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Predicting mixing via resonances: Application to spherical piecewise isometries
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We present an analytic method to find the areas of nonmixing regions in orientation-preserving spherical
piecewise isometries (PWIs), and apply it to determine the mixing efficacy of a class of spherical PWIs derived
from granular flow in a biaxial tumbler. We show that mixing efficacy has a complex distribution across the
protocol space, with local minima in mixing efficacy, termed resonances, that can be determined analytically.
These resonances are caused by the interaction of two mode-locking-like phenomena.
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I. INTRODUCTION

Mixing is central to a wide range of industries. While
fluid mixing by “stretching and folding” in time-periodic
flows has been studied extensively and is relatively well
understood [1–3], mixing of granular materials has received
less attention. Granular materials are pervasive, spanning, for
example, the pharmaceutical and food processing industries
where achieving homogeneous mixtures of granular ingre-
dients is critical. However, most studies on granular mixing
consider two-dimensional (2D) flows, and those that consider
three-dimensional (3D) granular mixing primarily consider
the effectiveness of industrial mixing devices rather than the
underlying mechanics and mathematics of the fundamental
mixing processes [4–6].

In practice, mixing in granular flows can result from
collision driven diffusion, chaotic advection (stretching and
folding), and spatial rearrangement of entire sections of
material (“cutting and shuffling”) [7] depending on the
geometry and driving of the flow. The combination of and
competition between these mechanisms results in complex
motion of individual particles and significant challenges in
understanding and predicting the overall mixing efficacy. For
a class of mixing protocols in a spherical tumbler, isolating
the cutting-and-shuffling motions yields a “skeleton” for the
kinematics that captures the most significant mixing features
observed in the corresponding experiments [8]. These cutting-
and-shuffling transformations are termed piecewise isometries
(PWIs) [9–11], which have found use in several applica-
tions [12–17]. In a PWI, an object is cut into several pieces,
and the pieces are rearranged to reconstruct the original object.
The theory of PWIs provides a framework to study the cutting-
and-shuffling motions that drive granular mixing. However,
this theory is still under development, and much remains to
be understood. For instance, much of the theory has been
developed for PWIs in planar geometry, and less is understood
for PWIs in curved geometries such as a sphere [14,15,18,19],
which is considered here. For planar PWIs generated by a
single rotation angle θ the general nature of particle motion can

*lachlan.smith@northwestern.edu
†r-lueptow@northwestern.edu

be predicted based on whether θ/π is rational or irrational [13].
When θ/π is rational, the nonmixing regions form a polygonal
tiling of the domain, and the mixing region has zero area. In
contrast, when θ/π is irrational, the nonmixing regions are
circular, and the mixing region has positive area.

For spherical PWIs generated by rotation like those con-
sidered here, similar predictions cannot be made because the
composition of rotations in 3D is not as simple as summing the
angles. Another feature of spherical PWIs is that translations
are also rotations, meaning spherical PWIs consist of only
rotations and reflections. Therefore, all spherical PWIs can
be written piecewise as the composition of rotations and
reflections. If no reflections occur, i.e., the PWI consists purely
of rotation transformations, then the PWI is described as
orientation preserving; otherwise, it is orientation reversing.
Here, orientation-preserving PWIs are primarily considered,
though the results are generic to orientation-reversing PWIs as
well.

Linking the inherent geometric properties of PWIs with
their mixing efficacy, Park et al. [18,19] demonstrated positive
correlation between the area of the exceptional set (where the
cuts occur) and the long-term mixing efficacy a spherical PWI
produces. Essentially, portions of the domain covered by the
exceptional set are eventually cut into arbitrarily small pieces
that are rearranged, resulting in mixing. Therefore, if a large
portion of the domain is covered by the exceptional set, then
the mixing efficacy is high. Regions that are not covered by
the exceptional set, called cells in PWI theory, remain intact
for all time, and prevent mixing. These cells are analogous to
nonmixing “islands” associated with elliptic periodic points of
area-preserving dynamical systems. For mixing applications,
it is desired to find protocols that maximize the area of
the exceptional set and avoid protocols that minimize this
area. We use the term resonance to denote a local minimum
of exceptional set area in the protocol space because the
total area occupied by cells is large, and so a large portion
of the domain is periodic, i.e., resonating with itself. One
method to find resonances is to compute the area of the
exceptional set across the entire protocol space, which is
computationally expensive. The question we address here
is whether resonances, and hence mixing efficacy, can be
predicted a priori based only on properties such as symmetry
and limiting behavior of the PWI. By finding the areas of cells
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analytically, we identify resonances in the two-dimensional
protocol space of an orientation-preserving spherical PWI. In
doing so, we rationalize the complex distribution of mixing
efficacy across the protocol space that was found by Juarez
et al. [20].

We begin by introducing the biaxial spherical tumbler
(BST) PWI and the relevant terminology from PWI theory
in Sec. II A. Then, the complex distribution of mixing efficacy
across the protocol is discussed and resonances demonstrated
in Sec. II B. Finally, in Sec. III a method to find these
resonances analytically is introduced and used to determine
mixing efficacy across the protocol space.

II. RESONANCES IN A HEMISPHERICAL PWI

A. Biaxial spherical tumbler PWI

Here, we consider the half-full biaxial spherical tumbler
(BST) PWI [7,18,20–22], which maps the hemispherical shell
(HS) S = {(x,y,z) : x2 + y2 + z2 = 1,y � 0} to itself [23].
The map Mθz,θx

: S → S originates from the vanishing flowing
layer limit of a granular flow in a half-full spherical tumbler [7]
and is given by the following sequence of transformations,
referring to Fig. 1 and Park et al. [18]:

(1) Rotate the entire HS clockwise about the z axis by θz

and make a cut through the HS in the y = 0 plane.
(2) Rotate the cut portion above y = 0 by π about the z

axis to recover the HS.
(3) Repeat step 1, except perform the rotation anticlock-

wise about the x axis by θx .
(4) Repeat step 2, except perform the rotation about the x

axis.
Here, θz,θx are the control parameters, and the ordered pair

(θz,θx) is referred to as a protocol.
While the four-step description of the map uses two separate

rotations and cuts, corresponding to the action of experimental
granular tumblers [8], the map is identical to a single cut
and shuffle transformation: cut the HS into four partial lunes
P1−4, termed atoms in PWI theory, as shown in Fig. 2(a), and
rearrange them as shown in Fig. 2(b) to reconstruct the HS.
Note that the atoms are labeled from right to left and top to bot-
tom to reflect the general direction of tracer particle transport;
particles move from right to left under the z-axis rotation, then
from top to bottom under the x-axis rotation. We call the three
curves D1−3 that separate the atoms “cutting lines,” together
they form the set D = ⋃3

i=1 Di = ⋃
i,j,i �=j (Pi ∩ Pj ). For the

BST PWI, D1−3 are generated as rotations of the domain

boundary ∂S : x2 + z2 = 1, y = 0 about the x and z axes, and
hence are sections of great circles, i.e., intersections of the
sphere with a plane that passes through the origin. Tracking D
forward and backward in time reveals all possible cut locations.
For example, the cutting lines D separate regions that are cut
and shuffled after one iteration, as demonstrated in Fig. 2.
Combining D with its first preimage, M−1

θz,θx
(D) ∪ D, separates

regions that are cut and shuffled after two iterations, and so
on. The entire set of images and preimages,

E =
+∞⋃

n=−∞
Mn

θz,θx
(D), (1)

is known as the exceptional set associated with the protocol
(θz,θx). Due to the infinite union, it is impossible, in
most cases, to find every point in the exceptional set.
We numerically approximate E by seeding points along the
cutting lines D and iterating them under the inverse map M−1

θz,θx

to approximate each preimage. Combining a sufficient number
of preimages [24] results in an approximation of E, examples
of which are shown in Fig. 3 for different protocols (θz,θx).

Even though E always has zero Lebesgue measure (i.e.,
area), as it is the countable union of measure-zero sets, Park
et al. have demonstrated that the closure Ē = E ∪ ∂E is a
“fat fractal” for most protocols [19], meaning it has positive
Lebesgue measure and a fractal boundary. Furthermore, the
area that Ē occupies correlates strongly with the long-term
mixing achieved by the BST PWI [19], and this is expected
to be a generic property of all PWIs. In essence, any region
covered by Ē will eventually be cut into infinitely small pieces
and rearranged, producing a high degree of mixing. While
theoretically possible, the exceptional set generally does not
cover the entire HS, but rather has “holes” termed cells, which
are demonstrated by the white and colored regions in Fig. 3.
Like nonmixing islands associated with elliptic periodic points
in dynamical systems, these cells correspond to regions that
are periodic, i.e., they return to their initial position after some
number of iterations. The order in which each cell visits the
atoms P1−4 before returning to its original position defines a
unique periodic itinerary, e.g., in Fig. 3 the dark red cell in
P4 has itinerary P4 → P1 → P1, or 411 = 412 in short. Due
to this uniqueness, each cell can be identified by its periodic
itinerary. Note, however, that there may exist itineraries that do
not correspond to a cell. A cell’s periodic itinerary determines
the sequence of isometries that a tracer particle inside the cell
experiences. For instance, in P4 particles are rotated by θz + π

FIG. 1. The BST PWI for θz = θx = π/4. The solid blue, black, and red curves show where cutting occurs, and the dashed lines show the
rotation axes. Adapted with permission from Park et al. [18] (©2016 AIP Publishing).

062210-2



PREDICTING MIXING VIA RESONANCES: APPLICATION . . . PHYSICAL REVIEW E 95, 062210 (2017)

FIG. 2. Bottom view of the action of the BST PWI. The HS is cut
along the curves D1−3 shown in (a) and recombined as shown in (b).

about the z axis, denoted Rz
θz+π , then by θx + π about the x

axis, denoted Rx
θx+π , whereas in P1 particles are rotated by Rz

θz

then Rx
θx

. Therefore, all particles in the cell with itinerary 412

experience the same sequence of isometries:(
Rx

θx
Rz

θz

)(
Rx

θx
Rz

θz

)(
Rx

θx+πRz
θz+π

)
, (2)

which will have important consequences in Sec. III where cell
locations and sizes are found from the sequence of isometries
associated with their itineraries.

By definition cells are periodic regions, and the iterates
of a cell are also cells, with itineraries given by the rotation
permutations of the original itinerary, e.g., the dark red cells
in Figs. 3(a)–3(c) have itineraries 411, 141, and 114 and are
iterates of each other. Therefore, we can refer to the entire set of
iterates of a cell by specifying a single “base itinerary.” Since
all cells with the same base itinerary are solid body transfor-
mations of the base cell, they all have the same radius and share
the same internal rotation angle α, i.e., the angle of rotation
produced within the cell after it returns to its initial position,
demonstrated by the white square in Fig. 3(b) that is rotated
by α = 4π/5 about the center of the cell after three iterations.

Furthermore, each chain of cells with a cell in P4 is
conjugate to another chain with the same period and size
(Appendix B). This relationship is demonstrated by the two
period-3 cell chains (dark red and light blue) in Figs. 3(a)–3(c)
and the two period-6 cell chains (dark blue and light red)
in Fig. 3(c). This conjugacy means that the characteristic

information (radius, area, internal rotation angle) for one
chain of cells is identical to that for a conjugate chain of
cells.

Cells can manifest either as circles, regular polygons, or
irregular polygons. The shape of the cell is determined by the
rotation α produced within the cell after it returns to its initial
position as follows [13,14]:

(i) Circles: internal rotation is incommensurate with π , i.e.,
α/π is irrational. These are demonstrated by the dark red, light
blue, and white cells in Fig. 3(a). While the cells as a whole
return to their initial location, they never return to their initial
orientation, i.e., points inside the cells (other than the center)
never return to their initial position.

(ii) Regular polygons: internal rotation is commensurate
with π , i.e., α/π = 2p/q for some integers p,q �= 0. In this
case, the cell is a regular q-gon, for example, the dark red and
light blue pentagons in Fig. 3(b) have α/π = 4/5. Since each
pentagon is period-3, after 3q = 15 iterations they will return
to their initial location with their initial orientation.

(iii) Irregular polygons: internal rotation α = 0. These are
demonstrated by the orange quadrilaterals and white triangles
in Fig. 3(b). These irregular polygons do not rotate when they
return to their initial positions.

Resonances occur when the combined size of all the cells
is a local maximum in the protocol space or, equivalently,
when the area of Ē is a local minimum. Therefore, resonances
correspond to local minima in mixing efficacy. An extreme
case occurs when the entire domain is periodic and the cells
form a polygonal tiling of the HS. In this case no mixing occurs,
as the domain periodically reassembles itself. For instance, in
Fig. 3(b) the HS is tiled by regular pentagons (dark red and light
blue), irregular quadrilaterals (orange), and irregular triangles
(white). While polygonal tilings and fractal polygonal tilings
are common in planar PWIs [11,13,14] due to the fact that
composition of rotations is equivalent to the summation of
angles, and isolated polygonal cells are relatively easy to find
in spherical PWIs [14], we are not aware of any previous
observations of polygonal tilings for PWIs in curvilinear
geometries. We show in Sec. III B that the BST PWI produces
an infinite family of polygonal tilings.

FIG. 3. Exceptional sets (gray) for the BST PWI with the cutting lines D1−3 shown red, green, and blue, respectively. Cells with base
periodic itinerary P4 → P1 → P1 (411 = 412) are shown in dark red, and the conjugate pair with base periodic itinerary P3 → P2 → P1 (321)
is shown in light blue. (a) For θz = θx = 4π/15 cells are circular and Ē has positive area. (b) For θz = θx = arccos[(−1 + √

5)/2] the union
of the regular pentagonal cells (dark red, light blue), the irregular quadrilateral cells (orange with itinerary 21312), and the irregular triangular
cells (white with itineraries 312412213 and 32131421) perfectly tile the HS, which means Ē has zero area. (c) For (θz,θx) = (0.9960,0.5748),
both circular and polygonal cells exist, and Ē has finite area. Irregular quadrilateral cells are shown orange, cells with base itinerary 412212 are
shown light red, and their conjugate with base itinerary 321221 is shown in dark blue.
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FIG. 4. Characterization of the area of the exceptional set by domain discretization. (a) The exceptional set for (θz,θx) = (π/2,π/4). (b)
Unfolded isocube half and isocube half mapped onto the HS, with N = 12 × 23 × 23 boxes. (c) Isocube half with grid shown in gray and boxes
containing a point in the exceptional set colored black. (d) The same as (c) except N = 12 × 26 × 26 boxes are used, the isocube grid is not
shown. (Adapted with permission from Park et al. [19], ©2017 American Physical Society.)

B. Mixing across the protocol space

Using the method described by Park et al. [19] to charac-
terize mixing based on coverage of the exceptional set Ē, the
fraction of the HS covered by Ē is approximated by dividing
the HS into N = 12 × 2n × 2n equal area boxes [shown in
Fig. 4(b) for n = 3] and calculating the fraction of boxes
�n(θz,θx) containing a portion of the exceptional set. For
example, for the exceptional set corresponding to the protocol
(θz,θx) = (π/2,π/4) [Fig. 4(a)], �3 is the number of black
boxes in Fig. 4(c) divided by N . In this study, we use the fixed
resolution n = 6, as demonstrated in Fig. 4(d). While higher
resolutions yield better approximations, their computational
cost is prohibitive when �n is sampled across a 2D parameter
space. Since n is kept fixed, for the remainder of this paper,
we drop the subscript, i.e., � = �6. A value of � close to 1
represents high coverage of the HS by Ē and, hence, a high

degree of mixing. Conversely, a value of � close to 0 represents
a low degree of mixing.

Sampling � in increments of π/1800 (0.1◦) across the
protocol space (θz,θx), Fig. 5 shows a complex distribution
with many pronounced resonances (local minima, close to
white) [25]. The most obvious structure is the symmetry across
the line θx = θz. This is the result of the symmetry (A3) in
Appendix A, which means that aside from a reflection, the
protocol (θz,θx) with forward time and the protocol (θx,θz)
with reverse time are identical. Therefore, invariant structures
such as the exceptional set and cells are the same (up to
symmetry) when the protocol order is reversed and, hence,
� is also unchanged. In contrast, Juarez et al. [20] performed
a similar quantitative analysis of mixing for the same PWI,
measuring the degree of mixing by finding the center of mass of
tracer particles initially evenly distributed in the x < 0, y < 0

FIG. 5. (a) Distribution of � across the protocol space, sampled at increments of π/1800 in θz,θx . � is normalized such that zero coverage
(white) corresponds to � = 0, and complete coverage (black) corresponds to � = 1. Lines of constant θx/θz = tan β are shown dashed white for
β = π/(2m), m = 3,4,5. (b)–(e) Example exceptional sets corresponding to protocols indicated by blue arrows. (b), (e) Resonant protocols, i.e.,
local minima of �, where θz,θx are as in Figs. 3(b) and 3(c). (c), (d) Protocols with � ∼ 1: (c) (θz,θx) = (1.25,0.93); (d) (θz,θx) = (0.8,0.64).
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FIG. 6. Exceptional sets (gray) in the limit as θx → 0. (a)
θz = π/3. (b) θz = π/π .

quarter-sphere as a function of the number of iterations, called
the segregation index. Unlike �, the segregation index is not
symmetric across the line θx = θz because the forward time
iterates of the protocols (θz,θx) and (θx,θz) are not connected
via a symmetric relation, and the rotations of the HS about the
z and x axes that comprise the BST PWI do not commute.

The corollary to the symmetry (A3) is that along the
line θz = θx the BST PWI possesses the reflection-reversal
symmetry (A5) (see Appendix A), which means Lagrangian
structures, e.g., cells and the exceptional set, must be symmet-
ric about the plane z = −x. This additional constraint results
in generally lower mixing efficacy compared to the rest of the
protocol space; the median of � along θz = θx is 0.528 which
is much less than the median 0.952 across the entire protocol
space.

We observe that the resonances with the least coverage of
the exceptional set (closest to white) occur at intersections
between lines of constant ratio θx/θz = tan β, where β =
π/(2m), m = 2,3, . . . (white dashed lines in Fig. 5), and
Arnold tongues that extend from values of θz commensurate
with π (i.e., θz/π is rational) along the θz axis. To understand
why these tongues exist, consider the limit as θx → 0. In this
limit, the PWI becomes a rotation about the z axis only, with
exceptional set

E =
⋃
k∈Z

Rz
(kθz mod π)C, (3)

where Z denotes the set of integers, Rz
γ denotes rotation by

γ about the z axis, and C is the semicircle x2 + y2 + z2 = 1,
y = 0, x < 0. Even though there is an exceptional set and
cutting occurs, no mixing occurs in this limit since cuts are
always reconnected in the next iteration. When θz/π is rational,
the union equation (3) consists of a finite number of disjoint
arcs, e.g., Fig. 6(a) for θz = π/3, and hence � = 0. On the
other hand, when θz/π is irrational, the curves Rz

(kθzmod π)C for
k ∈ Z are all disjoint and densely fill the HS, e.g., Fig. 6(b)
for θz = π/π , so that Ē covers the entire HS and � = 1.
Therefore, in the limit as θx → 0,

�(θz; θx → 0) =
{

0, θz/π ∈ Q
1, θz/π ∈ R\Q (4)

whereQ denotes the set of rational numbers, andR\Q denotes
the set of real numbers excluding the rational numbers, i.e.,
the set of irrational numbers. Now, for small positive values of
θx mode-locking-like phenomena occur, such that around each

rational multiple of π , i.e., θz = πp/q, there is a finite width
interval with �(θz; θx) ∼ 0. This phenomenon is characterized
by the existence of cells whose periods are multiples of q,
and are robust under perturbations in θz. Understanding this
mode-locking-like phenomenon allows us to rationalize the
tongues observed in the distribution of the segregation index
in a previous study [20]. However, a difference is that at small
values of θx (and θz) the segregation index is generally large
(indicating a low degree of mixing), and the tongues appear
“fatter.” This is because the segregation index in [20] was only
computed over small numbers of iterations (10 and 25), and
the mixing rate is generally slow at small values of θz,θx .
On the other hand, � measures only the long-term mixing
quality, and does not take into account the rate of mixing. Many
thousands of iterations of the cutting lines D are required to
produce good approximations of the exceptional set when θx

is small, and it is expected that an almost identical tongue
structure would be observed if the segregation index in [20]
were computed using a similar number of iterations to that used
here. Of course, for practical mixing applications, rapid mixing
is desired, and short-term mixing quality is often a useful
metric.

Similar mode-locking-like phenomena occur based on the
ratio of θz and θx . In Appendix C, we consider the discrete
BST PWI as the composition of continuous z- and x-axis
rotations, prescribing the rotations an arbitrary fixed rotation
rate ω. In other words, the z- and x-axis rotation maps are
described as the integrals of rotational velocity fields for time
periods Tz = θz/ω and Tx = θx/ω. This enables us to consider
the limit as θz,θx → 0 with constant ratio θx/θz as the limit of
infinitely fast switching between z- and x-axis rotation phases,
i.e., Tz,Tx → 0. In this limit, tracer particle trajectories are
governed by a steady velocity field equivalent to rotation
about the axis (− sin β,0, cos β), where β = arctan(θx/θz).
While particle motion in the interior of the HS is simple
in the limit as θz,θx → 0, the curves D1−3 and the atoms
P2−4 all collapse onto the domain boundary ∂S, with multiple
atoms collapsing onto some segments of ∂S. This means
that multivalued periodic boundary conditions are produced,
as described in Appendix C. When β/π is rational, particle
trajectories are periodic, e.g., Figs. 14(a1) and (b1), whereas
when β/π is irrational, particle trajectories densely fill the HS,
e.g., Fig. 14(c1).

Away from the limit θz,θx → 0, at small positive val-
ues of θz,θx , tracer particles loosely adhere to the stream-
lines of the steady velocity field in the limit θz,θx → 0
[Figs. 14(a1), 14(b1), 14(c1) compared to Figs. 13(a2), 13(b2),
and 13(c2)]. At small positive values of θz,θx , cells form chains
that wrap around the HS, and the number of times they wrap
around before returning to their initial position, termed the
“wrapping multiplicity,” is equal to the wrapping multiplicity
of nearby orbits in the limit θz,θx → 0. Hence, irrational
values of β/π produce large wrapping multiplicities and small
cells, whereas rational values of β/π , especially those with
even denominators, produce small wrapping multiplicities
and large cells (Appendix C). This behavior is not limited
to small values of θz,θx , and is also evident at large values
[Figs. 13(a3), 13(b3), 13(c3)], resulting in more promi-
nent resonances along the white dashed lines β = π/(2m),
m = 2,3, . . . , in Fig. 5.
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Therefore, resonances result from a combination of two
mode-locking-like phenomena. In Sec. III, these phenomena
are discussed in more detail, and an analytic method for finding
the resonances is introduced.

III. ANALYTIC MIXING PREDICTION

One approach to finding resonances is to compute the
exceptional set and its coverage across the entire protocol
space, like Fig. 5. However, this approach is computationally
expensive and dependent on the resolution used to approximate
�. Here, we devise an analytic method to find resonances in
orientation-preserving PWIs based on finding the locations
and sizes of cells, which are nonmixing regions.

The cells of interest here are those with maximum area
that exist at the intersections of the mode-locking tongues that
extend from the θz axis (characterized by the rational multiple
of π from which the tongue extends, denoted p/q) and the lines
of constant ratio θx/θz that correspond to different wrapping
multiplicities (characterized by the number of times the chain
of cells wraps around the HS, denoted m). For a chain of
cells with p = 1, there are q cells per wrapping, and hence the
chain has period mq. Each of these chains has one cell in the P4

atom, with periodic itinerary I(m,q) = 41q−1(21q−1)m−1, and
the other cells in the chain have itineraries given by rotation
permutations of this itinerary. For example, the cells in the
period-6 chain (light red) in Fig. 3(c) have itineraries given by
rotation permutations of I(2,3) = 412212. Based on Eq. (B5),
each itinerary I(m,q) has a conjugate given by Ī(m,q) =
321q−1(21q−1)m−221q−2. Therefore, finding the location and
size of one chain of cells also gives the size of its conjugate.
The combined area of the cells with base itineraries I and
Ī provides a lower bound for the total area of all the cells
in the HS, and hence upper bounds for � and the degree of
mixing.

A. Cell location and size

For an orientation-preserving spherical PWI and any given
itinerary, the periodic point at the center of the corresponding
cell can be found by considering the net rotation over the
full itinerary, as described by Scott et al. [15]. In each atom,
the map Mθz,θx

can be expressed as the composition of two
rotations:

P1 : R1 = Rx
θx

Rz
θz
, (5)

P2 : R2 = Rx
θx

Rz
θz+π , (6)

P3 : R3 = Rx
θx+πRz

θz
, (7)

P4 : R4 = Rx
θx+πRz

θz+π . (8)

Over a full itinerary, the net rotation is the composition of these
atomic rotations. For example, for the itinerary 412 the net
rotation is R412 = R1R1R4, noting that the rightmost rotation is
performed first. Finding the normalized axis of the net rotation
gives two points ±v on the unit sphere, with at least one on
the HS, that are invariant under the net rotation, and hence
periodic points. Whichever of ±v is on the HS is the center of
the cell. For instance, for the itinerary 412 the center is x = â

where a = (a1,a2,a3) and

a1 = cos
θx

2
sin

θz

2
[2 + cos θz − cos θx(cos θz + 1)],

a2 = cos
θx

2
cos

θz

2
[cos(θx) + cos θz(cos θx − 1)], (9)

a3 = sin
θx

2
cos

θz

2
[cos θz + cos θx(cos θz + 1)].

Note that the axis of net rotation can be found for any itinerary,
but if ±v are outside the first atom of the itinerary, then the
center of the cell must be outside the atom in which the cell
is assumed to exist, a contradiction. Hence, the cell does not
exist. For example, for some values of θz,θx the axis of rotation
for the 412 itinerary is outside P4, which is a contradiction to
the assumption that the itinerary starts in P4. Therefore, in
addition to determining the center of cells when they do exist,
this method also indicates when cells with a given itinerary do
not exist.

Once the center v of a period-n cell has been found, its
radius is determined as

r = min
0�i<n, C∈{D1−3,∂S}

d
(
Mi

θz,θx
(v),C

)
, (10)

where d(x,C) is the shortest distance from the point x to the
curve C. In other words, the cell radius is the minimum of
all the distances from the centers of the cells in the chain,
Mi

θz,θx
(v), to the nearest cutting line or domain boundary. For

example, in Fig. 3(a) the radii of the cells in the chain with
base itinerary 412 (dark red) are all equal to the distance from
the center of the cell in P4 to D1, the red cutting line. Note
that when the cell is a regular polygon, e.g., the pentagons in
Fig. 3(b), r is the inradius (apothem), i.e., the radius of the
largest circle that can be wholly contained within the polygon,
rather than the circumradius (distance from the center to a
vertex). To find d(x,C), for C ∈ {D1−3,∂S}, we note that the
cutting lines D1−3 and domain boundary ∂S are all segments
of great circles [i.e., the intersection of the unit sphere with
planes P(C) that pass through the sphere origin]. Each great
circle C is characterized by the vector n(C) normal to its plane
P(C) (choosing an orientation for C). For C ∈ {D1−3,∂S}, these
normals are given by

n(D1) = (sin θz, − cos θz,0), (11)

n(D2) = (cos θx sin θz, − cos θx cos θz, sin θx), (12)

n(D3) = (cos θx sin θz, − cos θx cos θz, − sin θx), (13)

n(∂S) = (0,1,0). (14)

Since the geodesic distance along the unit sphere between a
point x and the normal n(C) equals the angle between them,
arccos[x · n(C)], it follows that the distance from any point x
on the HS to a great circle C with normal n(C) is

d(x,C) = π

2
− arccos[x · n(C)]. (15)

Furthermore, the sign of d determines which side of C the
point is on, which can be used for the great circles D1−3 and
∂S to determine which atom x is in, and hence whether or not a
cell with a given itinerary exists. For example, if d(x,D1) > 0,
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FIG. 7. (a) Radius of cells with base itinerary 412, r412 , from Eq. (16). The cell does not exist in the gray region beyond the solid red, green,
and white annihilation boundaries, which satisfy Eqs. (21)–(23) (denoting d(x,C) by dC for short). The dashed red and green, red and white,
and green and white curves represent protocols where the center of the cell is equidistant to two of the boundaries, given by Eqs. (17)–(19),
e.g., cell centers for protocols along the red and green curve are equidistant to D1 and D2 (dD1 = dD2 ). The protocol where all three dashed
curves intersect, θz = θx = θ∗ = arccos[(−1 + √

5)/2] ≈ 0.9046 ≈ 51.83◦, has maximal cell radius [see Fig. 3(b)]. Exceptional sets for the
white-outlined black points on the blue-sided square with side length π/9 centered on the maximal protocol are shown in Fig. 8. (b) The
distribution of � from Fig. 5 overlayed with the annihilation boundaries (solid) and equidistance curves (dashed) for the 412 itinerary.

then x must be in P1 or P3 [the atoms on the right of D1 in
Fig. 2(a)]; if d(x,D1) < 0, then x must be in P2 or P4 [the
atoms on the left of D1 in Fig. 2(a)]; and, if d(x,D1) = 0, then
x must be on D1.

Using the period-3 itinerary 412 as an example, demon-
strated by the dark red cells in Fig. 3, we observe that the cell
in P4 always forms the tangent intersection to D or ∂S, and
hence determines the size of all the cells in the chain. Letting
x = â [Eq. (9)] denote the center of the cell in P4, the cell’s
radius equals the minimum of the distances of the center to the
three boundaries of P4:

r412 (θz,θx) = min [d(x,D1), d(x,D2), d(x,∂S)]. (16)

This radius is shown as a contour plot in Fig. 7(a) across the
protocol space θz,θx . The dashed curves indicate protocols for
which the cell center is equidistant to two of D1,D2 or ∂S, i.e.,

d(x,D1) = d(x,D2) ⇐⇒ x · n(D1) = −x · n(D2)

⇐⇒ cos θz = 1

1 + cos θx

, (17)

d(x,D1) = d(x,∂S) ⇐⇒ x · n(D1) = x · n(∂S)

⇐⇒ cos θx = 1

1 + cos θz

, (18)

d(x,D2) = d(x,∂S) ⇐⇒ x · n(D2) = −x · n(∂S)

⇐⇒ θx = θz, (19)

where the negative signs result from the relative orientations of
n(D1),n(D2),n(∂S). Examples of exceptional sets along these
curves are shown in Figs. 8(b)–8(f), and 8(h), corresponding to

the protocols marked by white-outlined black circles in Fig. 7.
The cells with itinerary 412 (dark red) are larger when the
cell in P4 touches two boundaries [Figs. 8(c), 8(d), and 8(h)]
compared to one [Figs. 8(a), 8(b), 8(f), and 8(i)], and the cells
are largest when the cell in P4 touches all three boundaries
[Fig. 8(e)], which occurs when all three equidistance curves
intersect: θz = θx = θ∗ = arccos[(−1 + √

5)/2] ≈ 0.9046 ≈
51.83◦, corresponding to the maximum radius r412 ≈ 0.3309.
At this maximal protocol the entire domain, including the ex-
ceptional set, is periodic, and the cells form a polygonal tiling
of the HS. The 412 chain of cells and its conjugate 321 are reg-
ular spherical pentagons, with internal rotation equal to 4π/5,
that form a band around the center of the HS. All other cells
are irregular polygons, with zero internal rotation. Therefore,
� = 0 for this maximal protocol, and hence it is a resonance.
Moving away from the maximal protocol in any direction, the
cell shrinks, and eventually annihilates when its center meets
one of D1,2, ∂S, as in Fig. 8(g). The curves where the cell an-
nihilates, called “annihilation boundaries,” are shown as solid
red, green, and white in Fig. 7(a), corresponding to the curves

[d(x,C)=0 ⇐⇒ x · n(C) = 0] for C=D1,2, ∂S. (20)

For the 412 itinerary, the equations for these boundaries can
be simplified using Eqs. (9) and (11)–(14):

C = D1 : cos θx = 2 − cos θz

1 + cos θz

, (21)

C = D2 : cos θz = cos θx

1 + cos θx

, (22)

C = ∂S : cos θx = cos θz

1 + cos θz

. (23)
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FIG. 8. Exceptional sets for the protocols marked by white-outlined black circles on the blue-sided square in Fig. 7. Cells with base itinerary
412 are dark red; conjugate cells with base itinerary 321 are light blue. The cell with itinerary 412 in P4 touches one boundary in (a), (b), (f), (i);
two boundaries in (c), (d), (h); and all three boundaries in (e), corresponding to the resonance θz = θx = θ∗ = arccos[(−1 + √

5)/2]. Note that
the cell with itinerary 412 in P4 is difficult to see when viewing the HS from below in (a) and (b), as it is close to the boundary ∂S and has small
radius. In (g) no cell with itinerary 412 exists, period-4 cells with base itinerary 413 are orange, and their conjugate cells (itinerary 3212) are green;
period-6 cells with base itineraries 212312 and 21313 are light red and dark blue, respectively. Protocols (θz,θx) are (a) (θ∗ − π/18, θ∗ + π/18),
(b) (0.8243, θ∗ + π/18) (approximate values correspond to intersections between equidistant curves and the blue-sided square in Fig. 7), (c)
(θ∗ + π/18, θ∗ + π/18), (d) (θ∗ − π/18, 0.9607), (e) (θ∗, θ∗), (f) (θ∗ + π/18, 0.8243), (g) (θ∗ − π/18, θ∗ − π/18), (h) (0.9607, θ∗ − π/18),
(i) (θ∗ + π/18, θ∗ − π/18).

Beyond these boundaries (in the gray regions), the center
of the cell is outside P4 and hence the cell does not
exist.

Considering the link between the size of the 412 cell and
the mode-locking-like phenomena, Fig. 7(b) shows that the
shape of the annihilation boundaries captures the general
shape of the tongue extending from θz = π/3, and also shows
that the dashed equidistance curve Eq. (17) passes through
all the resonances along the tongue. Therefore, finding these
relatively simple properties of the 412 cell reveals significant
information about the system as a whole, including a resonant
protocol such that the entire domain is periodic. In Sec. III B,
more resonances are detected and protocols with high mixing
efficacy are predicted by considering a range of itineraries, in
particular those of the form I(m,q).

B. An analytic picture of resonances

Like the 412 itinerary, for all itineraries I(m,q) the cell
that determines the size of all the cells in the chain is located
in P4, and hence the radius is given by Eq. (16). Therefore,
the annihilation boundaries and equidistance curves also take
the form (17)–(20). These are shown in Fig. 9 for several
m and q values. As for the 412 itinerary in Fig. 7(b), the
annihilation boundaries capture the general shape of the
tongues, and meet at cusps at rational multiples of π in
the limit θx → 0. The resonances (local minima of �) coincide
exactly with the protocols where cells are equidistant from
three boundaries, i.e., the intersections of the dashed curves
of the same color in Fig. 9. Therefore, the resonances can be
found by solving Eqs. (17)–(19) simultaneously. While this
can be solved analytically for the 412 itinerary, for longer
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FIG. 9. Distribution of � from Fig. 5 shown with annihilation
boundaries (solid) and equidistance curves (dashed) for 10 low-period
itineraries (different colors). The resonances (local minima in �)
occur at protocols where all three equidistance curves of an itinerary
meet, and are labeled for each itinerary by dotted arrows.

itineraries an analytic solution does not generally exist, and
numeric root finding is used instead. In any case, the protocols
at local minima in mixing efficacy across the protocol space
can be found without needing to compute the exceptional set
and its fraction of coverage.

Furthermore, the annihilation boundaries corresponding
to D1,2 and the equidistance curve (17) coincide for the
itineraries 412, 412212, 412(212)2 (white, green, gray), i.e.,
I(m,q) for q = 3, m = 1,2,3. In Appendix D, we show that
this coincidence of curves occurs for all m at each value
of q because the centers of cells corresponding to a fixed
value of q lie on a great circle that also passes through the
point where the cutting lines D1−3 meet. Hence, all the cells
annihilate simultaneously and become equidistant to D1 and
D2 simultaneously.

The corresponding exceptional sets for the low-period
resonant protocols are shown in Fig. 10, arranged by the
wrapping multiplicity m and the rational multiple (θ∗

z /π =
p/q) from which the corresponding tongue extends. For
each single-wrap resonance (m = 1), the domain is entirely
periodic, and the exceptional set forms a polygonal tiling of the
HS consisting of regular (2q − 1)-gons, irregular triangles, and
irregular quadrilaterals. Therefore, when m = 1, the domain
as a whole will periodically disassemble and reassemble as
the cells are shuffled around, with reassembly period given
by the lowest common multiple of all the periodicities of the
cells. At all other values of m the cells are circles, meaning
the exceptional set is a fat fractal, and there are (small)
positive area regions where mixing occurs. Furthermore, the
disassembly and reassembly of cells is such that even the
region consisting of all cells will never return to its initial
configuration when m �= 1. This is because each cell has an
irrational internal rotation angle α, and there are arbitrarily
small cells with arbitrarily long periods, meaning a lowest
common multiple of periodicities does not exist. Therefore,

when m �= 1 some mixing can occur in the small mixing region
and via cell disassembly, but the degree of mixing is relatively
low compared to nonresonant protocols.

In contrast to the resonances that occur on the tongues with
θ∗
z = π/q, the resonances at 2π/7 and 2π/5 produce signifi-

cantly better mixing (third and fifth columns in Fig. 10), and
we expect similar phenomena for resonances corresponding
to θ∗

z = 2π/q with q = 9,11, . . . . Since resonant cells along
each tongue have period mπ/θ∗

z where m is the wrapping
multiplicity [e.g., for θ∗

z = π/4 the periods are 4m (second
column in Fig. 10)] for θ∗

z = 2π/q with q = 5,7, . . . , the
resonant cells only exist when m is even. For example, for
θ∗
z = 2π/5 and wrapping multiplicity m = 2, the resonant cell

is period 5 and wraps around the HS twice (fifth column of
Fig. 10). It is impossible for a single wrapping (m = 1) to
exist for θ∗

z = 2π/5, as it would have period 5/2, and the
same situation would occur for any odd wrapping multiplicity.
By observing the resonant cells and their itineraries for cases
with θ∗

z = πp/q and p �= 1, the family of itineraries I(m,q)
can be extended, such that the itinerary of the resonant cell
with wrapping multiplicity m and period mq/p is

I(m,q/p) = 41a−1(21a−1)p−b−1(21a−2)b

× [(21a−1)p−b(21a−2)b]m/p−1, (24)

where q = ap − b, a = �q/p� is the ceiling of q/p, i.e., the
smallest integer greater than q/p, and −b ≡ q mod p, with
b ∈ {0,1, . . . ,p − 1}. For example, I(2,5/2) = 41221, and in
this case the exceptional set almost entirely fills the HS exclud-
ing the resonant cells and their conjugate (dark red and light
blue) (fifth column in Fig. 10). The annihilation boundaries
and equidistance curves for the itinerary I(2,5/2) = 41221
are shown in pink in Fig. 9. Compared to the other resonant
protocols with wrapping multiplicity m = 2, the resonance
corresponding to the itinerary 41221 is relatively far from
the line β = π/6 in Fig. 5 because the cell that forms the
tangent intersection to one of the cutting boundaries is not
always in P4. For some protocols, the size-limiting cell is in
P1. Therefore, the annihilation boundaries and equidistance
curves are not given by Eqs. (17)–(20), instead the cells in P4

and P1 that limit the size both need to be taken into account.
The same is true for other itineraries of the form I(m,q/p)
with p �= 1 such as the period-7 itinerary I(2,7/2) = 413212

on the line β = π/6 in Fig. 5, whose annihilation boundaries
and equidistance curves are shown in orange in Fig. 9.

C. Predicting mixing

By finding resonances, i.e., protocols at local minima in
mixing efficacy, we can eliminate regions of the protocol
space known to yield low degrees of mixing, and hence
predict regions where a high degree of mixing is likely. In
the regions of the protocol space outside the annihilation
boundaries [Fig. 11(a)], we can guarantee that no cells exist
for the itineraries shown in Fig. 9. Furthermore, in the two
regions indicated by arrows in Fig. 11(a), it can be shown
that no cells with itinerary I(m,q/p) exist for any values
of m, p, and q. For protocols in these two regions, cells
exist with itineraries not of the form I(m,q/p), and it is
possible that these cells could be large and inhibit mixing,
or many small cells could tightly pack the HS resulting in low
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FIG. 10. Exceptional sets of the BST PWI for resonant protocols. For each resonance the corresponding itinerary that is tangent to three
boundaries is indicated, its cells are colored dark red, and the cells of the conjugate itinerary are colored light blue. The θ∗

z axis represents the
rational multiple of π that the resonance is attached to via the tongues, and m is the wrapping multiplicity of the resonant itinerary.

(a) (b)

(c)

0

FIG. 11. (a) Distribution of � (Fig. 5) with regions containing cells corresponding to the itineraries in Fig. 9 colored white (and their
reflection across the line θz = θx). Annihilation boundaries for the itineraries are shown in gray. (b), (c) Exceptional sets outside the annihilation
boundaries that are predicted to produce a high degree of mixing. (b) (θz,θx) = (1.25,0.93). (c) (θz,θx) = (0.8,0.64).
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coverage by the exceptional set. However, we observe that �

is in general much lower within the annihilation boundaries
of the itineraries I(m,q/p) than the two regions indicated in
Fig. 11(a), confirming that mixing efficacy is generally higher
in the region outside the annihilation boundaries. Considering
the two specific protocols indicated by the arrows in Fig. 11(a),
the corresponding exceptional sets [Figs. 11(b) and 11(c)] have
some small high-period cells, but the exceptional set covers a
large portion of the domain, indicating a high degree of mixing.

Therefore, by finding the annihilation boundaries and
equidistance curves of only a few low-period itineraries
belonging to the family I(m,q/p), we are able to determine
regions of the protocol space at local minima in mixing efficacy
and even predict regions of high mixing efficacy. Of course,
some regions of relatively low mixing efficacy are still evident
in the remaining colored portions of Fig. 11. For instance, light
regions along the lines m = 4,5 (see Fig. 5) remain. However,
a similar approach to that used so far could be used to eliminate
these regions from Fig. 11. In any case, compared to numerical
evaluation of � across the entire protocol space, this method
is less computationally expensive, and provides insight into
the mechanisms that drive mixing and periodicity, including
mode-locking-like phenomena.

IV. CONCLUSIONS

By finding the locations and radii of cells, resonances that
correspond to protocols at local minima in mixing efficacy
can be found analytically, and protocols that yield a high
degree of mixing can be predicted. In orientation-preserving
spherical PWIs this can be achieved by considering the net
rotation produced by the PWI map over the course of a
periodic itinerary. Each cell has a unique periodic itinerary,
which specifies the sequence of isometries that it undergoes,
and hence determines its center and radius. By considering
properties of the PWI, such as symmetries and the limits
as parameters approach zero, a family of itineraries that
control the resonances may be found. This is the case for
the BST PWI, where the itineraries I(m,q/p) control the
low-order resonances. However, more generally, such a family
of itineraries may not exist. In those cases, the resonances can
still be predicted analytically by considering a larger number
of itineraries, and combining the areas of cells to form a lower
bound for the total area of all cells. It has been demonstrated
for a different spherical PWI that high-period cells generally
have a smaller radius [15]. Hence, it appears best to consider
the lowest period cells (with shortest itineraries) first.

Since these mixing predictions are based on invariant
structures such as cells and the exceptional set, only long-term
mixing quality can be predicted. In practical applications, the
rate of mixing is often of equal, if not greater, importance to
the ultimate effectiveness of a mixing protocol. Future work
should focus on the links between resonances and the rate
of mixing. It is anticipated that additional factors such as the
relative magnitudes of θz and θx , or other metrics such as the
amount of mixing per net rotation in the protocol (i.e., θz + θx),
will also need to be considered to be able to predict good, rapid
mixing.

While the methods used here apply to orientation-
preserving spherical PWIs, i.e., those only consisting of

rotation transformations, the inclusion of orientation-reversing
transformations, i.e., reflections, does not significantly change
dynamics, and the method can be adapted to these cases. If M

is an orientation-reversing map, then S ◦ M is orientation pre-
serving, where S is any reflection transformation. Therefore,
the method used here can be applied to find cell centers x for
S ◦ M , which can then be reflected, S−1(x), to produce cell
centers for M .

In experiments using the granular BST flow, Zaman
et al. [8] have shown that the BST PWI forms a kinematic
“skeleton,” and that sufficiently large cells can survive even
when stretching in the flowing layer and collisional diffusion
are present. These cells yield “sticky” regions where particles
tend to spend long periods of time (and hence, do not mix).
By finding a threshold cell radius, above which cells produce
sticky regions in experiment, the analytic description of cell
radius found here can be immediately applied to find all the
regions of the protocol space where sticky regions will exist
in experiment.

The BST PWI admits a number of generalizations that
could lead to new and interesting phenomena. Allowing
nonperpendicular rotation axes breaks some symmetries and
adds a third parameter to the system. Such a system is still
an orientation-preserving spherical PWI. Hence, resonances,
annihilation boundaries, and equidistance surfaces can be
found in the 3D protocol space. Considering the PWI as
the limit of granular tumbler flow [8], another generalization
is to change the fill fraction of the sphere. When the
sphere is not half-full, the corresponding map is no longer
a PWI, and particle motion is generated by a combination of
stretching-and-folding and cutting-and-shuffling actions. This
simple change greatly adds to the complexity of the system.
Understanding the interplay between stretching-and-folding
and cutting-and-shuffling motions in the non-half-full cases
could provide insights into the mechanics and mathematics of
mixing in more general and practical scenarios, for instance,
nonspherical geometries such as a V-blender [4–6].

Future work should also focus on understanding and
classifying the polygonal tilings that are produced by the BST
PWI. The family of polygonal tilings produced by the BST
PWI may be a novel class of polygonal tiling of the HS,
and other spherical PWIs could produce new families of
polygonal tilings. However, it is difficult to predict whether
a given spherical PWI is even capable of producing polygonal
tilings, let alone to predict what they would look like.
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APPENDIX A: SYMMETRIES

Symmetries of time-periodic flows provide insights into
their Lagrangian topologies, and have been exploited to better
understand many 2D [26–29] and 3D [30–32] systems. The
BST PWI possesses a number of symmetries that control
its Lagrangian topology. The map can be written as the
composition of z- and x-axis rotations, i.e., Mα,β = M̃x

βM̃z
α ,

where θz = α, θx = β, and M̃ is used to denote rotation
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modulo π . Since the x-axis rotation can be written as the
conjugation of the z-axis rotation with a rotation about the y

axis, i.e., M̃x
β = R

y

−π/2M̃
z
βR

y

π/2, the BST PWI can be written
as Mα,β = R

y

−π/2M̃
z
βR

y

π/2M̃
z
α . By writing the map in this form,

the symmetries of the z-axis rotation can be used to derive
symmetries of the BST PWI.

The z-axis rotation possesses two symmetries, first the
reflection-reversal symmetry

M̃z
θ = Syz

(
M̃z

θ

)−1
Syz, (A1)

where Syz : (x,y,z) �→ (−x,y,z) denotes reflection through
the yz plane. The z-axis rotation also has the reflection
symmetry

M̃z
θ = SxyM̃

z
θ Sxy, (A2)

where Sxy denotes reflection through the xy plane.
Deriving from Eq. (A1), the BST PWI has the following

symmetry that relates the protocols (α,β) and (β,α):

Mα,β = R
y

−π/2M̃
z
βR

y

π/2M̃
z
α

= R
y

−π/2

[
Syz

(
M̃z

β

)−1
Syz

]
R

y

π/2

[
Syz

(
M̃z

α

)−1
Syz

]
= S1

(
M̃z

β

)−1
S−1

1 Syz

(
M̃z

α

)−1
Syz

= S1
(
M̃z

β

)−1
R

y

−π/2

(
M̃z

α

)−1
R

y

π/2S1

= S1M
−1
β,αS1, (A3)

where S1 = R
y

−π/2Syz : (x,y,z) �→ (−z,y, − x) denotes re-
flection through the plane z = −x. This means that the (α,β)
protocol is the reflection through the z = −x plane of the
reverse time (β,α) protocol. Therefore, when the order of the
rotation angles is changed, all invariant structures such as cells
and the exceptional set occur as reflections of one another
through the plane z = −x. For instance, for a period-n point
x of Mα,β it follows that

x = Mn
α,β(x) = (

S1M
−1
β,αS1

)n
(x) = S1M

−n
β,αS1(x), (A4)

and hence S1(x) is a period-n point of Mβ,α .
As a corollary to the symmetry (A3), when the rotation

angles are equal (i.e., α = β) the flow possesses the reflection-
reversal symmetry

Mα,α = S1M
−1
α,αS1. (A5)

This means that invariant structures (cells, periodic points, the
exceptional set, etc.) must occur symmetrically about the plane
z = −x.

As a result of the reflection symmetry (A2), the BST PWI
has the symmetry

Mα,β = R
y

−π/2M̃
z
βR

y

π/2M̃
z
α

= R
y

−π/2

[
SxyM̃

z
βSxy

]
R

y

π/2

[
SxyM̃

z
αSxy

]
= SxyR

y

π/2M̃
z
βR

y

−π/2SxySxyM̃
z
αSxy

= SxyR
y

π/2M̃
z
βR

y

−π/2M̃
z
αSxy

= SxyR
y

π/2

[
Syz

(
M̃z

β

)−1
Syz

]
R

y

−π/2M̃
z
αSxy

= SxyR
y

−π/2Sxy

(
M̃z

β

)−1
SxyR

y

π/2M̃
z
αSxy

= SxyR
y

−π/2

(
M̃z

β

)−1
R

y

π/2M̃
z
αSxy

= SxyMα,−βSxy, (A6)

which means that changing θx from β to −β results in
a reflection of Lagrangian topology through the xy plane.
Therefore, the cases θx = β and θx = π − β are the same up to
symmetry, and it is only necessary to consider 0 � θx � π/2.

Changing θz from α to −α results in a similar symmetry
using both (A3) and (A6):

Mα,β = S1M
−1
β,αS1 by(A3)

= S1(SxyMβ,−αSxy)−1S1 by(A6)

= S1SxyM
−1
β,−αSxyS1

= S1Sxy(S1M−α,βS1)SxyS1 by(A3)

= SyzM−α,βSyz. (A7)

Therefore, changing θz from α to −α results in a reflection
of Lagrangian topology through the yz plane, and it is only
necessary to consider 0 � θz � π/2.

Furthermore, the symmetries (A1) and (A2) also apply
to the continuum model of the granular BST flow studied
in [7,21,33], and hence the symmetries (A3)–(A7) also apply.
These symmetries can also be readily adapted to more general
rotation protocols such as nonorthogonal rotation axes and
multiple (i.e., more than two) rotation axes.

APPENDIX B: CONJUGATE ITINERARIES

As a result of a special property of the BST PWI, chains
of cells with at least one cell in the atom P4 have a conjugate
with equal period and size. This means that finding one cell
not only gives information about all the cells in its chain, but
also the cells in its conjugate chain. Cell conjugacy derives
from the following relations:

(
R

(−α,−β)
1

)−1 = Rz
αRx

β

= Rx
−βRx

βRz
αRx

β

= Rx
−βR

(α,β)
1 Rx

β, (B1)(
R

(−α,−β)
2

)−1 = Rz
α+πRx

β

= Rx
−βRx

βRz
α+πRx

β

= Rx
−βR

(α,β)
2 Rx

β, (B2)(
R

(−α,−β)
41

)−1 = Rz
α+πRx

β+πRz
αRx

β

= Rx
−β

(
Rx

βRz
α+πRx

β+πRz
α

)
Rx

β

= Rx
−βR

(α,β)
32 Rx

β, (B3)

where R
(α,β)
1−4 are the rotations produced by the BST PWI in

each of the atoms with (θz,θx) = (α,β); and R41 = R1R4 and
R32 = R2R3 are the net rotations produced by the 41 and 32
itineraries, respectively. Therefore, for any itinerary of the
form w41 where w = w0w1 . . . wM is a word consisting of 1’s
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and 2’s, it follows that(
R

(−α,−β)
w41

)−1 = (
R

(−α,−β)
41

)−1(
R(−α,−β)

w

)−1

= (
R

(−α,−β)
41

)−1
M∏
i=0

(
R(−α,−β)

wM−i

)−1

= Rx
−βR

(α,β)
32 Rx

β

M∏
i=0

Rx
−βR(α,β)

wM−i
Rx

β

= Rx
−βR

(α,β)
32rev(w)R

x
β, (B4)

where rev(w) = wMwM−1 . . . w0 is the reverse of w. Since
each of R

(α,β)
1−4 is an instance of the BST PWI Mα,β , from

Eqs. (A6) and (A7) it follows that

(
R

(α,β)
w41

)−1 = Rx
βR

(−α,−β)
32rev(w) R

x
−β

= Rx
βSxySyzR

(α,β)
32rev(w)SyzSxyR

x
−β

= Rx
βRy

πR
(α,β)
32rev(w)R

y
πRx

−β. (B5)

This means that if x is the center of the cell with itinerary
w41, i.e., R

(α,β)
w41 (x) = x, then Rx

βR
y
πR

(α,β)
32rev(w)R

y
πRx

−β(x) = x,
and hence

R
(α,β)
32rev(w)

[
Ry

πRx
−β(x)

] = Ry
πRx

−β(x). (B6)

Therefore, z = R
y
πRx

−β(x) is the center of the cell with
itinerary 32rev(w), assuming it is in the atom P3, and its chain
of cells is referred to as the conjugate cells. Furthermore, the
cell in P4 with itinerary 41w is in the same group of cells as
x, with center y satisfying R41( y) = x, so

z = Ry
πRx

−βR41(x) = Ru
β (x), (B7)

where u = Rz
α(−1,0,0) is the point where the cutting lines

D1−3 meet. Since Ru
βP4 is contained in P3, demonstrated by the

red region inside P3 (blue) in Fig. 12, this guarantees that z is in
P3, and so the conjugate cells always exist. Figure 12 suggests
that every cell in P4 has a conjugate in P3, meaning the cell
structure in P3 captures that of P4. Particles must repeatedly
visit either P3 or P4 throughout their itinerary, otherwise the
x coordinate would approach infinity, it therefore follows that
every chain of cells has at least one cell in either P3 or P4.
Combining this with conjugacy, the complete set of cell types
(size and shape) can be found entirely in P3.

Furthermore, the reflection-reversal symmetry (A5) im-
poses additional constraint when θz = θx . The image
Mα,βRu

βP4 of the conjugate cells under the BST PWI [the
red points in P2 (green) in Fig. 12] is contained in P2, and
must be symmetric about the line z = −x. Hence, the cells in
P4 and their conjugates in P3 must also be symmetric, with
symmetry lines shown in each atom in Fig. 12. This means that
the cells that only occur once in P4, like those with itineraries
I(m,q), must have their center on the symmetry line. Hence,
the center is equidistant to the cutting line D2 (green) and
the domain boundary ∂S, which is reflected in Fig. 9 by the
equidistance curves that coincide with θx = θz. This constraint
on Lagrangian topology leads to the generally lower mixing
efficacy along the line θz = θx .

FIG. 12. The exceptional set for the BST PWI with θz = θx =
4π/15. Points in P1–P4 are colored gray, green, blue, and red,
respectively. The image of P4 under the rotation Ru

θx
, where u =

Rz
θz

(−1,0,0), is shown as the red points in P3 (blue), illustrating the
conjugacy between P4 and P3. The image of P4 under Mθz,θx

Ru
θx

is
shown as the red points contained in P2 (green). The black dashed
symmetry line z = −x corresponding to the reflection-reversal
symmetry (A5) yields symmetries in the P3 and P4 atoms also.

APPENDIX C: WRAPPING MULTIPLICITY

To understand why resonances occur on and near the lines
of constant ratio θx/θz = tan β for β = π/(2m), m = 2,3, . . . ,
we consider the limit as θz,θx → 0, keeping their ratio fixed,
e.g., the limit towards the origin along one of the dashed lines
in Fig. 5. By considering this limit, the fundamental nature
of particle trajectories at small positive values of θz,θx can
be understood since they shadow trajectories in the limit.
For instance, the wrapping multiplicity of particles in the
limit can be used to predict the wrapping multiplicity slightly
away from the limit. Furthermore, properties such as wrapping
multiplicity are shared even at larger values of θz,θx .

By assigning a fixed arbitrary rotation rate ω to the z- and
x-axis rotation phases, the BST PWI can be written as the
integral

Mθz,θx
(x) =

∫ Tz+Tx

0
V (x,t)dt, (C1)

where

V (x,t) =
{

V z(x), for 0 � t � Tz

V x(x), for Tz < t � Tz + Tx
(C2)

and V z, V x are velocity fields corresponding to z- and
x-axis rotations at a constant rate ω, and Tz = θz/ω, Tx =
θx/ω. Periodic boundary conditions are enforced during the
integration of Eq. (C1), such that if a particle reaches the
domain boundary ∂S, it is reflected across the plane spanned
by the y axis and the current rotation axis. For example, if
a particle reaches ∂S during the z-axis rotation, 0 � t � Tz,
then it is reflected across the yz plane. This is representative
of a half-full spherical granular tumbler flow in the limit of
an infinitely thin flowing layer [7]. Therefore, the limit as
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FIG. 13. The BST PWI in the limit as θz,θx → 0 with constant
ratio θx/θz = tan β. The rotation axis z = tan(π/2 + β)x is indicated
by the dashed black line. The segments of ∂S where particles
experience the different periodic boundary conditions described in
Eq. (C4) are colored red, green, purple, and blue, respectively.
Example particle trajectories that meet the red and green segments
of ∂S are shown in orange and light blue, starting from the points
marked with circles. Note that when the light blue point meets the
green segment of ∂S, it has two images due to the multivalued periodic
boundary conditions.

θz,θx → 0 with θx/θz = tan β is equivalent to the limit as
Tz,Tx → 0 with Tx/Tz = tan β, which is the limit of infinitely
fast switching between the z- and x-axis rotation velocity
fields. Therefore, in the limit θz,θx → 0 particles are governed
by the velocity field V ave, given by the weighted average of
the velocity fields in each rotation phase, i.e.,

V ave = TzV z + Tx V x

Tz + Tx

, (C3)

which is equal to the velocity field corresponding to rotation
about the single axis (− sin β,0, cos β), shown as the dashed
black line in Fig. 13, with rotation rate ω.

While particle trajectories in the limit θz,θx → 0 are simple
in the interior of the domain, the periodic boundary conditions,
inherited from the atoms P2−4, introduce complexity. At
positive values of θz,θx , particles only experience the periodic
boundary conditions in the atoms P2−4, when they cross the
infinitely thin flowing layer during the z-axis rotation (P2), the
x-axis rotation (P3), or both (P4). In the limit θz,θx → 0, it
is natural that particles should experience the same reflections
when they reach ∂S, yielding periodic boundary conditions.
However, it is not always clear which atom’s boundary
conditions should be used because multiple atoms collapse
onto some segments of ∂S in the limit θz,θx → 0. Letting
θ = arg(x + iz) be the polar angle on ∂S, only the atom
P2 collapses onto the segment π/2 + β � θ � π (red) in

Fig. 13, and so all particles that meet this segment of ∂S

experience the same periodic boundary conditions as those in
P2 for positive values of θz,θx , i.e., they are reflected across
the yz plane. This is demonstrated by the trajectory of the
orange particle. Similarly, only the atom P3 collapses onto
the segment 3π/2 < θ � 3π/2 + β (dark blue) in Fig. 13,
so particles that meet this segment of ∂S experience the same
periodic boundary conditions as P3 for positive θz,θx , i.e., they
are reflected across the xy plane. The atoms P2−4 all collapse
onto the segment π < θ � 3π/2 − β (green) in Fig. 13, so it is
unclear which periodic boundary condition should be used. For
positive values of θz,θx , particles in P2 are reflected through the
yz plane when they meet ∂S, like in the red segment; particles
in P3 are reflected through the xy plane when they meet ∂S,
like the dark blue segment; and particles in P4 are reflected
through the yz plane during the z-axis rotation, then reflected
through the xy plane during the x-axis rotation, a net reflection
through the origin if they occur sequentially. These three pos-
sibilities lead to two possible periodic boundary conditions for
the green segment of ∂S in the limit θz,θx → 0, demonstrated
by the light blue particle trajectory in Fig. 13, where it is noted
that since the xy reflection is on the red segment, it is also
reflected across the yz plane. Similarly, the atoms P2−4 all
collapse onto the segment 3π/2 − β < θ � 3π/2 (magenta)
in Fig. 13, again yielding multivalued periodic boundary
conditions: reflection through the xy plane and reflection
through the origin. These periodic boundary conditions can
be summarized as follows:

F (θ ) =

⎧⎪⎨
⎪⎩

−θ + π, for π/2 + β � θ � π

(−θ + π,θ + π ), for π < θ � 3π/2 − β

(−θ,θ + π ), for 3π/2 − β < θ � 3π/2
−θ, for 3π/2 < θ � 3π/2 + β.

(C4)

Starting from a position −π/2 + β < θ < π/2 + β on the
black segment of ∂S, denoted ∂S1, the rotational flow takes
the particle to the point G(θ ) = −θ − π + 2β on the opposite
(colored) boundary segment, denoted ∂S2, i.e., the reflection
across the plane z = tan(β − π/2)x (the black dashed line in
Fig. 13). Therefore, the map from ∂S2 to itself is given by

G[F (θ )] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ + 2β, π
2 + β � θ � π

(θ + 2β, − θ + 2β), π < θ � 3π
2 − β

(θ − π + 2β, − θ + 2β), 3π
2 − β < θ � 3π

2

θ − π + 2β, 3π
2 < θ � 3π

2 + β.

(C5)

In every case, the map is ±θ + 2β mod π , hence, the set
of all iterates of θ is contained in ∂S2 ∩ {±θ + 2kβ, k ∈
Z}. Considering particle trajectories where only horizontal
reflections through the yz plane are taken into account in the
green segment, and only vertical reflections through the xy

plane are taken into account in the purple segment, the map is
given by

G[F (θ )] =
{

θ + 2β, π
2 + β � θ � 3π

2 − β

θ − π + 2β, 3π
2 − β < θ � 3π

2 + β.
(C6)

Therefore, every point in ∂S2 ∩ {θ + 2kβ, k ∈ Z} can be
found as an iterate of θ . Likewise, considering one diagonal
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FIG. 14. Particle trajectories in the limit as θz,θx → 0 and at small values of θz,θx , for constant ratios θx/θz = tan β. The first column
shows the trajectories of four particles with streamlines that meet the boundary at θ = β,3β/4,β/2,0 colored blue, green, orange, and red,
respectively. In the other columns, the same particles are tracked for θz as shown and θx = tan(β)θz, combined with the exceptional set shown
in gray.

periodic boundary crossing, θ �→ −θ + 2β, in the green or
purple segments, followed by all horizontal and vertical
crossings [Eq. (C6)], it follows that ∂S2 ∩ {−θ + 2kβ, k ∈ Z}
is also contained in the set of all iterates of θ . We have
therefore shown that the set of all iterates of θ under G ◦ F

is equal to ∂S2 ∩ {±θ + 2kβ, k ∈ Z}. Hence, when β/π is
rational, the set of all iterates of θ is finite, and particle
trajectories throughout the domain are periodic, demonstrated
by Figs. 14(a1) and 14(b1). Conversely, when β/π is irrational,
the set of all iterates is infinite, densely filling ∂S2, meaning
particle trajectories never return to their initial position, and
densely fill the entire HS, as demonstrated by Fig. 14(c1).

The rational cases are worthy of consideration in more
detail. When β = mπ/n and n is odd, the set of boundary
images ∂S2 ∩ {±θ + 2kβ, k ∈ Z} generally has 2n elements,
indicating that particles wrap around the HS 2n times before
returning to their initial position [demonstrated by the green
trajectory in Fig. 14(a1)]. However, when θ = jβ or jβ/2,
the set of boundary images has n elements, as θ ≡ −θ

mod 2β [the blue and orange trajectories in Fig. 14(a1)].

Similarly, when β = mπ/n and n is even, the set of boundary
images generally has n elements [as the denominator of 2β

is n/2, demonstrated by the green and orange trajectories in
Fig. 14(b1)], and, when θ = jβ, the set of boundary images
has n/2 elements [the red and blue trajectories in Fig. 14(b1)].

At small values of θz,θx , particles shadow the trajectories
in the limit, demonstrated by Fig. 14. Therefore, the number
of times particles wrap around the HS is determined by the
wrapping multiplicity of nearby trajectories in the limit, which
is equal to the size of the set of boundary images ∂S2 ∩ {±θ +
2kβ, k ∈ Z}. The angle β therefore has a significant impact
on the possible wrapping multiplicities, and hence the size of
cells and resonances. Cells with a high wrapping multiplicity
must pass through the atoms P1−4 in the “skinny” sections, and
hence are generally smaller than those with lower wrapping
multiplicity that occupy the “fat” sections of P1−4. Therefore,
the lowest wrapping multiplicities, corresponding to protocols
of the form θx/θz = tan(mπ/n) with n even, give rise to
the largest cells. Note that further from the limit, cells are
robust under perturbation in β, explaining why period-11 cells
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with the same itinerary exist for θz = π/6 with β = π/6 and
β = 1/2 ≈ π/6.28 [Figs. 14(b4) and 14(c4)]. These period-11
cells have wrapping multiplicity equal to 2, which derives from
the trajectory of the red particle in Fig. 14(b1).

APPENDIX D: TONGUE OVERLAP

In this Appendix, we uncover the reason for the coincidence
of two of the annihilation boundaries, corresponding to D1,2,
and the equidistance curve

d(x,D1) = d(x,D2) (D1)

for itineraries of the form I(m,q) = 41q−1(21q−1)m−1, with
q fixed and m = 1,2, . . . . We show that the cells’ centers
all lie on a great circle C∗ that passes through the point
u = Rz

θz
(−1,0,0) where the three cutting lines meet, as

demonstrated in Fig. 15. Hence, all the cells annihilate when
C∗ coincides with D1 or D2, and all the cells are equidistant to
D1,2 when C∗ bisects D1,2.

Letting R1 denote the net rotation associated with the
itinerary I(1,q) = 41q−1 and R2 denote the net rotation
associated with the itinerary 21q−1, it follows that the net
rotation for the itinerary I(m,q) is R(m,q) = Rm−1

2 R1. The
rotation R2 can be represented via its angle and axis (θ,v) or,
equivalently, as the quaternion

{q1,q2,q3,q4} = {cos (θ/2), sin (θ/2)v}. (D2)

Hence, the rotation Rm
2 has angle-axis form (mθ,v) and

quaternion form

Rm
2 = {cos (mθ/2), sin (mθ/2)v}. (D3)

Therefore, the net rotation R(m + 1,q) has quaternion repre-
sentation

R(m + 1,q) = Rm
2 R1

= {cos (mθ/2), sin (mθ/2)v}R1

= [cos (mθ/2)I + sin (mθ/2){0,v}]R1

= cos (mθ/2)R1 + sin (mθ/2){0,v}R1

= cos (mθ/2)A + sin (mθ/2)B, (D4)

FIG. 15. The exceptional set (gray) for the BST PWI
with (θz,θx) = (1.012,0.3796). The cells with base itineraries
412, 412212, 412(212)2 and their conjugates are colored. The great
circle C∗ that passes through the centers of all the cells in P4 and the
point u where D1−3 meet is shown in orange.

where I is the identity quaternion and A = R1, B = {0,v}R1

are quaternions that are independent of m. This means the (non-
normalized) axes of rotation corresponding to the itineraries
I(m,q) for m = 1,2, . . . , given by the vector parts [34] of the
quaternions R(m,q), are all linear combinations of the vector
parts a = A[2,3,4] and b = B[2,3,4]. Hence, the centers of
the corresponding cells are all coplanar, lying in the plane
spanned by a and b, and therefore all lie on the same great
circle C∗.

It remains to show that C∗ passes through the point u where
D1−3 meet. By directly computing the expressions for u, a,
and b, it can be shown that u · (a × b) = 0, and hence u, a
and b are all coplanar, as desired.
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