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Abstract

Central to understanding all chaotic advection processes is the
nature of periodic points and their associated coherent struc-
tures. They provide a framework upon which transport dynam-
ics play out. We show that degenerate points which are often
overlooked play an important role in shaping this framework
and the overall flow. In particular for the three-dimensional Re-
oriented Potential Mixing (3DRPM) flow the degenerate points
create local stable regions that prevent global chaos.

Introduction

Chaotic advection plays an important role in many physical pro-
cesses and engineering applications. Chaotic advection pro-
vides an efficient and expedient method of mixing fluids, and is
particularly useful in flows were turbulence is not possible. Ap-
plications of chaotic advection include small scale flows such
as those in the growing field of microfluidics, flows with long
time scales such as atmospheric flows, and flows in which large
shear stresses would damage fragile structures such as polymers
and DNA. The study of chaotic advection involves solving the
advection equation

ẋ = v(x, t) (1)

where typically the velocity field v is laminar, deterministic and
satisfies ∇ ·v= 0, called incompressible flows. Most chaotic ad-
vection studies concern inviscid or Stokes flows and few have
considered potential flows (v = ∇ ·Φ), which are important
since they model homogeneous porous media flows which have
applications in groundwater flows. In this study we consider
only periodic flows, i.e. v(x, t) = v(x, t +T ) for some period T .

A point in a periodic flow is said to be periodic with period n
if a particle returns to its starting position after n flow periods.
The study of periodic points and their stability within flows with
chaotic advection provides a skeleton that determines overall
flow structures, predicting both chaotic and non-mixing regions
[7]. In contrast to locally stable (elliptic) and locally unstable
(hyperbolic) periodic points, degenerate periodic points have
not been studied in the context of chaotic fluid flow. In this
study we highlight the importance of degenerate points, show-
ing that a type of degenerate point prevents chaos.

Chaotic advection in two-dimensional incompressible flows has
been studied extensively in contrast to three-dimensional flows.
As a result there is a discrepancy in the understanding of two-
dimensional flows compared to three-dimensions [10]. A key
reason for this discrepancy is that two-dimensional incompress-
ible flows can be cast as one degree-of-freedom Hamiltonian
systems. Hamiltonian theory has been extensively developed
over a large period of time. However, the Hamiltonian con-
nection breaks down for three-dimensional flows at stagnation
points [1], making conversion of two-dimensional theory to
three-dimensions either difficult or impossible. Furthermore,
there is an explosion of geometric complexity in the transi-
tion from two dimensions to three. As an example, in two-
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Figure 1. (a) Contours of the axisymmetric potential function Φ and
velocity field v. (b) Isosurfaces of the axisymmetric stream function Ψ.

dimensional incompressible flows periodic points can only oc-
cur as isolated points, but in three-dimensions they can either be
isolated or form a continuous line. This creates many more pos-
sibilities for the associated coherent structures and transport be-
haviour. Due to the lack of understanding of chaotic advection
in three-dimensional flows fundamental studies are necessary.

We study the three-dimensional Reoriented Potential Mixing
(3DRPM) flow as a case study for three-dimensional potential
flows with chaotic advection. The flow consists of a periodically
reoriented dipole flow inside a sphere. This flow is chosen since
it is the simplest extension of the 2DRPM flow to three dimen-
sions. The 2DRPM flow has been studied in detail [4, 6, 9]. The
natural question is whether the addition of a third dimension has
a significant impact on the transport dynamics. It has been ob-
served that even this simple extension of the two-dimensional
flow can yield fundamentally different behaviour [5, 8]. In par-
ticular the addition of a third dimension means periodic points
become periodic lines which yields more complex behaviour.

The 3DRPM Flow

The Steady Dipole Flow

The steady dipole flow forms the basis for the time-dependent
reoriented flow. The flow is driven by a source/sink pair located
at (0,0,±1). While the steady dipole flow in two-dimensions
possessed a separating streamline coinciding with the unit cir-
cle, this is not the case for the three-dimensional flow. We
therefore confine the flow to the unit sphere Ω and use a slip
boundary condition. The steady flow is an axisymmetric poten-
tial flow, admitting an axisymmetric Stokes stream-function Ψ.
Due to this axisymmetry it is natural to use cylindrical coordi-
nates (ρ,θ,z). As outlined in [5, 8], analytic expressions can be
found for the flow potential Φ, velocity v = ∇Φ and axisym-
metric Stokes stream-function Ψ satisfying v = ∇× (Ψ/ρ)êθ.
Contours of Φ and Ψ are shown in Figure 1 together with the
velocity field v. Particle streamlines are the intersections of
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Figure 2. (a) Reorientation protocol for Θ = 2π/3. Dipole pairs are
labelled according to the number of reorientations of the base flow
modulo 3. (b) A typical particle trajectory for the protocol (τ, Θ) =
(0.3, 2π/3).

the isosurfaces of Ψ with planes of constant azimuthal angle
θ. These streamlines are illustrated in Figure 1b as the solid
lines on the surfaces.

In this study we create a closed flow by enforcing a reinjection
protocol at the source/sink. We specify that particles that reach
the sink are immediately reinjected at the source along the same
streamline. An advantage of our protocol is that Lagrangian
structures are preserved during the reinjection process.

We use Ŷt to denote the solution of the advection equation (1)
in the Lagrangian frame, describing streamlines as functions of
time from an initial condition X. The map Ŷt satisfies

Ŷ0(X) = X, and
d
dt

Ŷt(X) = v
(
Ŷt(X)

)
(2)

where X denotes Lagrangian coordinates.

We track particles within the steady dipole flow by numerically
integrating equation (1). Since the velocity v is incompress-
ible, it follows that the map Ŷt is volume preserving. It is there-
fore important that our numerical integration scheme is explic-
itly volume preserving to ensure that Lagrangian structures are
preserved. To ensure accuracy we use a fourth order Gauss-
Legendre method in conjunction with the method of Finn and
Chacón [2].

The Transient Flow

We create a time-dependent flow by periodically reorienting the
steady dipole flow. We consider only the simplest reorienta-
tion protocol - rotation of the dipole about the y-axis - since
it is the most natural extension of the 2DRPM flow. During a
time period τ the dipole is active. At the end of τ the dipole is
rotated about the y-axis by the angle Θ. Figure 2a shows the
dipole positions for Θ = 2π/3. The reorientation period τ is
non-dimensionalised such that τ = 1 corresponds to the empty-
ing time of the dipole flow, i.e. the time it takes for all fluid in
the sphere to pass through the sink.

The velocity field in the transient flow can be approximated by
the inertialess piecewise-steady velocity

ṽ(x, t) = v
(
Ry
b t

τ
cΘ ·x, t

)
(3)

where Ry
β

is the rotation matrix corresponding to rotation
through the angle β about the y-axis. This approximation is
justified in [5, 8].

In this study we primarily use a rotation angle of Θ = 2π/3,
but our results are generic for all rotation angles of the form(m

n
)
2π where n is odd. When n is even or irrational different

phenomena are observed.
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Figure 3. (a) The intersection of three period-3 lines (red, hyperbolic),
a period-1 line (blue, elliptic) and the y-axis at a degenerate point.
Poincaré sections (yellow, green) are shown for two sets of planar ini-
tial conditions, chosen perpendicular to the y-axis. The protocol used
is (Θ,τ) = ( 2π

3 ,1.1τ0). (b), (c): Projections of Poincaré sections onto
the xz-plane. (b) Initial conditions starting in a plane perpendicular to
the y-axis centred around the degenerate point (purple). (c) The green
Poincaré section shown in (a). Three hyperbolic lines and one elliptic
line intersect the plane (red and blue points). The stable and unstable
manifolds are also shown (light blue), forming heteroclinic connections.

For convenience we track particles in the dipole frame. Instead
of rotating the dipole after each time period τ we counter-rotate
the particles about the dipole. The resulting flow is identical.

Poincaré Sections

A useful tool for the analysis of mixing is Poincaré sections.
They express the long time dynamics of a flow. For periodic
flows a Poincaré section is created by seeding a number of parti-
cles and recording their positions at the end of each flow period.
For the particle trajectory shown in Figure 2b the Poincaré sec-
tion would consist of the points 1,4,7,... when the dipole returns
to its starting position. By sectioning in time we reduce the
dimension of the system by one, making visualisation simpler.

When a large number of flow periods are used to generate
Poincaré sections they reveal both non-mixing and mixing re-
gions. Non-mixing regions appear as circular/toroidal struc-
tures and mixing regions appear as a chaotic sea. Both types
of regions can be seen in Figure 3.

The mapping of a particle from the end of one flow period to the
end of the next is known as the Poincaré map. For the trajectory
shown in Figure 2b the Poincaré map would map the positions
1 to 4, 4 to 7 etc. Since we track particles in the dipole frame,
the Poincaré map Y consists of advection by the steady dipole
flow followed by counter-rotation of the particle, i.e.

Y Θ
τ (x) = Ry

−Θ
Ŷτ(x). (4)

The successive iterations of the Poincaré map yields the
Poincaré section.
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Figure 4. The stable (green) and unstable (yellow) manifolds for a hy-
perbolic period-3 point on a period-3 line for τ = τ0. Three period-3
(P3) lines and one period-1 (P1) line are shown and coloured according
to stability (blue-elliptic, red-hyperbolic). Their tangent intersection at
the origin is a degenerate point.
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Figure 5. Period-1 lines in the symmetry plane. Elliptic (blue) and
hyperbolic (red) segments are highlighted. Degenerate points occur at
the intersections of the period-1 lines and the y-axis. (a) τ = 0.328
(b) τ = 1.31 (c) τ = 2.62

Periodic Points and Coherent Structures

Periodic Points and Lines

Periodic point analysis provides a framework for the study of
mixing within a flow. Periodic points are classified according to
their local stability as determined by the deformation tensor

DY (X) =
(

∂Y i

∂X j

)∣∣∣
X

(5)

and its eigenvalues λi. The deformation tensor measures how
an infinitesimal box of points surrounding a point is deformed
by the map Y . Since the flow is incompressible the product of
the eigenvalues of the deformation tensor must equal 1.

If |λi| = 1 but at least one eigenvalue is not equal to one then
there is rotation but no stretching of local fluid elements and the
point is called elliptic. Elliptic points are locally stable and are
enclosed by a KAM island or KAM tube that forms an impen-
etrable barrier to transport. In the case that all the eigenvalues
are equal to one the point is called degenerate and there is only
shearing of fluid elements.

If |λi| > 1 for some eigenvalue(s) then fluid elements are
stretched in the direction of the corresponding eigenvector(s),
and contracted in the direction of the eigenvectors correspond-
ing to |λi| < 1. These points are called hyperbolic and are lo-
cally unstable. Associated with hyperbolic points are two struc-
tures called the stable and unstable manifolds. The stable man-
ifold is the set of points whose trajectories forward in time con-
verge to the hyperbolic point, and the unstable manifold consists
of the points whose trajectories backwards in time converge to

the hyperbolic point. They can be computed numerically by
seeding a number of particles along the corresponding eigen-
vector and advecting forward in time for the unstable manifold
and backward in time for the stable manifold. Intersections of
unstable and stable manifolds are a key indicator of chaos and
are called homoclinic connections if the stable/unstable mani-
folds are associated to the same hyperbolic point, and hetero-
clinic connections if the manifolds come from different points.
The connections can either be transverse or parallel, as shown in
Figure 4 and Figure 3c. A single transverse intersection implies
infinitely many and provides a mechanism for the stretching and
folding of fluid elements that characterises chaotic advection.

If λi = 1 for one of the eigenvalues, then it can be shown that
the periodic point forms part of a continuous line of periodic
points, with the corresponding eigenvector giving the direction
of the continuation of the line. For elliptic points on periodic
lines the eigenvalues must be of the form λ1,2 = e±iω, λ3 = 1,
where ω gives the rate of rotation about the elliptic point.

When analysing periodic points, a useful quantity is the ‘fixed
point index’ [3]. It can be computed by forming a closed
curve around the periodic point and calculating the number
of counter-clockwise rotations of the velocity vector in one
counter-clockwise traverse of the loop. For example hyperbolic
points have index −1 and elliptic points have index +1. The
sum of fixed point indices is preserved under continuous de-
formation of a flow, allowing the annihilation and creation of
periodic points.

The method used to locate periodic points and lines exploits
flow symmetries that are outlined in our previous work [5, 8].
Coherent structures must be symmetric about the symmetry
plane z = tan(−Θ/2)x. We can therefore restrict the initial
search for odd order periodic points to the symmetry plane,
making computation significantly easier. Once periodic points
are found, the deformation tensor is numerically evaluated using
a second order finite difference approximation for the deriva-
tives to determine the stability of the point. If one of the eigen-
values of the deformation tensor is equal to one, then we know
the periodic point forms part of a line and use the direction of
the associated eigenvector to search for another point on the line
that is a fixed distance away. Figure 5 shows the period-1 lines
and their stability for a sequence of τ values. In all cases con-
sidered so far all periodic points in the 3DRPM flow have been
part of periodic lines and no isolated periodic points have been
found.

Degenerate Points: an Inhibitor to Chaos

In this section we show that degenerate periodic points in the
3DRPM flow create stable elliptic regions making global chaos
impossible. This result is generic to all flows with the same type
of degenerate periodic points, inhibiting the extent of chaos.

In the 3DRPM flow degenerate points appear when a period-1
line intersects the y-axis. Figure 5 shows that they accumulate
as τ increases. The degenerate points are special because when
viewing the flow in the laboratory frame they return to their
initial positions after each phase of the steady dipole flow, not
just when the dipole returns to its starting position. In each
phase of the flow local fluid elements are sheared, but the net
shear at the end of the flow period is zero. Since there is no
net local deformation of fluid elements the deformation tensor
is equal to the identity matrix. At such points for Θ = 2π/3
there are three unstable and three stable directions as shown in
Figure 3b. For general odd rotation angles Θ = 2π

m
n there will

be n stable and n unstable directions equally spaced apart by an
angle π/n and alternating between stable and unstable.



Direct computation of the fixed point index for the degenerate
points gives an index of −2 for the Θ = 2π/3 case. For gen-
eral odd rotations the index is 1−n. In the local vicinity of the
degenerate point the period-1 line is elliptic except at the de-
generate point. To preserve the fixed point index of −2 three
hyperbolic period-3 lines also intersect at the degenerate point,
as seen in Figure 3a. Each period-3 line is hyperbolic except at
the degenerate point. This is not the only topological possibility,
for example two hyperbolic periodic lines could intersect at the
degenerate point, but we observe nothing else in the 3DRPM
flow. Figure 3c shows how the elliptic and hyperbolic points
arrange themselves and create an essentially 2D flow in the lo-
cal region. The unstable and stable manifolds associated with
the hyperbolic period-3 points form parallel heteroclinic con-
nections that bound the KAM tube associated with the elliptic
period-1 point. Each KAM tube is an impenetrable barrier to
fluid transport.

In the vicinity of the y-axis the period-1 lines are elliptic ex-
cept at the degenerate point, degeneracies therefore occur when
the local rotation rate ω given by the deformation tensor DY Θ

τ

becomes zero. Figure 6 shows the local rotation rate ω at dis-
tances d along the period-1 line for a range of τ values. The
distance d is measured from the xz-plane. The left-right sym-
metry in Figure 6 is expected since transport in the y+ and y−

hemispheres mirror each other [8]. The degenerate points are
those for which ω = 0 and are shown as the large points in Fig-
ure 6. The magnitude of the rotation rate ω increases further
away from the degenerate point, causing an increase in the size
of the stable KAM tube.

It can also be seen from Figure 6 that there is a critical τ value
τ0 such that there is exactly one degenerate point on the period-
1 line. Computation shows that τ0 ≈ 0.29344. For values of
τ greater than τ0 there are two degenerate points and for τ less
than τ0 there are none. The value τ0 therefore corresponds to a
local flow bifurcation. For τ > τ0 the three period-3 lines, the
period-1 line and the y-axis intersect transversely at the degen-
erate point. This creates a reversal in the orientation of coherent
structures, illustrated in Figure 3a, and a change in the sign of
the rotation rate as seen in Figure 6. For τ = τ0 the three period-
3 lines, the period-1 line and the y-axis form a tangent intersec-
tion. In this case the rate of rotation does not change sign and
so there is no reversal in orientation of coherent structures.

At τ = τ0 the first degenerate point is created. The number of
degenerate points increases with τ and each degenerate point
creates a small stable region. Therefore global chaos will only
be possible for τ < τ0. However it has been observed that there
are KAM tori associated with period-1 lines for all τ < τ0, mak-
ing global chaos in the 3DRPM flow impossible.

Conclusions

Degenerate points in chaotic flows have not been studied in de-
tail in the past. In this paper we have shown that they play a
significant role in the global transport dynamics of flows. Their
existence can result in stable elliptic regions that form impen-
etrable barriers to transport. For the 3DRPM flow the overall
degree of disorder increases with τ, yet the increasing number
of degenerate points and associated stable elliptic regions makes
global chaos impossible. Flows with the same type of degener-
ate points will exhibit the same phenomena making them un-
suitable for mixing applications. However, the stable regions
could be beneficial for processes in which isolation of fluid is
desired, such as contaminant extraction from groundwater.

The full impact of the degenerate points has not yet been ex-
plored. The topological shifts in the number of degenerate
points and the stable/unstable manifolds associated with the
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Figure 6. The local rotation rate ω given by the deformation tensor at
points a distance d along the period-1 line from the xz-plane. Curves are
shown for τ = 0.99τ0,τ0,1.01τ0,1.1τ0. Degenerate points are marked
by large dots, where ω = 0.

period-3 lines that pass through the degenerate point could have
a significant impact on transport organisation.

Future work should consider more complex reorientation proto-
cols in order to break the flow symmetries that create the degen-
erate points and associated stable regions. A small perturbation
of the axis of dipole rotation away from the y-axis might be all
that is needed to generate global chaos.

*

References

[1] Bajer, K., Hamiltonian Formulation of the Equations of
Streamlines in Three-dimensional Steady Flows, Chaos,
Solitons & Fractals, 4, 1994, 895–911.

[2] Finn, J. M. and Chacón, L., Volume preserving integrators
for solenoidal fields on a grid, Phys. Plasmas, 12, 2005,
054503.

[3] Katok, A. and Hasselblatt, B., Introduction to the Mod-
ern Theory of Dynamical Systems, Cambridge University
Press, 1996.

[4] Lester, D. R., Rudman, M., Metcalfe, G., Trefry, M. G.,
Ord, A. and Hobbs, B., Scalar dispersion in a periodically
reoriented potential flow: Acceleration via Lagrangian
chaos, Phys. Rev. E, 81, 2010, 046319.

[5] Lester, D. R., Smith, L. D., Metcalfe, G. and Rudman,
M., Beyond Hamiltonian: Chaotic Advection in a Three-
Dimensional Volume Preserving Flow, in Proc. 9th Int.
Conf. on CFD in the Minerals and Process Industries,
2012.

[6] Metcalfe, G., Lester, D. R., Ord, A., Kulkarni, P., Rud-
man, M., Trefry, M. G., Hobbs, B., Regenauer-Lieb, K.
and Morris, J., An experimental and theoretical study of
the mixing characteristics of a periodically reoriented ir-
rotational flow, Phil. Trans. R. Soc. A, 368, 2010, 2147–
2162.

[7] Ottino, J. M., The kinematics of mixing: stretching, chaos,
and transport, Cambridge University Press, 1989.

[8] Smith, L. D., Lester, D. R. and Metcalfe, G., Chaotic Ad-
vection in a Three-Dimensional Volume Preserving Poten-
tial Flow, in Proc. 18th AFMC, 2012.

[9] Trefry, M. G., Lester, D. R., Metcalfe, G., Ord, A. and
Regenauer-Lieb, K., Toward enhanced subsurface inter-
vention methods using chaotic advection, J. Contam. Hy-
drol., 127, 2012, 15–29.

[10] Wiggins, S., Coherent structures and chaotic advection in
three dimensions, J. Fluid Mech., 654, 2010, 1–4.


