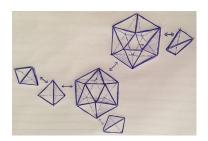
Tight triangulations of 3-manifolds

Bhaskar Bagchi, Basudeb Datta, Jonathan Spreer

University of Queensland

Melbourne, December 11th, 2014



WDWC?

- Convexity is a very important condition in many mathematical results.
- Limited use in geometry and topology: many objects cannot be convex.
- Intuitive notion: many objects look more convex than others.

WDWC?

- A particular embedding of a topological space into some Euclidean space \mathbb{E}^d is said to be tight, if it is "as convex as possible" given its topological constraints.
- More precisely: $M \subset E^d$, compact, connected is called tight with respect to a field \mathbb{F} if for every open or closed half space $h \subset E^d$ the induced homomorphism

$$H_{\star}(h \cap M, \mathbb{F}) \hookrightarrow H_{\star}(M, \mathbb{F})$$

is injective.

An embedding is tight if it is \mathbb{F} -tight for at least one field \mathbb{F} .

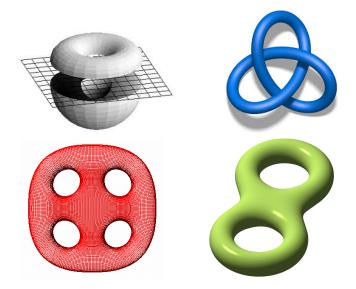
WDWC?

Generalises convexity.

► Tightness minimises total absolut curvature (Alexandrov, 1938; Milnor, Chern and Lashof, Kuiper, 1950's).

 Compatible with Morse theory (Kühnel, 1995, more in around 4 minutes).

Examples



Simplicial (polyhedral) setting

Intrinsic version of tightness (no embedding):

▶ C connected abstract simplicial complex with vertex set V(C), \mathbb{F} field, then C is tight with respect to \mathbb{F} if for all subsets $W \subset V(C)$,

$$H_{\star}(C[W], \mathbb{F}) \hookrightarrow H_{\star}(C, \mathbb{F})$$

is injective (C[W] is the subcomplex of C induced by W).

Relation to Morse theory

- Tightness for abstract simplicial complexes: tight with respect to all embeddings.
- Kühnel (1995): An abstract simplicial complex is tight iff all of its Morse functions* are perfect.¹
- Relaxation of tightness: find one perfect Morse function.
- Naturally, the latter problem can be efficiently verified (∈ NP) and the former can be efficiently disproved (∈ co-NP).
- Finding one perfect Morse function is known to be difficult (∈ NP-hard)*.²

¹W. Kühnel. *Tight polyhedral submanifolds and tight triangulations*, Springer, 1995

²Joswig, Pfetsch. Computing optimal Morse matchings, 2006 (2006) (2006

Relation to Morse theory

- Deciding tightness is easy in dimension two.
- In higher dimensions known algorithms all have exponential running time.
- In dimension three classical tricks to establish tightness fail.

Relation to Morse theory

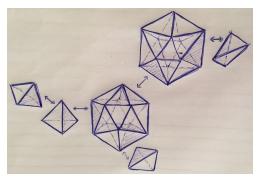
- Deciding tightness is easy in dimension two.
- ▶ In higher dimensions known algorithms all have exponential running time.
- In dimension three classical tricks to establish tightness fail.

Sounds familiar?

The main result

Theorem (Bagchi, Datta, S. 2014)

All vertex links of a tight 3-manifold triangulation M are connected sums of the boundary complexes of the tetrahedron and (possibly) the icosahedron.



A connected sum of primitive 2-sphere triangulations.

The main result

Lemma

Let M be a tight 3-manifold triangulation, let $S = \mathsf{lk}_M(v)$ be a vertex link and let $C \subset S$ be an induced cycle in S, then $M[V(C) \cup \{v\}]$ is a tight surface.

 \Rightarrow Length of C must be $\neq 1(3)$ (cannot be 4).

Lemma

Let S be a primitive 2-sphere triangulation without cycles of length $\equiv 1(3)$, then S cannot have vertices of degree greater than five.

 \Rightarrow The only primitive 2-spheres in vertex links of tight 3-manifold triangulations are \checkmark and \bullet .

The consequences

"Corollary"

Let M be a 3-manifold with $\beta_1(M, \mathbb{F}_2) < 189$ admitting a tight triangulation, then M is homeomorphic to one of the following manifolds

$$S^3$$
, $(S^1 \times S^2)^{\#k}$, $(S^1 \times S^2)^{\#k}$,

for values $k \in \{1, 12, 19, 21, 30, 63, 78, 82, 99, 154, 177, 183\}$.

"Corollary"

Deciding tightness for triangulations of 3-manifolds is in P.

Thank you

 B. Bagchi, B. Datta, J. Spreer. Tight triangulations of closed 3-manifolds. 19 pages, 1 figure.

arXiv:1412.0412[math.GT]

B. Bagchi, B. Burton, B. Datta, N. Singh, J. Spreer. *Efficient algorithms to decide tightness*. 18 pages, 3 figures.

arXiv:1412.1547[cs.CG]

 F. Effenberger, J. Spreer. simpcomp - A GAP package for simplicial complexes, Version 2.0.0, 2014,

http://code.google.com/p/simpcomp/

