by ϕ .
- \Box Each iteration of HMC consists of L steps during which the position and momentum evolve based on rules imitating the behaviour of position.
- \Box The steps can move rapidly where possible though the space of θ and can even turn corners in parameter space to preserve the "total energy" of the trajectory.

- \Box As usual we only need to know the posterior $p(\theta|\mathbf{y}) \propto p(\mathbf{y}, \theta)$ up to proportionality.
- \Box This is augmented by an independent distribution $p({\pmb \phi})$ defining an new joint distribution

$$p(\boldsymbol{\theta}, \boldsymbol{\phi}|\mathbf{y}) \propto p(\boldsymbol{\phi})p(\mathbf{y}, \boldsymbol{\theta}).$$

- \Box We then simulate from the join distribution, but we are only interested in the simulations for θ .
- \Box The simulations from ϕ are auxiliary and can be discarded.
- \Box The role ϕ allows us to move faster through parameter space.

□ One of the requirements of the algorithm is the calculation of the log-posterior density.

$$\frac{\partial \log p(\boldsymbol{\theta}|\mathbf{y})}{\partial \boldsymbol{\theta}^T} = \frac{\partial \log p(\mathbf{y}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^T} = \left(\frac{\partial \log p(\mathbf{y}, \boldsymbol{\theta})}{\partial \theta_1}, \dots, \frac{\partial \log p(\mathbf{y}, \boldsymbol{\theta})}{\partial \theta_d}\right)$$

□ While the derivatives can be calculated numerically. This is not recommended because of the number of function evaluations involved.

Hamiltonian Monte Carlo – Momemntum distrubiton $p(\phi)$

- \Box It is usual to give $p(\phi)$ a multivariate normal distribution with mean $\mathbf{0}$ and covariance \mathbf{M} which is sometimes called the "mass matrix" (so called by analogy to the physical model of Hamiltonian dynamics).
- □ To further simplify matters we will assume that the mass matrix is diagonal so

$$\phi_j \sim N(0, M_{jj})$$

 \Box It can be useful for \mathbf{M} to roughly scale with $\mathsf{Cov}(\boldsymbol{\theta}|\mathbf{y})$, but the algorithm will work in any case. This choice only makes the algorithm more efficient.

Hamiltonian Monte Carlo - Steps

HMC proceeds via iterations similar to any Metropolis-Hastings algorithm with a proposal which takes L steps. Each iteration consists of four parts.

- 1. Draw $\phi \sim N(\mathbf{0}, \mathbf{M})$.
- 2. Perform the following "Leapfrog" steps L times
 - (a) Use the gradient of the log-posterior to make a half-step of ϕ via

$$\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} + \frac{1}{2} \cdot \epsilon \cdot \frac{\partial \log p(\mathbf{y}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^T}$$

(b) Use the "momentum" vector $oldsymbol{\phi}$ to update the "position" vector $oldsymbol{ heta}$ via

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \epsilon \cdot \mathbf{M}^{-1} \boldsymbol{\phi}$$

(c) Again use the gradient of heta to half update ϕ .

$$\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} + \frac{1}{2} \cdot \epsilon \cdot \frac{\partial \log p(\mathbf{y}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^T}$$

(As a rule of thumb the inventors of HMC use $L\epsilon \approx 1$.)

3. Label $(\boldsymbol{\theta}^{(t-1)}, \boldsymbol{\phi}^{(t-1)})$ as the value of the parameter and momentum vectors at the previous iteration and $(\boldsymbol{\theta}^*, \boldsymbol{\phi}^*)$ as the value after L leapfrog steps. Use the accept reject step

$$r = \frac{p(\mathbf{y}, \boldsymbol{\theta}^*)p(\boldsymbol{\phi}^*)}{p(\mathbf{y}, \boldsymbol{\theta}^{(t-1)})p(\boldsymbol{\phi}^{(t-1)})}$$

4. Set

$$(\boldsymbol{\theta}^{(t)}, \boldsymbol{\phi}^{(t)}) = \left\{ egin{aligned} (\boldsymbol{\theta}^*, \boldsymbol{\phi}^*) & \text{with probability } \min(r, 1) \\ (\boldsymbol{\theta}^{(t-1)}, \boldsymbol{\phi}^{(t-1)}) & \text{otherwise.} \end{aligned}
ight.$$

As with any MCMC we repeat these iterations until approximate convergences and the effective sample sizes for each change is large enough for inference of quantities of interest.

Hamiltonian Monte Carlo – Leapfrog steps

What is happening in the leapfrog steps?

- \Box The stepping starts with a half-step for ϕ , L-1 full steps of the parameter vector $\boldsymbol{\theta}$ and the momentum vector $\boldsymbol{\phi}$ and then concludes with a half step of $\boldsymbol{\phi}$.
- □ It is called a "leapfrog" algorithm because of the splitting of the momentum updates into half steps and is a discrete approximation to physical Hamiltonian dynamics i which both the position and momentum evolve in continuous time.

 \square Suppose that $p(\mathbf{y}, \boldsymbol{\theta})p(\boldsymbol{\phi})$ is in a flat area of of the posterior then

$$rac{\partial \log p(\mathbf{y}, oldsymbol{ heta})}{\partial oldsymbol{ heta}^T} pprox \mathbf{0}.$$

and the momentum update

$$\boldsymbol{\phi} \leftarrow \boldsymbol{\phi} + \frac{1}{2} \epsilon \frac{\partial \log p(\mathbf{y}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^T}$$

will remain approximately constant. In this case the the leapfrog steps will skate along θ space with constant velocity.

 \square Now suppose that heta moves toward an area of low posterior density. Then

$$\frac{\partial \log p(\mathbf{y}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^T}$$

will be negative in this direction, thus in step 2 inducing a decrease in the momentum in the direction of movement.

 \Box As the leapfrog steps continue to move into an area of low density in θ space the momentum will continue to decrease.

- □ If iterations continue to move in this direction the iterations will slow to zero and then black down or curve around the dip.
- \Box If the algorithm heads in a direction where $p(\mathbf{y}, \boldsymbol{\theta})$ us increasing then

$$\frac{\partial \log p(\mathbf{y}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^T}$$

will be positive leading to an increase of momentum in that direction. As $p(\mathbf{y}, \boldsymbol{\theta})$ increases $p(\boldsymbol{\phi})$ increases correspondingly until the trajectory eventually moves past or around the mode and ten starts to slow again.

 \square Note that the theoretically optimal acceptance rate for HMC is around 65%. So L, ϵ and $\mathbf M$ can be tuned if necessary to achieve this.

Combining HMC with Gibbs sampling

There are two ways in which te ideas of the Gibbs sampler fit into HMC.

- □ First it can bake sense to partition variables into blocks, either to simplify computation or to speed convergence.
- \square Consider a hierarchical model with J groups with parameter vector $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_J)$ where $\boldsymbol{\theta}_j$ is itself a vector of parameters each corresponding to a different group so that the likelihood can be factored into

$$p(\mathbf{y}, \boldsymbol{\theta}) = \prod_{j=1}^{j} p(\mathbf{y}_{j} | \boldsymbol{\theta}_{j}) p(\boldsymbol{\theta}_{j})$$

(or something similar) then the log-likelihood derivatives themselves decompose.

□ The second, perhaps more important use of Gibbs sampling is though the update of discrete parameter/latent variables (since HMC is only defined for continuous distributions).

Hamiltonian Monte Carlo - Code

First we need to define the log-joint and gradient functions

```
f.fun <- function(vbeta, vy, mX, sigma2.beta)</pre>
{
    veta <- mX%*%vbeta</pre>
    log.p \leftarrow sum(vy*veta - log(1 + exp(veta))) - 0.5*sum(vbeta^2)/sigma2.beta
    return(log.p)
}
vg.fun <- function(vbeta, vy, mX, sigma2.beta)</pre>
{
    veta <- mX%*%vbeta</pre>
    vmu <- 1/(1+exp(-veta))
    vg <- t(mX)%*%(vy - vmu) - vbeta/sigma2.beta</pre>
    return(vg)
```

Hamiltonian Monte Carlo - Code

```
hmc_iteration <- function(vbeta,vy,mX,sigma2.beta,epsilon,L,M)</pre>
{
    M_inv <- 1/M; d <- length(vbeta); phi <- rnorm(d,0,sqrt(M)); vbeta.old <- vbeta</pre>
    log.p.old <- f.fun(vbeta,vy,mX,sigma2.beta) - 0.5*sum(M_inv*phi*phi)</pre>
    phi <- phi + 0.5*epsilon*vg.fun(vbeta,vy,mX,sigma2.beta)</pre>
    for (1 in 1:L) {
        vbeta <- vbeta + epsilon*M_inv*phi</pre>
        phi <- phi + (if (l==L) 0.5 else 1)*epsilon*vg.fun(vbeta,vy,mX,sigma2.beta)
    }
    phi <- -phi
    log.p.star <- f.fun(vbeta,vy,mX,sigma2.beta) - 0.5*sum(M_inv*phi*phi)</pre>
    r <- exp(log.p.star - log.p.old)
    if (is.nan(r)) { r <- 0; }
    p_jump < min(r,1)
    vbeta.new <- if (runif(1) < p_jump) vbeta else vbeta.old</pre>
    return(list(vbeta=vbeta.new,p_jump=p_jump))
}
```

Hamiltonian Monte Carlo - Code

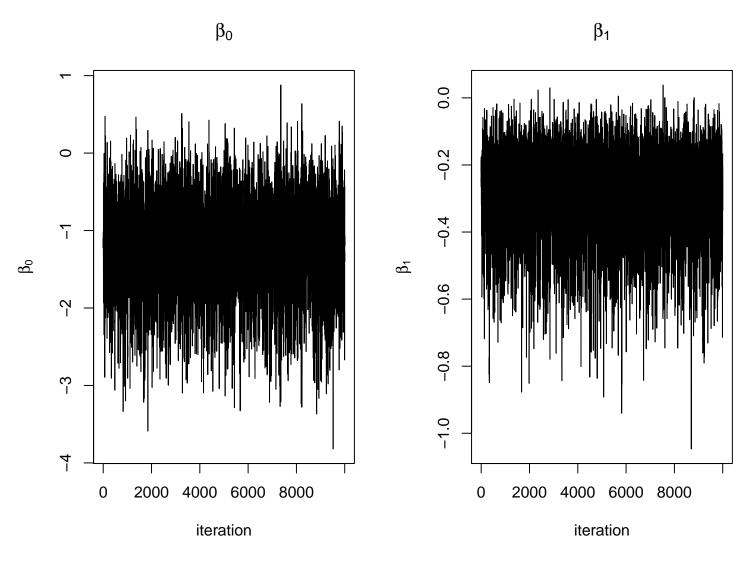
```
hmc_run <- function(vbeta.start,iter,epsilon_0,L_0,M,vy,mX,sigma2.beta)</pre>
{
    d <- length(vbeta.start)</pre>
    mBeta <- matrix(0,d,iter)</pre>
    vbeta <- vbeta.start</pre>
    p_jump <- c()
    for (i in 1:iter) {
         epsilon <- runif(1,0,2*epsilon_0)</pre>
         L <- ceiling(2*L_0*runif(1))</pre>
         temp <- hmc_iteration(vbeta,vy,mX,sigma2.beta,epsilon,L,M)</pre>
         p_jump[i] <- temp$p_jump</pre>
         mBeta[,i] <- temp$vbeta</pre>
         vbeta <- temp$vbeta</pre>
    }
    return(list(mBeta=mBeta,p_jump=p_jump))
}
```

Hamiltonian Monte Carlo – Code

```
vbeta.start <- res.glm$coefficients
iter <- 10000
epsilon_0 <- 0.1
L_0 <- 10
M <- 3

res <- hmc_run(vbeta.start,iter,epsilon_0,L_0,M,vy,mX,sigma2.beta=1.0E8)</pre>
```

Hamiltonian Monte Carlo – Chains



Hamiltonian Monte Carlo – Effective sample size

Note iter <- 10000. The coda library is a convenient function for finding the effective number of samples.

```
> ar(res$mBeta[1,],order.max =1)
Call:
ar(x = res\$mBeta[1, ], order.max = 1)
Coefficients:
1
0.5026
Order selected 1 sigma<sup>2</sup> estimated as 0.2808
ar(res$mBeta[2,],order.max =1)
Call:
ar(x = res\$mBeta[2, ], order.max = 1)
Coefficients:
0.2511
Order selected 1 sigma^2 estimated as 0.01598
library(coda)
effectiveSize(res$mBeta[1,])
> 3310.221
effectiveSize(res$mBeta[2,])
> 5000.928
```

Hamiltonian Monte Carlo - Stan

- \square Stan is a Bayesian modelling package which fits models using HMC. It has also implemented a stochastic variational Bayes (SVB) algorithm (which uses a mixture of normal specifications for $q(\theta)$.)
- □ It is available form http://mc-stan.org where you can find code and further examples.

Stan - Code

```
library(rstan)
dat <- list(
    n=n,
    vy = vy,
    vx = vx
)</pre>
```

Stan - Code

```
model_logisticRegression <- "</pre>
data {
    int<lower=0> n;
    vector[n] vx;
    int<lower=0,upper=1> vy[n];
}
parameters {
    real alpha0;
    real alpha1;
}
model {
    alpha0 ~ normal(0.0,1.0E3);
    alpha1 ~ normal(0.0,1.0E3);
    for (i in 1:n)
        vy[i] ~ bernoulli_logit(alpha0 + alpha1*vx[i]);
}"
```

Stan - Code

```
fit <- stan(model_code = model_logisticRegression , data = dat ,
    iter = 10000 , warmup = 100 , init="random" , chains = 1 )
res.stan <- extract(fit)
beta0 <- res.stan$alpha0
beta1 <- res.stan$alpha1</pre>
```

Hamiltonian Monte Carlo – Chains

