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Cutting and shuffling a hemisphere: Nonorthogonal axes
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We examine the dynamics of cutting-and-shuffling a hemispherical shell driven by alternate rotation about
two horizontal axes using the framework of piecewise isometry (PWI) theory. Previous restrictions on how
the domain is cut-and-shuffled are relaxed to allow for nonorthogonal rotation axes, adding a new degree of
freedom to the PWI. A new computational method for efficiently executing the cutting-and-shuffling using
parallel processing allows for extensive parameter sweeps and investigations of mixing protocols that produce
a low degree of mixing. Nonorthogonal rotation axes break some of the symmetries that produce poor mixing
with orthogonal axes and increase the overall degree of mixing on average. Arnold tongues arising from rational
ratios of rotation angles and their intersections, as in the orthogonal axes case, are responsible for many protocols
with low degrees of mixing in the nonorthogonal-axes parameter space. Arnold tongue intersections along a
fundamental symmetry plane of the system reveal a new and unexpected class of protocols whose dynamics are
periodic, with exceptional sets forming polygonal tilings of the hemispherical shell.
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I. INTRODUCTION

Mixing of fluids by diffusion, chaotic advection, and tur-
bulence has been well studied [1,2]. Cutting-and-shuffling
is a mixing mechanism that is far less understood, but is
particularly relevant to systems with flow discontinuities,
such as granular materials [3–8], valved fluid flow [9,10],
thrust faults in geology [11–13], and, of course, the typical
example of mixing a deck of cards [14–16]. In one dimension,
cutting-and-shuffling is described mathematically by interval
exchange transforms (IETs) [17–28] which naturally extend to
higher dimensions under the framework of piecewise isome-
tries (PWIs). PWIs, which cut an object into pieces and spa-
tially rearrange them to form the original shape, can produce
complex dynamics despite their relative simplicity [29–37].
There are several, though somewhat similar, definitions of
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PWIs [6,33–37]. A piecewise isometry (PWI) M : S → S is
a map on a domain S such that, for some partition of S into
a finite number N of closed [38], mutually disjoint (up to
their boundaries) partition elements {Pi}N

i=1 (termed atoms),
the action of M is a Euclidean isometry (length preserving,
e.g., rotation, translation, reflection) on each Pi. A PWI is
invertible if the mapped atoms, {MPi}N

i=1, are also mutually
disjoint (again, up to their boundaries). Overlapping atom
boundaries are treated as members of both adjacent atoms,
resulting in a map that is multivalued on atom boundaries
and introduces complications that ultimately have no bearing
on the measurements in this paper. A PWI is orientation
preserving if there are no reflections.

We investigate a specific family of invertible, orientation
preserving PWIs on a hemispherical shell [4–7,29,39–41].
The hemispherical shell has become a prototypical PWI for
its relation to a half-filled spherical tumbler of granular par-
ticles rotated sequentially about two different horizontal axes
(called the biaxial spherical tumbler, or BST). The stripped
down version of this system is a PWI on a hemispherical
shell.
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FIG. 1. Demonstration of the rotations that define the PWI, here
α = 57◦, β = 57◦, and γ = 120◦. (a) The initial condition of the
hemispherical shell (HS). (b) Rotation about the first axis (z axis) by
α. (c) Separation of the portion above the equator and beginning of
the rotation to reconstruct the HS. (d) Re-formed HS. (e)–(h) Repeat
of (a)–(d) about the second horizontal axis.

Previous studies of mixing by PWIs on hemispheres
[4,29,40,41] or hemispherical shells [6,7,29,39] focused al-
most exclusively on the case where the two rotation axes are
orthogonal with the single apparent exception of Juarez et al.
[5], where a general mixing metric for nonorthogonal axis
protocols was investigated using this same PWI. An investiga-
tion of a related system for a nonhemispherical spherical cap
(i.e., less-than-half-filled hemisphere), which induces shear
along the axial direction (∂u/∂a) and is therefore no longer
a PWI, was recently carried out by Smith et al. [42].

This paper uses the PWI formulation to examine mixing on
a hemispherical shell when the restriction of orthogonal axes
is relaxed, as described in Sec. II (the PWI studied here can
be expanded to a full sphere; see Sec. S-I of the Supplemental
Material [63]). First, we describe a highly efficient approach
for computing the “exceptional set” associated with PWIs in
Sec. III and determine its areal coverage, which is correlated
with the degree of mixing [6]. Second, we explore symmetry
breaking and other effects that occur when rotations of the
hemispherical shell occur about nonorthogonal axes, instead
of orthogonal axes, in Sec. IV. Finally, in Sec. V we examine
the position of resonant structures (protocols with minimal
coverage) within the nonorthogonal parameter space as the
angle between axes changes. Some resonances have polygonal
nonmixing regions and some are polygonal tilings of the
hemispherical shell. Section VI presents our conclusions.

II. PWI MAPPING FOR NONORTHOGONAL AXES

The procedure defining the PWI on a hemispherical shell
(HS) as well as the coordinate system used in this paper
is shown schematically in Fig. 1. Begin by rotating the
hemispherical shell about the first horizontal axis by angle α

[Figs. 1(a) and 1(b)], rotating the section that passes above
the equator by an additional 180◦ [Figs. 1(c) and 1(d)], which
provides the cutting action. Next, rotate about the second axis
by angle β [Figs. 1(e) and 1(f)], again rotating the section that
passes above the equator by an additional 180◦ [Figs. 1(g)
and 1(h)]. The angle between the rotation axes is γ . Thus,
we consider the PWI mapping on a hemispherical shell (HS),
Mα,β,γ : S → S, which maps the lower hemispherical unit

FIG. 2. The PWI mapping M57◦,57◦,120◦ (shown from the negative
y axis) (a) cuts the domain into four atoms, P1, P2, P3, P4, and
(b) rearranges them according to the rotation procedure in Sec. II.
Cutting lines D1 and D2 are the red (unbroken) and black (broken)
arcs in (a). Cutting lines in (b) are formed by the images of ∂S
(broken blue arc) and D1 (unbroken red arc). Angles α, β, γ specify
the size and orientation of the atoms. Angle γ ′ is the spherical angle
between cutting planes. (c) The union of cutting lines (red and blue)
when Mα,β,γ is applied 20 000 times.

shell, S = {(x, y, z) : x2 + y2 + z2 = 1, y � 0}, to itself. Note
that the procedure here differs from some previous defini-
tions [6,7,39] in that both rotations are counterclockwise (this
merely results in a left-right mirroring of the PWI compared
to other work). More importantly, the rotation axes are not
necessarily orthogonal to one another, as in the degree of
mixing study by Juarez et al. [5].

Together, the two rotations shown in Fig. 1 make up the
PWI mapping Mα,β,γ ; the ordered triple of control parameters
(α, β, γ ) is termed the mapping protocol. The mapping can be
written as the composition of the two modular rotations about
horizontal axes a1 and a2 (applied right to left),

Mα,β,γ = M̃a2
β M̃a1

α , (1)

where M̃a
θ represents a rotation about axis a by angle θ with

the condition that points crossing the equator are rotated addi-
tionally by 180◦ to reconstruct the HS, as shown schematically
in Fig. 1. Here, axes a1 and a2 lie in the equatorial xz plane
with angle γ between them.

The physical description outlined in Fig. 1 helps to vi-
sualize the cutting and shuffling of the HS and relate it to
the physical system, but the composition of these actions
alone defines the PWI mapping. Figure 2 shows the PWI
M57◦,57◦,120◦ viewed from below (along the negative y axis)
as an example. The hemispherical surface is split into four
atoms, the closed regions labeled P1, P2, P3, P4 in Fig. 2(a),
and rearranged to reconstruct the HS as shown in Fig. 2(b).
Thus, the combination of stepwise cuts and rotations in Fig. 1
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FIG. 3. Iterating the (90◦, 90◦, 60◦) map. (a) The cutting line structure approaches the structure of the exceptional set as the number of
iterations increases. Circular regions appear around periodic points. We use ε = 0.01 for 1 � N � 20 and ε = 0.001 for 200 � N � 2 × 104.
Larger values of ε are used for small numbers of iterations to give a visible thickness to the few cutting lines that are present. (b) With a colored
initial condition (N = 0), the mixed part of the domain for N = 2 × 104 (gray region) closely matches regions in (a) that are densely cut, while
circular unmixed regions correspond to open cells in (a).

is formally equivalent to the rearrangement of P1, P2, P3, P4

between Fig. 2(a) and Fig. 2(b) as a single action.
The domain is split along curved cutting lines (great circle

arcs) which represent discontinuities in the map, shown in
Fig. 2(a) as the red arc D1 and the two black arcs that make
up D2. The atoms P1, P2, P3, P4 are rearranged and combined
along the cutting lines of the inverse map, shown in Fig. 2(b)
as the two blue arcs and single red arc. Note that the black
cutting lines D2 in Fig. 2(a) become the equatorial edge
of the HS, which is called ∂S, in Fig. 2(b), and the blue
equatorial edge in Fig. 2(a) becomes the blue cutting lines in
Fig. 2(b). The union of cutting lines D1 and D2 is the set of
discontinuities D, also called the unstable set [43], which is
formally defined as the union of all intersections of the closed
partition elements of S, Pi, such that D = ⋃

i �= j Pi ∩ Pj [6]
[44].

It is more difficult to visualize the angles α, β, and γ

in Fig. 2 than in Fig. 1, but these angles are still present
despite being distorted by the view from the bottom of the
hemispherical shell. For example, β is the angle between the
black cutting line D2 and the red cutting line D1 that form
two edges of atoms P3 and P4. The area of each atom (a unit
hemisphere having a total area of 2π ) is the sum of the angles
in the spherical triangle that specifies the atom minus π such
that the surface area Ai of Pi is

A1 = π − α − β + γ ′, (2)

A2 = π + α − β − γ ′, (3)

A3 = π − α + β − γ ′, (4)

A4 = −π + α + β + γ ′, (5)

where the spherical angle γ ′ is the angle between the cutting
planes forming cutting lines D1 and D2, given by

γ ′ = arccos[cos(γ ) sin(α) sin(β ) − cos(α) cos(β )]. (6)

Applying the M57◦,57◦,120◦ map 2 × 104 times and recording
the positions of the cutting lines at the end of each iteration

while keeping the blue and red coloring of each of the cutting
lines generates the pattern shown in Fig. 2(c) where red and
blue are used for the first and second cuts of the protocol,
respectively [45]. The overall structure has white nonmix-
ing islands (uncut regions), termed cells [6,32,34], spread
throughout the domain. In addition, while it is not obvious
from Fig. 2(c), the structure is fractal [6].

As the number of iterations, N , approaches infinity, the
structure formed by the cutting lines (top row of Fig. 3)
reveals the singular set, E , which is the union of all pre- and
postimages of the discontinuities D [36,37,39,46],

E =
∞⋃

n=−∞
Mn

α,β,γD. (7)

The closure of E is the exceptional set, Ē , containing E
and its limit points. The exceptional set has been referred to
as the “skeleton” of mixing because of its structural role in
specifying mixing and nonmixing regions [4,7,47]. Visually,
E approximates Ē when cutting lines are given nonzero
thickness.

A Hamiltonian system for a kicked harmonic oscillator that
exhibits similar behavior [31,43] provides strong numerical
evidence that cells form a circle packing of the domain that
is not dense, suggesting that Ē is a fat fractal [48,49] (i.e.,
has nonzero measure) for almost all protocols [6]. Since E
is a countable collection of zero-measure lines, the nonzero
measure of Ē comes entirely from the boundary points of Ē ,
Ē \ E where “\” denotes E is removed from Ē .

An example of how the cutting line structure develops for
increasing iterations of the (90◦, 90◦, 60◦) map is shown in
Fig. 3(a). Note that the prominent circular cells become visible
after only 20 iterations, though at this point they are 14-sided
(irregular) polygons with each side formed by a cutting line.
Successive iterations of the PWI rotates the 14-sided polygons
about a central axis, trimming off its corners and leading to a
truly circular cell as N → ∞. The set of cells, or nonmixing
islands, is called the stable or regular set [43,50]. The stable
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set is the complement of Ē and contains all nonmixing islands.
Typically, the stable set has structure at all scales; for this
protocol it forms an intricate, but incomplete, circle packing
of the HS [6,43]. Cells are the maximally open neighborhoods
around periodic points of the domain that contain points with
the same periodic itinerary [i.e., a symbolic representation of
an orbit by way of the atom labels (1, 2, 3, 4) in Fig. 2(a)]
[7,51]. The complement of Ē , evident in Fig. 2(c) and Fig. 3(a)
at 2 × 104 iterations as the white portion of the domain, is the
remainder of the HS that is never cut.

The relationship of the exceptional set to mixing can be
understood by iterating the PWI mapping to scramble a scalar
field on the HS. The mixing of a scalar field—an initial
condition with continuously varied shading, shown on the left
of Fig. 3(b)—due to the (90◦, 90◦, 60◦) map as it is iterated is
shown in Fig. 3(b). With each iteration, regions of the domain
are cut and shuffled, while other regions remain uncut. By 20
iterations, the large nonmixing circular cells have taken shape.
These circular cells follow periodic paths through the domain
as the mapping is iterated, but also undergo internal rotation
about a central elliptic periodic point within the cell [6,7,39].
This internal rotation is evident in the large lower left cell (as
well as other period-2 cells in the map), which has a light color
on the left at 20 iterations and the same light color on the
right at 200 iterations, at the top at 2 × 103, and back on the
left at 2 × 104 iterations. Cells are often circular in shape due
to irrational internal rotation about a central elliptic periodic
point [7]. However, a cell that rotates about its periodic center
by a rational fraction of π will be polygonal.

The open circular cells outside of E match the unmixed
circular regions in iterates of the scalar field, while dense
regions of cutting lines in E match the well-mixed regions
in iterates of the scalar field, which appear gray (the average
color of the initial condition). The correspondence between E
and mixing for nonorthogonal axes is consistent with previous
results for orthogonal rotation axes (γ = 90◦) [39].

III. MEASURING THE COVERAGE OF Ē

One measure of the degree of mixing of the domain is
the fractional coverage of Ē , 	 [6,30], which is inversely
correlated with the Danckwerts intensity of segregation, a
measure of the degree of mixing for segregated initial con-
ditions [6,52]. Formally, 	 is the Lebesgue measure (here
a measurement of 2D area) of Ē normalized by the area of
the unit hemispherical shell, 	 = μL(Ē )/2π [6]. Although
cutting lines have zero measure, Ē has nonzero measure for
almost all protocols [6,7,43] [53].

Comparing the fractional coverage, 	, of a large number of
protocols is a computationally challenging task. To efficiently
construct an approximation for the structure of E and subse-
quently obtain an estimate for 	 as a function of protocol,
we approximate Ē by giving the cutting lines that make up E
a finite width, ε > 0, referred to as Dε = {x ∈ Bε(y), y ∈ D},
i.e., all x within a geodesic ε-radius ball of any point y in D.
We refer to this fattened E as Eε = {x ∈ Bε(y), y ∈ E}, and
the approximation of Eε after N iterations of the PWI applied
to Dε as Ẽ ε,N . Grebogi et al. [49] utilize a similar fattening in
determining the external dimension of fat fractals. Whether or
not N is sufficient to completely cover Ē with Ẽ ε,N depends on

the choice of ε and the specific PWI protocol. But this fattened
exceptional set can completely cover E within a finite number
of iterations since for every ε > 0, there exists a finite N > 0
such that

E ⊂ Ē ⊂ Ẽ ε,N =
N⋃

n=0

Mn
α,β,γDε ⊂ Eε. (8)

In other words, after a finite number of iterations, N , all
cells with radius smaller than ε are covered by Ẽ ε,N , thereby
completing the approximation such that any further iterations
do not add additional information about the location or size
of Ē . We refer to Ẽ ε,N as “complete” if N is at least sufficient
to satisfy Eq. (8). A proof of Eq. (8) is provided in Sec. S-II
of the Supplemental Material [63], though the proof gives no
information about how to find N [54]. In the limit as ε → 0
and N → ∞, the fat-lined fractional coverage of Ẽ , 	ε,N , is
equal to the fractional coverage of Ē , 	. 	 is expected to
be positive for almost all protocols based on box-counting
measurements of E [6]. Although E is formally the union of
all pre- and postimages of D under Mα,β,γ , due to symmetry in
the PWI mapping, specifically Eq. (A7), only the postimages
(or the preimages) of D are required to construct all of E (see
discussion in Sec. S-III of the Supplemental Material [63] for
additional details).

In previous studies, E was constructed by seeding points
along (or near) D and iterating their positions [6,39]. This
method has the advantages of providing a close approx-
imation to the structure of E if seeded points in D are
sufficiently dense and 	 can be directly measured using a
box-counting method with equal-area boxes throughout the
hemisphere. However, this Lagrangian, cutting-line-centered,
box-counting method has two major shortcomings: (1) as
D is iterated, it splits into small segments and eventually
individual seed points separate from one another, destroying
all knowledge of the curves between separated points; (2) D
and its iterates are decoupled from the HS, which means the
entirety of E must be generated to investigating the structure
of E in small regions of the HS, which results in significant
memory usage and wasted computation, especially for large
numbers of iterations.

The following Eulerian, fat-line, domain-centered method
addresses the shortcomings of the cutting-line-centered box-
counting method and optimizes generation of Ẽ by utilizing
parallel computing. Ẽ can be computed by iterating the posi-
tions of a grid of tracer points using the PWI and labeling all
points in the grid that fall within Dε at some iteration.

Using the fat-line method to compute 	, Ẽ can be imag-
ined as a sieve which is dusted with a uniform distribution
of seed points. The fraction of seed points that do not fall
through the sieve is the value of 	ε,N . The accuracy of the
measurement is determined by the number of points used, but
the value of 	ε,N depends entirely on the sieve, Ẽ ε,N .

Since measuring 	ε,N depends only on the fraction of
grid points within Ẽ ε,N , computation for any single point
can cease once its membership in Ẽ ε,N is confirmed or N
iterations are completed. The points used to poll Ẽ are selected
from an equal-area distribution on the hemisphere to ensure
an accurate measurement of area. In this paper, a Cartesian
grid of polling points is projected onto the hemisphere using
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the Lambert azimuthal equal-area projection [55], details of
which are provided in Sec. S-IV of the Supplemental Material
[63].

The fat-line method avoids the breakup of cutting lines as
the number of iterations increases since cutting lines remain
fixed and continuous. It also couples the domain and cutting
lines, which allows selective computation of subregions with-
out wasting computation time and memory on other regions.
Since seeded points are independent from one another, the
fat-line method is “embarrassingly parallel” [56]. Therefore,
it can be executed efficiently using a GPU architecture (here,
NVIDIA’s CUDA architecture) by assigning each polling
point its own GPU core. The increase in speed from the serial
box-counting method for a comparable resolution is more than
three orders of magnitude.

Furthermore, the fat-line method is mostly independent of
the resolution of the seed-point grid. Although more points
increase the accuracy of the measurement of 	ε,N , the true
value of 	ε,N is wholly determined by ε and N . Measurements
of 	ε,N obtained in this way are uncertain when the number
of seed points are low, but the general trends in 	ε,N across
protocols, discussed in Sec. V, remain unaffected by this
uncertainty.

The problem of guaranteeing that Ẽ has been sufficiently
resolved by N iterations is not unique to this method, and
an a priori method for determining N as a function of ε and
protocol is not known to us. Previous box-counting methods
relied on the number of iterations between visits to new boxes
as a metric for determining completeness of an exceptional set
and stopping the computation [6]. Although a similar stopping
condition could be implemented using the grid of tracer
points, computations are so fast on a parallel architecture that
it is unnecessary to implement for almost all protocols except
those asymptotically close to polygonal tilings where internal
rotation of cells closely approaches a rational multiple of π

(i.e., cells only approach circles as N → ∞). Instead, typical
values of N = 2 × 104 iterations with ε = 1 × 10−4 are used
with a (2 × 103) × (2 × 103) Cartesian grid of tracer points to
generate images of Ẽ ε,N for the protocols in this paper except
when noted.

Since the fat-line method iterates the domain and not the
cutting lines, other interesting features of the PWI can be
easily measured. Mixing an initial condition such as that
shown in Fig. 3(b) becomes a trivial task of mapping a color
from a tracer point’s initial to its final position. When mixing
initial conditions, as in Fig. 3, it is more convenient to use
the inverse mapping M−1

α,β,γ so that mixed conditions due to
forward iterations end up on the well-aligned grid used to seed
the HS (this is the Perron-Frobenius operator for transforming
scalar fields [57]).

IV. EFFECTS OF NONORTHOGONAL AXES

A. Changes in the exceptional set

Using the approach described above, the effect of
nonorthogonal axes on mixing and the structure of E can
be explored. Starting from protocols with orthogonal axes
(γ = 90◦), Fig. 4 shows how Ẽ changes as the angle between
axes increases to 120◦ for two different protocols. Consider

FIG. 4. The exceptional set Ẽ ε,N for increasing γ viewed from
the negative y axis with the z axis pointing toward the top of the page
[ε = 1 × 10−4 and N = 2 × 104 except for (90◦, 90◦, 90◦) which
uses ε = 0.01 to yield visible line thickness]. (a)–(d) (90◦, 90◦, γ )
and (e)–(h) (57◦, 57◦, γ ); γ increases downward. One of the four
period-2 cells for the (90◦, 90◦, γ ) protocols is labeled A. A period-4
cell is labeled B in (d) and a period-3 cell is labeled C in (e)–(h).

first the (90◦, 90◦, 90◦) protocol in Fig. 4(a). Because of the
rotation symmetry and orthogonal axes, this protocol results
in a simple resonance, or locally minimal mixing protocol
that corresponds to a fully periodic structure and a polygonal
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FIG. 5. A resonance, or locally minimally mixing protocol, oc-
curs for the (57◦, 57◦, 99.3◦) protocol. E is complete after only 160
iterations. E forms a polygonal tiling, with large regular pentagons,
small regular 32-gons, and irregular polygons (mostly quadrilater-
als). Compare this simple cutting line structure to that of the densely
packed (57◦, 57◦, 100◦) protocol in Fig. 4(g) where γ differs by only
0.7◦.

tiling of the hemisphere [7]. As γ increases from 90◦, Ẽ
begins to fill in, losing its tiled appearance by Fig. 4(b)
for the (90◦, 90◦, 95◦) protocol, effectively breaking the
horizontal and vertical symmetries inherent to (90◦, 90◦, 90◦).
The period-2 cell labeled A that rotates internally by 120◦ (a
rational fraction of π ) after every second iteration for γ = 90◦
now rotates internally by 119.49 . . .◦ (an irrational fraction
of π ) resulting in a circular cell. Within the (90◦, 90◦, 95◦)
structure, Moiré-like patterns appear around the large period-2
cells that seem to be related to cutting lines tangent to the large
cells. When γ is increased by another 5◦ to (90◦, 90◦, 100◦)
in Fig. 4(c), smaller cells appear between the larger period-
2 cells. At γ = 120◦ in Fig. 4(d), the period-2 cells have
significantly diminished in size and large period-4 cells, one
of which is labeled B, have appeared. It is evident that the
fractional coverage of Ẽ increases as γ increases, and corre-
sponding values of 	ε,N are indicated in the figure.

Variation in Ẽ also occurs for the (57◦, 57◦, γ ) protocols,
but it is somewhat different. For orthogonal axes, Ẽ has rela-
tively large cells (like the period-3 cell labeled C) surrounded
by smaller cells, as shown in Fig. 4(e). When γ is increased
to 95◦ in Fig. 4(f), the period-3 cells increase in size. All
other cells have decreased in size and many smaller cells have
appeared. Nearly all of the smaller cells disappear when γ

increases to 100◦, leaving only six larger period-3 cells and
ten small period-5 cells (four of these cells are barely visible
near the edge of the HS). Note that 2n period-n cells would be
expected [40], n from a regular set and n from a conjugate set.
When γ = 120◦, the period-3 cells have shrunk so much that
period-4 cells are now the largest.

The (57◦, 57◦, 100◦) protocol has fewer noticeably large
nonmixing islands than the other protocols shown in
Figs. 4(e)–4(h). This is due to the protocol’s proximity in the
protocol space to a resonant, periodically nonmixing, protocol
at (57◦, 57◦, 99.275 . . .◦) shown in Fig. 5. This resonant PWI
is complete after only 160 iterations [58]. The smaller, circle-
like cells are actually period-5 32-sided polygons; a part of
a polygonal cell is shown in the detail on the right of Fig. 5.
The polygonal cells tile the HS and result in zero coverage,
which reveals that 	ε,N does not monotonically increase with
γ . The near miss of the (57◦, 57◦, 100◦) protocol to a resonant
protocol explains its densely packed cutting lines. Cutting

FIG. 6. Barriers to mixing occur in the (90◦, β, 90◦) case shown
after 2 × 104 iterations of the initial condition for β = 30◦, 60◦, 90◦.
Although Ẽ , shown on the right, appears to indicate mixing through-
out the domain (except, of course, the cells) based on the fractional
coverage of Ẽ , the symmetry of the system resulting from orthogonal
rotation axes creates a barrier to mixing between the left and right
halves of the hemisphere.

lines gradually fill in closely to one another as Ẽ evolves, but
the cutting lines slightly miss returning upon themselves by
small amounts due to nearly rational internal rotation within
cells. Of course, even though the densely packed lines suggest
a high degree of mixing in those regions of the HS, it would
take many iterations for this to occur. This behavior will be
exploited later to locate resonant protocols by their nearly
resonant neighbors that have very low, near-resonant coverage
for small N .

B. Special symmetries with orthogonal axes and breaking them

As γ is increased from γ = 90◦ in Figs. 4(a) and 4(b), it
is clear that a symmetry is broken. The orthogonal axes case
has additional barriers to mixing not present in the nonorthog-
onal case due to additional symmetries that occur when γ =
90◦, specifically symmetries across β = 90◦ [Eq. (A5)] and
across α = 90◦ [Eq. (A6)]. An example of this appears for
(90◦, β, 90◦) in the orthogonal axes case shown in Fig. 6
where there is a clear barrier to mixing regardless of the value
of β. The left and right sides for the colored initial condition
do not mix, even though Ẽ on the right appears to indicate
mixing for β = 60◦ and β = 30◦. Likewise, for (α, 90◦, 90◦)
there would be a horizontal barrier to mixing [not shown,
but analogous to the (90◦, β, 90◦) case shown in Fig. 6 with
a horizontal instead of vertical barrier]. The (90◦, 90◦, 90◦)
protocol in Fig. 4(a) has both horizontal and vertical barriers,
resulting in a nonmixing system. The barriers to mixing result
directly from the inability of the two rotational axes to interact
with one another due to the symmetry created by orthogonal
axes. The barriers to mixing are not evident in the structure
of Ẽ . For example, in the right column of Fig. 6, even though
there is a symmetry in Ẽ about the vertical z axis, there is
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FIG. 7. Various initial conditions (left column) under
(60◦, 60◦, 90◦) and (90◦, 60◦, 90◦) after 2 × 104 iterations show
sensitivity of mixing to initial conditions. Initial condition varied in
(a) vertical z direction, (b) both x (blue) and z (yellow) directions,
and (c) horizontal x direction.

no evidence of the lack of mixing between the left and right
halves of the hemisphere.

Figure 7 demonstrates that this left-right barrier to mixing
is not apparent for all initial conditions. Specifically, when
the initial condition itself has left-right symmetry, as demon-
strated in Fig. 7(a), the barrier to transport is not evident. For
any other initial condition, such as those in Figs. 7(b) and
7(c), the barrier is evident. The barrier is most notable when
there is large variation in the initial condition in the direction
orthogonal to the barrier, as shown in Fig. 7(c).

For any fixed γ �= 90◦, the symmetries evident in Fig. 6
[and shown in mathematical detail in Sec. S-III of the Supple-
mental Material [63]; see also Eqs. (A5) and (A6)] are broken
and no longer create degenerate mixing cases like those shown
for γ = 90◦, since γ �= −γ mod 180◦ essentially removes a
reflection symmetry from the system. Although the reflection
symmetries across (90◦, β, 90◦) and (α, 90◦, 90◦) are the only
symmetries broken by nonorthogonal axes, breaking them
opens up a much wider range of unique protocols to be con-
sidered. For example, the completely nonmixing exceptional
set shown in Fig. 4(a), which is the result of both of these
symmetries, becomes a mixing protocol by eliminating the
aforementioned symmetries that occur when γ = 90◦.

V. RESONANCES IN THE FRACTIONAL COVERAGE �ε,N

The fat-line method for constructing Ẽ described in Sec. III
allows us to efficiently generate 	ε,N to identify resonances
in the fractional coverage over a broad range of protocols. To
this end, the number of iterations used to identify resonances

is intentionally kept low, N = 500, to better reveal resonant
protocols through their nearly resonant neighbors in the pro-
tocol space as explained shortly.

A. Revisiting orthogonal axes, γ = 90◦

Although fractional coverage of Ē for the orthogonal axis
case (γ = 90◦) has been previously investigated [6,7,39], it
is informative to contrast some of its features with those
of Ē for nonorthogonal axes. Since periodic rotations about
the z axis (by M̃a

θ ) have period 180◦, 	ε,N is examined
for γ = 90◦ over the range 0 � α, β � 180◦. Figure 8(a)
shows 	0.01,500 where dark gray represents low coverage and
light gray represents high coverage. A value of 	0.01,500 = 1
(white) means that Ẽ0.01,500 for that protocol completely cov-
ers the HS with fattened cutting lines by 500 iterations, while
	0.01,500 ≈ 0 (black) indicates no coverage. Of course, due to
the fattening of Ē into Ẽ0.01, values of 	0.01,500 can never be
exactly zero, and without a way to determine a sufficient N
a priori such that Ẽ covers Ē , there is no way to know if
Ẽ0.01,500 is complete [satisfies Eq. (8)] or if 	0.01,500 is an
over- or underestimate. However, when comparing 	0.01,500
with a more accurate estimate, 	1×10−3,2×104 , for more than
140 000 protocols with γ = 90◦, 	0.01,500 typically overesti-
mates 	1×10−3,2×104 (for 84.0% of protocols), but with only a
very small number (3.5%) differing by more than 5% in value.
On average, 	0.01,500 overestimates 	1×10−3,2×104 by 1.5%.
Protocols for which 	0.01,500 underestimates 	1×10−3,2×104

by more than 5% account for only 0.6% of all the
protocols.

Figure 8(a) has many local minima, which appear as dark
regions and represent protocols at or near resonances [7].
Resonances are located along Arnold tongues that originate
from rational fractions of π along the axes. Two such Arnold
tongues are highlighted with black dashed curves emanating
from (60◦, 0, 90◦) and (0, 60◦, 90◦). The Arnold tongues are
centered along curves where periodic points of the PWI are
equally spaced between two of the three cutting lines that
form the atoms of the PWI [7]. Resonances occur whenever
periodic points of the PWI, each of which corresponds with
a particular periodic itinerary, are maximally far from the
cutting lines defining the PWI and result in large cells in E .
In this way, resonances occur at the intersection of the three
curves that represent a periodic point equidistant between two
cutting line borders of an atom when γ = 90◦ [7]. For γ =
90◦, the blue dashed lines, corresponding to Arnold tongues
from (90◦, 180◦, γ ) and (180◦, 90◦, γ ) in Fig. 8, are also lines
of symmetry in the protocol space.

Smith et al. [7] have explained much of the structure in
the γ = 90◦ protocol space. Protocols farther away from a
resonant protocol in the (α, β, 90◦) protocol space in Fig. 8(a)
have periodic points closer to cutting lines. As a periodic
point approaches a cutting line, its associated cell shrinks until
the periodic point encounters a cutting line and the cell is
annihilated (i.e., the radius goes to zero and the point is no
longer a periodic point). Thus, not only is there a protocol that
maximizes the size of the cell associated with each periodic
itinerary, but there is also a well defined region within the
protocol space where the cell exists (i.e., for protocols outside
of this region, the periodic itinerary between atoms defining
the periodic cell is not possible). An example cell with a 411
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FIG. 8. Fractional coverage, 	0.01,500, vs rotation angles for γ = 90◦ to 165◦ in 15◦ increments after 500 iterations. Increments in α and
β are 0.33◦. (a) For γ = 90◦, reflection symmetry lines are shown as red (α + β = 180◦ and α = β) and blue (α = 90◦ and β = 90◦) dashed
lines. Symmetry along the red dashed lines is maintained for nonorthogonal axes while the blue dashed symmetries are lost. (a)–(f) Black
dashed curves mark the locations of Arnold tongues originating at (60◦, 0, γ ) and (0, 60◦, γ ). Blue dashed curves mark Arnold tongues
starting at (90◦, 180◦, γ ) and (180◦, 90◦, γ ). (c) The protocol (65.5◦, 65.5◦, 120◦) is labeled A and lies on a dark band between Arnold
tongue intersections. (d) The protocol labeled B lies close to the intersection of the Arnold tongues from (60◦, 0, γ ), (0, 60◦, γ ) (black dashed
curves) and (135◦, 180◦, γ ), (180◦, 135◦, γ ) (green dashed curves). The short-dashed lines show the corresponding mirror Arnold tongues for
long-dashed lines of the same color. The intersections of short-dashed and long-dashed lines are often locally resonant.
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itinerary (i.e., the cell travels periodically through the atoms
P4 → P1 → P1 → P4 · · · ) is labeled C in Fig. 4(e) and the size
of the cell is maximized at the resonance shown in Fig. 5 when
the angle between the axes increases to 99.3◦. The cell shrinks
as the protocol moves away from this resonance.

Resonances along α = β and α + β = 180◦, correspond-
ing to the red dashed diagonal lines in Fig. 8(a), at the
intersection of Arnold tongues have exceptional sets that are
polygonal tilings, similar to Ē shown in Figs. 4(a) and 5, and,
thus, have zero coverage [7]. The protocols nearby in protocol
space have nearly resonant structure such that 	ε,N grows
slowly with N . By using N = 500, these structures do not
complete and thus resemble the resonant protocols. When the
protocol space is sampled, hitting a resonant structure exactly
is generally impossible [59], but using a low number of
iterations effectively fattens resonant regions of the protocol
space allowing them to be observed more easily. Changing
the number of iterations does not change the locations of
resonances in the protocol space.

B. Nonorthogonal axes

The fractional coverage of Ẽ for several values of γ > 90◦
is shown in Figs. 8(b)–8(f) [60]. A previous study [5], using
PWI and a mixing metric based on the center of mass of
seeded particles in the HS, demonstrated similar patterns for
the quadrant 0 � α, β � 90◦. Patterns outside of 0 � α, β �
90◦ have not been previously examined. Due to symmetries
in the system, the patterns for angles between rotation axes
of 180◦ − γ are equivalent to those in Fig. 8 when reflected
vertically or horizontally about α = 90◦ or β = 90◦, respec-
tively. The protocol spaces for γ = 0 or 180◦ are not shown
since they are degenerate cases of rotation about a single axis
and display no interesting features.

Obvious features of the coverage, 	0.01,500, in protocol
space for orthogonal axes in Fig. 8(a) are the lines of sym-
metry, shown as red and blue dashed lines. The red dashed
lines represent symmetry between (α, β, γ ) and (β, α, γ )
[Eq. (A1)] and between (α, β, γ ) and (π − α, π − β, γ )
[Eq. (A4)]. For nonorthogonal axes (γ �= 90◦) these symme-
tries extend as reflection planes along α + β = 180◦ and α =
β. The blue dashed lines in Fig. 8(a) represent a symmetry
between (α, β, γ ) and (π − α, β, π − γ ) [Eq. (A6)] and be-
tween (α, β, γ ) and (α, π − β, π − γ ) [Eqs. (A5) and (A3)].
When γ = 90◦, these symmetries are reflection symmetries
across the blue lines, since γ = −γ mod 180◦ when γ =
90◦. However, this reflection does not extend to protocols with
nonorthogonal axes, which is evident in Figs. 8(b)–8(f). A full
exposition on the symmetries of the PWI can be found in Sec.
S-III of the Supplemental Material [63].

The Arnold tongues along which resonances are located
and which originate from rational fractions of π along α =
0 and β = 0 for orthogonal rotation axes in Fig. 8(a) are
maintained for nonorthogonal axes, but as γ increases, these
tongues “tilt” (to the right for those originating from β = 0
and upward for those originating from α = 0), eventually
approaching straight lines as γ → 180◦. An example pair of
tongues starting at (60◦, 0, γ ) and (0, 60◦, γ ) is highlighted
with dashed black curves in Figs. 8(a)–8(f). Another pair
originating from (90◦, 180◦, γ ) and (180◦, 90◦, γ ) is marked

with dashed blue curves. When γ is decreased from 90◦ (not
shown), the Arnold tongues tilt in the opposite direction and
similarly approach straight lines.

As γ increases, the tilting of the Arnold tongues means
that the resonant structures (dark regions) that lie within
the α = β and α + β = 180◦ symmetry planes move along
the symmetry planes, following the intersections of Arnold
tongues as they tilt. An example is the resonance associated
with the polygonal tiling for the (57◦, 57◦, 99.3◦) protocol
in Fig. 5. The Arnold tongues starting at (60◦, 0, 90◦) and
(0, 60◦, 90◦) in Fig. 8(a) tilt as γ increases, so that their
intersection (the cusp at the intersection of the black dashed
curves) moves to the right along the α = β symmetry line.
When this intersection passes through the (57◦, 57◦, 99.3◦)
protocol between Figs. 8(a) and 8(b), the resonance occurs.

In addition, as the tongues tilt, new intersections with other
tongues originating from α = 180◦ or β = 180◦ are created,
resulting in additional resonant structures. These additional
resonances spread out symmetrically from the α = β sym-
metry plane as γ is increased. This can be seen between
γ = 105◦ and γ = 120◦ in Figs. 8(b) and 8(c). At exactly
γ = 108◦ (not shown), the black and blue dashed lines in-
tersect at their cusp and increasing γ further introduces two
intersection points on either side of α = β. When γ = 120◦
a dark band of low coverage protocols between these inter-
sections, highlighted with a green dashed line in Fig. 8(c),
is evident. The protocol A, (65.5◦, 65.5◦, 120◦), lies along
this dark band between Arnold tongue intersections (blue
and black intersecting), and will be discussed in more detail
later. This band is defined by the pair of Arnold tongues
starting at (60◦, 0◦, 120◦) and (0◦, 60◦, 120◦) labeled with
black dashed curves, and the pair of Arnold tongues starting
at (90◦, 180◦, 120◦) and (180◦, 90◦, 120◦), labeled with blue
dashed curves. More of these dark bands appear between the
intersections of two pairs of Arnold tongues as γ is varied,
and many more are evident when γ = 120◦ along the length
of the α = β symmetry plane.

Tongues from (0, 90◦, γ ) and (90◦, 0, γ ) [highlighted with
long-dashed blue lines in Fig. 8(d)] intersect their symmet-
ric counterparts [highlighted with short-dashed blue lines in
Figs. 8(b)–8(f)] from (180◦, 90◦, γ ) and (90◦, 180◦, γ ) as γ

is increased from 90◦ creating new resonances along α +
β = 180◦ at their intersection. Likewise, the tongues origi-
nating from (60◦, 0, γ ) and (0, 60◦, γ ) labeled with dashed
black curves also create new resonances along α + β = 180◦
when they intersect their mirror images [highlighted with
short-dashed black lines Fig. 8(d)] from (120◦, 180◦, γ ) and
(180◦, 120◦, γ ) as γ increases from γ = 120◦ [Fig. 8(c)] to
γ = 135◦ [Fig. 8(d)]. The rate at which new intersections
occur (and create dark band between them) as γ increases
grows such that by γ = 165◦ many of these spreading reso-
nances and their connecting dark bands have blended together
to form nested curves of low coverage in the protocol space in
Fig. 8(f).

C. Polygonal tilings in the α = β symmetry plane

The intersections of symmetrical pairs of Arnold tongues,
e.g., the two sets of black dashed curves in Fig. 8(d), occur
exclusively on the diagonal symmetry planes α + β = 180◦
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FIG. 9. (a) Fractional coverage, 	0.01,500, for protocols along the α = β symmetry plane and varying axes angle, γ . The upper half,
γ � 90◦, corresponds with behavior along the α = β line in Fig. 8 and the lower half, γ � 90◦, corresponds with the α + β = 180◦ line in
Fig. 8 due to the symmetries in Eqs. (A5) and (A6). (b) The same symmetry plane with resonant curves defined by Eqs. (9) and (10) for
j = 1, 2, 3, 7. The boxed region is shown in Fig. 10. The protocol labeled A, (65.5◦, 65.5◦, 120◦), corresponds with Fig. 8(c). The protocol
labeled B near the intersection of the branches from (π/5, π/5, 0) and (6π/7, 6π/7, 0) corresponds with B in Fig. 8(d).

and α = β. The fractional coverage of Ẽ , 	0.01,500 along the
α = β diagonal symmetry plane is shown in Fig. 9 for varying
γ . For context, the dark region at the center of Fig. 8(a),
(90◦, 90◦, 90◦), matches the dark region at the center of
Fig. 9(a), also (90◦, 90◦, 90◦).

The most obvious features of the α = β symmetry plane
shown in Fig. 9 are the dark branches [61] of resonant
structures sprouting from odd divisors of π [i.e., π/(2 j + 1)
where j > 0 is an integer] at γ = 0 and their complements
coming from π − [π/(2 j + 1)], both of which are highlighted
with dashed blue lines in Fig. 9(b). These branches follow
the intersections of pairs of Arnold tongues; for example, the
branch originating from (2π/3, 2π/3, 0) in Fig. 9(b) follows
the cusp intersection of the Arnold tongues labeled with blue
short-dashed lines in Fig. 8. As mentioned earlier, for orthog-
onal rotation axes, these intersections mark the locations of
polygonal exceptional set structures [7].

The curves defining these resonant branches in the symme-
try plane originating from π − [π/(2 j + 1)] and highlighted
with blue dashed curves in Fig. 9(b) are level curves of
cos(α/2) cos(γ /2) (verification is given in Sec. S-V of the
Supplemental Material [63]), specifically

cos
(α

2

)
cos

(γ

2

)
= sin

[
π

2(2 j + 1)

]
. (9)

The curves defining the branches originating from π/(2 j + 1)
are the mirror images across the α = β = π/2 line,

sin
(α

2

)
cos

(γ

2

)
= sin

[
π

2(2 j + 1)

]
. (10)

For example, the branch originating from (2π/3, 2π/3, 0)
in Fig. 9(b) [(2 j + 1) = 3 in Eq. (9)] lies along the curve
sin ( α

2 ) cos ( γ

2 ) = sin ( π
6 ) and follows the intersection of the

blue dashed curves in Fig. 8 within the α = β plane. Likewise,
the intersection of the highlighted Arnold tongues starting at
(60◦, 0, 0) and (0, 60◦, 0) in Fig. 8 (the intersection of black

dashed curves) follows the curve originating at (π/5, π/5, 0),
such that 2 j + 1 = 5, in Fig. 9(b). These curves appear to be
integral to most of the structure in the symmetry plane.

One of the features of the polygonal tilings found pre-
viously along α = β for orthogonal axes, γ = 90◦, is the
presence of (2 j + 1)-gons [7]. These polygons are cells that
rotate internally by 2 jπ/(2 j + 1) each time they complete
their period-( j + 1) itinerary through the HS. The branches
defined by Eqs. (9) and (10) shown in Fig. 9(b) con-
tain polygonal resonant structures from γ = 0 to their first
intersection with another branch which is always the π/3
or 2π/3 branch corresponding to 2 j + 1 = 3. To better il-
lustrate this, Fig. 10 includes some example exceptional sets
along two of the prominent branches from the boxed region
in Fig. 9(b) focusing on the 2 j + 1 = 5 branch originating
from the left and the 2 j + 1 = 3 branch originating from
the right. Polygonal tilings occur for all γ � 108◦ along
these two branches. A detailed analysis showing that rational
internal rotation of cells occurs along these curves to create
(2 j + 1)-gons is presented in Sec. S-V of the Supplemental
Material [63].

These two branches intersect at γ = 108◦. Along the 2 j +
1 = 5 branch originating from the left in Fig. 10, period-3
pentagons are present in the exceptional set. Along the 2 j +
1 = 3 branch originating from the right in Fig. 10, period-
2 triangles are present in the exceptional set. The intersec-
tion of these two branches at (63.435 . . .◦ , 63.435 . . .◦ , 108◦)
has an exceptional set that is a polygonal tiling composed
entirely of period-3 pentagons and period-5 triangles [62];
i.e., it is half of an icosidodecahedron. The PWI for this
protocol reconstructs the initial HS after only 15 iterations
which is the least common multiple of 5 and 3, the periods
of polygonal cells. The shortest-period cells present in the
exceptional set for protocols near these branch intersections
have periods equal to the sum of the integer labels for the
branches [ jL from the left in Eq. (10) and jR from the right
in Eq. (9)]. Since (63.4◦, 63.4◦, 108◦) occurs at the inter-
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FIG. 10. A detailed view of the region where the π

5 and 2π

3 branches intersect marked by the dashed black box in Fig. 9. Some of the
Ẽ structures along these branches after N = 2 × 104 iterations are shown on the right with their locations in the protocol space marked by
× for the π/5 branch (2 j + 1 = 5) and ◦ for the 2π/3 branch (2 j + 1 = 3). The protocol labeled A, (65.5◦, 65.5◦, 120◦), corresponds with
Figs. 8(c) and 9(b). ε = 0.01 for γ � 108◦ and ε = 5 × 10−4 for γ � 109◦ for the structures on the right.

section of the jL = 2 (left) and jR = 1 (right) branches, the
shortest period cells, the pentagons, are period jL + jR = 3.
Similarly, a tiling composed of only period-2 triangles occurs
at the intersections of jL = 1 and jR = 1, (90◦, 90◦, 90◦) in
Fig. 10, with nearby protocols having large period-2 cells.
Note that either jL = 1 or jR = 1 for any polygonal tiling
since polygonal tilings do not exist along these branches past
the j = 1 intersections, but this is valid for other protocols.
For example, the protocol labeled B in Figs. 8(d) and 9(d),
at the intersection of Arnold tongues labeled with green
and black lines, has circular period-5 cells for its shortest
period cells due to its proximity to the intersection of jL = 2
and jR = 3 branches. The (63.4◦, 63.4◦, 108◦) protocol, the
(90◦, 90◦, 90◦) protocol, and the (70.5◦, 70.5◦, 60◦) protocol
are the only protocols related to regular solids representing
the projection onto the HS of an icosidodecahedron, an oc-
tahedron, and a cuboctahedron, respectively. It is likely that
these are the only such solids that can be created using this
form of PWI, since they are the only solids with projections
onto the HS that are constructed exclusively with great circles.

The branches originating from π/3 and 2π/3 in Fig. 9
are unique in that they intersect each other, their own com-
plements, before other branches as γ increases. Furthermore,
they continue on as polygonal tilings until their intersection
with the branches corresponding to 4π/5 and π/5, respec-
tively (see Fig. 10 for the intersection of the π/5 branch with
the 2π/3 branch). Approaching this intersection, the shortest-
period cells, the period-2 triangles (the large triangles for γ =
90◦ and the four triangles at 2, 5, 8, and 10 o’clock positions
at γ = 100◦ in Fig. 10), are annihilated [7] and transition to
period-5 triangles at γ = 104.478 . . .◦, but remain polygonal
tilings up to γ = 108◦. Continuing along the 2π/3 branch,
after the intersection with the π/5 branch at γ = 108◦, the

period-5 triangles are retained as polygonal cells but not as
a polygonal tiling (see for example the Ẽ structure at γ =
109◦ along the 2π/3 branch in Fig. 10). Similarly, moving
upward from γ = 90◦ along the π/5 branch by increasing
γ , polygonal tilings with period-3 pentagons are retained
until the intersection with the 2π/3 branch, after which the
tiling disappears but the pentagons remain. These pentagons
are retained until γ = 123.988 . . .◦ after which they disap-
pear. Thus, (2 j + 1)-gons persist for a short distance past
their intersection with the π/3 and 2π/3 branches before
disappearing along each branch even though the polygonal
tilings do not (with the exception of the π/3 and 2π/3
branches themselves before they intersect the 4π/5 and π/5
branches, respectively).

D. Other features in the symmetry plane

The cathedral-like structure at the lower center of Fig. 9(a),
i.e., γ < 90◦ and α = β close to 90◦, is filled with the reso-
nance curves that result when Arnold tongues intersect one
of their symmetric mirror images (mirrored across α + β =
180◦). For example, the intersections of short-dashed lines
with long-dashed lines of the same color (blue with blue or
black with black) in Fig. 8(d) lie on the same cathedral-like
region in the α + β = 180◦ symmetry plane. Two symmetries
of the system, specifically Eqs. (A5) and (A6), reveal the
symmetric equality of the α + β = 180◦ and α = β symmetry
planes. This allows us to connect the α + β = 180◦ plane
shown for γ � 90◦ in Fig. 8, which is where these particular
tongue intersections occur, with the γ � 90◦ region in Fig. 9.

As noted earlier, 500 iterations is not sufficient to fully
complete most of the structures of Ẽ . This relatively low
value is used to widen the resonant curves in this protocol
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FIG. 11. 	0.01,2×104 averaged across 0 � α, β � 180◦ vs γ . 	

increases on average for axis arrangements farther from orthogonal.

space by not giving nearly resonant protocols the necessary
iterations to fill in. This has the side effect of creating the
dark corners at the top of Fig. 9 that contain protocols for
which 	ε,N grows slowly but would approach 	 = 1 if N
were large enough due to small atom sizes. Other regions
in the protocol space have dark specks [most easily visible
at the lower left corner and lower right corner of Fig. 9(a)],
which is also a result of protocols with at least one region
of slowly growing coverage. These anomalies disappear at
higher iteration counts, but using more iterations obscures the
dark regions around resonances. Thus, apart from these specks
and the dark corners, the overall structure of the patterns in the
protocol space are not affected by the low number of iterations
used in constructing Fig. 9.

The remainder of the protocol space in Fig. 9, along the
α = β symmetry plane but outside of the resonant curves, has
complex structure that is not yet understood. For example, a
set of prominent features in Fig. 9 are the dark fingers reach-
ing up from branch intersections which correspond with the
dark bands between Arnold tongue intersections mentioned
earlier and which are prominent in Fig. 8(c). The protocol
(65.5◦, 65.5◦, 120◦) labeled A lies on one of these fingers. An
analysis similar to that performed by Smith et al. [7] shows
that these dark fingers are the result of periodic points for large
cells lying equidistant from two size-limiting cutting lines.

Although the focus here has been on the α = β symmetry
plane, there are many curves of resonant structures throughout
the protocol space (i.e., for α �= β). However, this is beyond
the scope of this study.

E. Changing γ to increase average coverage

There is an overall increase in coverage (lighter colors)
as γ is increased or decreased from 90◦. Figure 11 shows
	0.01,2×104 averaged across 0 � α, β � 180◦ as γ is varied.
There is a clear minimum at γ = 90◦, and 	 generally grows
away from γ = 90◦. A sudden decrease near γ = 0 and γ =
180◦ where PWIs become rotations about a single axis is
an artifact of sampling 	 on a regular grid and using finite
iterations. 	 = 1 for almost every protocol when γ = 0 and

FIG. 12. Curves of equal atom size [Eqs. (2)–(5)] for Mα,β,γ

where γ = 120◦. The smallest atom, Pi, is labeled inside of each
region between curves.

γ = 180◦ and the expected trend is shown with a dotted line.
The overall trend agrees with the qualitative results in Fig. 4
where, even though 	 does not increase strictly monotonically
(due to the existence of a polygonal tiling with zero coverage
shown in Fig. 5), the general trend of increasing coverage
as γ is increased from 90◦ holds. Noting the scale on the 	

axis, most protocols produce exceptional sets with fairly high
coverage. This trend is apparent when comparing the average
intensity as γ is increased in Fig. 8. One should note that this
trend does not hold for the α = β plane, Fig. 9(a), in isolation.
The local maxima around γ = 71◦ and γ = 109◦ are not well
understood but may have a connection to the intersection
of polygonal resonant branches that occurs at γ = 72◦ and
γ = 108◦.

F. Atom size and shape determine Arnold tongue locations

At a more fundamental level, when the areas of atoms
[Eqs. (2)–(5)] are compared, the corresponding curves along
which two atoms are of equal area match the locations of the
Arnold tongues originating from (90◦, 0, γ ) and (0, 90◦, γ )
[short-dashed blue curves in Figs. 8(b)–8(f)] or (90◦, 180◦, γ )
and (180◦, 90◦, γ ) [long-dashed blue curves in Fig. 8(d)]
exactly. Furthermore, these equal area curves match the blue
dashed lines in Fig. 8(a) when γ = 90◦. For example, for γ =
120◦, these curves of equal atom size are shown in Fig. 12.
Atoms P1 and P4 are only of equal size when α + β = π .
Likewise, atoms P2 and P3 are only of equal size when α = β.
The other lines correspond to A2 = A1 (α = γ ′) and A2 = A4

(β = π − γ ′) in blue and A3 = A1 (β = γ ′) and A3 = A4

(α = π − γ ′) in red. The smallest atom for each protocol,
which often limits the mixing [7], is labeled in each subregion
of Fig. 12. For orthogonal axes, there are no regions where
P2 or P3 are the smallest atoms. This raises the question as to
how much influence diversity in atom size has on mixing and
how much information about mixing can be gained simply by
examining the size and shape of the PWI atoms, which is a
topic for future work.
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VI. CONCLUSIONS

Introducing nonorthogonal axes to the PWI on a hemi-
spherical shell adds a new dimension to the parameter space
that greatly expands possible cutting-and-shuffling behaviors.
To explore this vast domain, a method for rapid generation
of an approximation of the exceptional set was developed.
The approach described here is computationally efficient for
use with parallel computing. Nonorthogonal axes expand the
regions in parameter space where certain periodic points
(responsible for nonmixing islands) can exist while allowing
for new periodic points that are not possible in the orthogonal
axes case. Some of the protocols with nonorthogonal axes
have more coverage than their corresponding orthogonal axes
protocols while others have less. On average, coverage of
the hemispherical shell by the exceptional set is increased by
using nonorthogonal axes.

Examining the protocol space for the fractional coverage of
Ẽ reveals the various branches of locally resonant protocols
that traverse the protocol space. The most prominent appear
along symmetry planes, one of which, α = β, is investigated
thoroughly and contains many protocols with polygonal cells,
including protocols whose cells form a polygonal tiling of
the entire hemispherical shell. Arnold tongues in the protocol
space identify low coverage protocol regions. Intersections of
symmetric pairs of Arnold tongues (along symmetry planes)
indicate locations of the polygonal exceptional sets. Some
symmetries found exclusively in the orthogonal axes case
are broken when considering nonorthogonal axes allowing
increased transport and a wide variety of unique PWIs.

This paper only just hints at the possible behaviors for
nonorthogonal axes. For example, an investigation of the
relationship between atom size and shape following up on
the cursory results shown in Fig. 12 could shed more light
on the cause of low coverage resonances. An extension of this
PWI to the entire unit sphere, eliminating periodic boundaries
(outlined in Sec. S-I of the Supplemental Material [63]) could

also be a fruitful topic for future study. Additionally, the
observation that coverage of the exceptional set 	 does not
always correlate well with mixing, such as in Fig. 6, leads
to questions about barriers to mixing within the exceptional
set itself. Similar barriers to transport within the exceptional
set have been observed by Ashwin et al. [50]. However, their
occurrence and dynamics have not been fully explained yet.
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APPENDIX: SYMMETRIES IN THE
HEMISPHERICAL PWI

The following symmetries are present in the protocol space
of the hemispherical PWI and are explained in detail in
Sec. S-III of the Supplemental Material [63]:

Mα,β,γ = (
Ry

γ Syz
)
M−1

β,α,γ

(
Ry

γ Syz
)

(A1)

= SyzM−α,−β,−γ Syz (A2)

= SxyMα,β,−γ Sxy (A3)
= Ry

πM−α,−β,γ Ry
π (A4)

= Mα,−β,γ−π (A5)

= Ry
πM−α,β,γ−π Ry

π , (A6)

where Ra
θ is a rotation about a by θ and Si j is a reflection across

the i j plane. An additional symmetry between the forward and
inverse map exists,

M2n
α,β,γ = L1M−2n+1

α,β,γ L2, (A7)

where operations L1 and L2 are defined as

L1 = (
SxyR−y

γ M̃z
β

)(
Ry

γ Syz
)
,

L2 = (
Ry

γ Syz
)(

Ry
γ M̃z

αSxy
)
.
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