
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPLIED DYNAMICAL SYSTEMS c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 17, No. 4, pp. 2544--2573

Optimized Mixing by Cutting-and-Shuffling\ast 

Lachlan D. Smith\dagger , Paul B. Umbanhowar\ddagger , Julio M. Ottino\S , and Richard M. Lueptow\S 

Abstract. Mixing by cutting-and-shuffling can be understood and predicted using dynamical systems based
tools and techniques. In existing studies, mixing is generated by maps that repeat the same cut-
and-shuffle process at every iteration in a ``fixed"" manner. However, mixing can be greatly improved
by varying the cut-and-shuffle parameters at each step using a ``variable"" approach. To demonstrate
this approach, we show how to optimize mixing by cutting-and-shuffling on the one-dimensional line
interval, known as an interval exchange transformation (IET). Mixing can be significantly improved
by optimizing variable protocols, especially for initial conditions more complex than just a simple two-
color line interval. While we show that optimal variable IETs can be found analytically for arbitrary
numbers of iterations, for more complex cutting-and-shuffling systems, computationally expensive
numerical optimization methods are required. Furthermore, the number of control parameters grows
linearly with the number of iterations in variable systems. Therefore, optimizing over large numbers
of iterations is generally computationally prohibitive. We demonstrate an ad hoc approach to cutting-
and-shuffling that is computationally inexpensive and guarantees that the mixing metric is within a
constant factor of the optimum. This ad hoc approach yields significantly better mixing than fixed
IETs, which are known to produce weak-mixing, because cut pieces never reconnect. The heuristic
principles of this method can be applied to more general cutting-and-shuffling systems.
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1. Introduction. Cutting-and-shuffling has recently been shown to be an effective method
for mixing granular materials [48, 47, 22, 21, 8, 36, 35, 42, 46, 57] and fluids [43, 45, 20, 5, 16,
18, 34, 38, 6, 26, 55, 50, 38, 39, 19, 4]. In addition, cutting-and-shuffling has been linked to
digital filters [9, 1] and ``kicked"" Hamiltonian mappings [41, 40]. However, previous studies
only consider systems where the same cut-and-shuffle action is repeated at every step, for
example, cutting a deck of cards at the 10th and 20th cards, and swapping the top pile with
the bottom pile. Repeating this cut-and-shuffle could potentially transform an unmixed deck
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OPTIMIZED MIXING BY CUTTING-AND-SHUFFLING 2545

of cards (e.g., organized by suit) into a ``mixed"" state (no two cards of the same suit together).
However, it seems likely that a mixed state would be reached faster if the locations of the cuts
were chosen strategically at each step. Here we explore how this can be accomplished.

Consider the simplest form of cutting-and-shuffling for a continuous system: cutting a
1D line interval into m pieces and permuting them to reassemble the line. An example of
this process, known as an interval exchange transformation (IET) [24, 25, 51], is shown in
Figure 1(a), where the line, initially consisting of black, gray, and white segments of equal
length, is cut into four pieces, and the permutation \pi = 3142 represents the rearrangement
of the four cut pieces. The notation \pi = 3142 means that the third cut piece moves to the
first position, the first piece moves to the second position, the fourth piece moves to the
third position, and the second piece moves to the fourth position. In the second iteration,
N = 2, the same cut locations and permutations are used. We refer to IETs with the same
cut locations and permutation at every iteration as ``fixed,"" since the same action is repeated;
these can be thought of as analogues of time-periodic fluid flows. Fixed IETs like those in
Figure 1(a) can generate good mixing.

While fixed IETs can produce mixing, in the sense of complete homogenization of material
given infinite time, fixed IETs yield at best ``weak-mixing"" [24, 25, 23, 30, 52, 3].

Definition 1.1 (weak mixing [54, 49]). Given a measure \mu for a set M , a measure-preserving
transformation f : M \rightarrow M is weak-mixing if and only if for any two measurable sets A,B \subset 
M we have

(1.1) lim
n\rightarrow \infty 

1

n

n - 1\sum 
k=0

| \mu 
\Bigl( 
fk (A) \cap B

\Bigr) 
 - \mu (A)\mu (B) | = 0.

That is, for any set A, the sequence of sets fn(A) becomes independent of any other set B,
provided a few instances of time are neglected. In contrast, chaotic systems produce ``strong
mixing"" [49, 47, 7].

Definition 1.2 (strong mixing [54, 49]). Given a measure \mu for a set M , a measure-preserving
transformation f : M \rightarrow M is strong mixing if and only if for any two measurable sets
A,B \subset M we have

(1.2) lim
n\rightarrow \infty 

\mu (fn (A) \cap B) = \mu (A)\mu (B) .

That is, for any set A, the sequence of sets fn(A) becomes, asymptotically, independent
of any other set B. Strong mixing (1.2) implies weak mixing (1.1). To demonstrate transport
and mixing for fixed IETs, we consider the space-time plots shown in Figure 1(b),(c). Here,
the iterates of the 1D line interval under the cut-and-shuffle operation are stacked so that
the initial condition (N = 0) is at the top and iteration N = 65 is at the bottom (many
intermediate iterates have been omitted). When the lengths of the cut pieces are rationally
dependent (Figure 1(b)), or the permutation is reducible,1 the colors do not mix well. In fact,

1A permutation \pi is said to be irreducible if applying \pi to any of the subsets \{ 1\} , \{ 1, 2\} , . . . , \{ 1, 2, . . . , L - 1\} 
does not yield a permutation of just the elements of that subset. A permutation that is not irreducible is termed
reducible.D
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2546 L. D. SMITH, P. B. UMBANHOWAR, J. M. OTTINO, AND R. M. LUEPTOW

the colors reassemble their initial condition for the example in Figure 1(b). When the lengths
of the cut pieces are rationally independent and the permutation is irreducible and not a
rotation, the IET satisfies the Keane minimality condition [24, 25, 52] and yields weak-mixing
of the colors (Figure 1(c)). However, additional parametric freedom in the mixing process can
be introduced by allowing the cut locations and/or permutation to change at every iteration.
We call this approach ``variable,"" and it is analogous to time-dependent fluid flow, which
changes at every instance. In this study we consider variable IETs such that the permutation
is fixed, but the cut locations can vary. Intuitively, the additional control freedom at each
iteration should enable faster and better mixing when using variable IETs rather than fixed
IETs.

Finding the best variable protocol is an optimal control problem. That is, the goal is to
minimize or maximize an objective function (the degree, rate, or efficiency of mixing) over
the parameter space. Optimal mixing has been studied for time-dependent laminar fluid flows
[10, 14, 15, 31, 37, 53, 33], in which mixing occurs by stretching-and-folding. Here we consider
optimal mixing by cutting-and-shuffling. There are a number of differences between mixing
produced by cutting-and-shuffling compared to traditional mixing produced by stretching-and-
folding. To start with, cutting-and-shuffling results in discontinuous interfaces when applied
to a scalar field, even when the initial scalar field is smooth. This means mixing can be highly
sensitive to parameter choices, even for a single iteration. In addition, standard mixing metrics
such as the mix-norm [32], intensity of segregation [11], and interface length [29] do not vary
smoothly, or even continuously, across the parameter space, which poses unique challenges in
applying optimal control theory to cutting-and-shuffling.

In subsection 2.1, we discuss different metrics that can be used to quantify mixing by IETs.
A new metric is introduced that quantifies how well the colored segments are broken up into
smaller segments and determines whether the different colors are evenly distributed along the
line. We demonstrate that neither a fixed IET nor a naive, ad hoc, variable approach---cutting
the longest segments of each color in half at each iteration---yields optimal mixing.

In subsection 2.2, we demonstrate how to analytically find optimal variable IETs with fixed
permutation but variable cut locations. We show that optimal mixing can only be produced
when the permutation takes a specific form, and we demonstrate how to find cut locations
that achieve optimal mixing. Then in section 3 we show that optimal variable IETs produce
significantly better mixing than general fixed IETs, and that when the initial condition is
more complex, there is more improvement gained by using an optimal variable IET compared
to both random fixed IETs and optimal fixed IETs.

In section 4, we discuss strategies for mixing by cutting-and-shuffling over many itera-
tions. For general cutting-and-shuffling systems, both fixed and variable, finding protocols
that optimize mixing over many iterations can be computationally expensive. One alternative
option to achieve good, though suboptimal, mixing is to use geometric properties of fixed
piecewise isometries. For instance, fixed IETs that satisfy the Keane minimality condition
[24, 52, 3], such as in Figure 1(c), yield weak-mixing. However, for initial conditions such
as the three-color initial condition in Figure 1, it is likely that a weak-mixing fixed IET will
produce slow mixing, since identically colored segments sometimes reconnect after the cut
pieces are shuffled. This means colored segments will not always be broken into smaller and
smaller pieces. Another alternative is to optimize over short time-horizons. We demonstrateD
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1 2 3 4

1 23 4

(a)

(b)

(c)

1 2 3 4

1 23 4

Figure 1. Cutting-and-shuffling a line with a fixed IET. (a) Two iterations of a fixed IET. The line,
initially consisting of single black, gray, and white segments, is cut into four pieces and rearranged according to
the irreducible permutation 3142 at each iteration. Cut locations are shown by red vertical lines. The cut pieces
have lengths x, rx, r2x, r3x, where r = 1.5 is the ratio of successive cut piece lengths, and x = (r - 1)/(r4  - 1),
as used by Krotter et al. [28]. (b),(c) Iterates of the line interval are stacked vertically to create a space-time
plot. With the same permutation, rational values of r produce (b) periodic dynamics, while irrational values of
r generate (c) weak-mixing. For fixed IETs like these, the cut locations and permutation are the same at each
iteration and can produce mixing (e.g., (c)), but if the cuts were strategically chosen at each iteration, mixing
would be improved.

this approach for IETs using the computationally inexpensive ad hoc method introduced in
subsection 2.1 which is equivalent to a one-iteration time-horizon optimization. This ad hoc
method produces significantly better mixing than weak-mixing fixed IETs, because segments
of the same color never reconnect. Similar heuristic approaches could be applied to more gen-
eral cutting-and-shuffling systems by cutting the largest unmixed regions at each iteration.

2. Optimal variable cutting-and-shuffling.

2.1. Mixing metrics. Optimization of mixing requires a mixing metric. Qualitatively, for
IETs with more than two differently colored segments, mixing is effective if the segments are
broken up into many smaller segments and the different colors are evenly distributed along
the line. Thinking of a deck of cards, the suits would be considered well mixed if any set of
four consecutive cards were to contain one card of each suit.
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2548 L. D. SMITH, P. B. UMBANHOWAR, J. M. OTTINO, AND R. M. LUEPTOW

For a line interval consisting of m colored segments, \scrI 1, . . . , \scrI m, with lengths | \scrI i| as shown
in Figure 2(a), one mixing metric used previously is the longest segment length

(2.1) U = max
1\leq i\leq m

| \scrI i| ,

termed the percent unmixed [28, 56]. Examples are U = | \scrI 5| in Figure 2(a) and U = 1/9
in Figure 2(b). Note that we assume periodic boundary conditions at the ends of the line,
so segments of the same color at the beginning and end of the line are connected. Using
periodic boundaries means that U is invariant under rotations (left or right shifts). The same
periodic boundary conditions have also been used in past studies [2, 47, 14]. Finding IETs
that minimize U ensures that all the segment lengths are small, suggesting good mixing, but
U does not consider whether the colors are distributed evenly along the line. For the deck
of cards analogy, U is minimized if every set of two consecutive cards contains two different
suits, but this can be achieved by riffling the hearts and diamonds, so that they alternate, and
riffling the spades and clubs. Even though U is minimized, the deck would not be considered
mixed, as all the red cards are separate from all the black cards.

To measure the evenness of color distribution, we calculate the longest distance between
segments of the same color. Letting dij represent the distance between the closest edges of
the jth and (j + 1)th segments of the ith color, where i spans the number of different colors
and j spans the number of segments with the ith color, the evenness metric is

(2.2) D = max
i,j

dij .

In Figure 2(a), D = d32, and in Figure 2(b), D = 2/9. When the colors are evenly distributed
D is small, and when they are clustered together D is large. Note that if there are only two
colors, then D and U are identical; otherwise they are generally different.

For an IET that starts with k differently colored segments and uses a length L permutation,
at most L - 1 new segments are created per iteration. Therefore, there are at most N(L - 1)+k
total segments after N iterations, and U has a minimum of (N(L  - 1) + k) - 1, when all the
segments are of equal length. We scale U by its minimum value,

(2.3) \^U(N,L, k) = (N(L - 1) + k)U,

to measure how well an IET has cut the colored segments into smaller pieces compared to the
known optimum. Values of \^U greater than 1 correspond to suboptimal cutting of the colored
segments into smaller pieces. Similarly, D is minimized when there are k  - 1 differently
colored segments between each pair of identically colored segments (e.g., Figure 2(b)), and
each segment has length (N(L - 1) + k) - 1, so we scale D:

(2.4) \^D(N,L, k) =
N(L - 1) + k

k  - 1
D.

Values of D greater than 1 correspond to uneven distributions of the different colors.
For mixing colors on the line, there are two competing interests---small segment lengths

(U) and evenly distributed colors (D)---and an optimal protocol for one metric is not neces-
sarily optimal for another. We use simple linear scalarization to handle this multiobjectiveD
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(a)

(b)

Figure 2. Different metrics evaluate different aspects of mixing colors on the line. (a) | \scrI i| measures the
length of the ith segment, whereas dij measures the distance between the closest edges of the jth and (j + 1)th
segments of the ith color. The longest segment is U = | \scrI 5| , and the longest distance between segments of the
same color is D = d32. (b) The optimal case, where all | \scrI i| are equal and all dij are equal, such that U = 1/9
and D = 2/9.

optimization task by defining the metric, \Phi = ( \^U+ \^D)/2, as the total measure of mixing. Val-
ues of \Phi greater than 1 mean that the segments are not cut into small pieces, or the colors are
not evenly distributed, or both. When segments are equal in length and colors are uniformly
distributed, \Phi = \^U = \^D = 1.

Considering the fixed IET in Figure 1(c), even though it is known to be weak-mixing (i.e.,
given an infinite number of iterations it will completely homogenize the colors), we see that
after 65 iterations mixing is suboptimal. Only 148 segments are produced, compared to the
maximum N(L  - 1) + k = 198. In addition, the segments are clearly not equal in length,
quantified by \^U = 3.4, meaning the longest segment is more than three times longer than in
an optimal case. Similarly, the colors are not well distributed, \^D = 8.3. There appears to be
a darker region near the middle of the line, where black segments are clustered together, and
a lighter region near the right-hand side, where white segments are clustered together. In this
case, \Phi = 5.9 is significantly higher than an optimal variable IET for which \Phi = 1.

For a given number of cuts and a given number of initial colors, optimal mixing corresponds
to evenly distributed segments of equal length as in the case shown in Figure 2(b). The
question is: Can variable IETs be found that achieve optimal mixing? A naive, ad hoc,
approach is to cut the longest segments in half at each iteration. This is demonstrated for
the two-color initial condition in Figure 3, where the longest black and gray segments at each
iteration are cut in half, and the pieces are rearranged according to the permutation \pi = 132.
For such a simple approach, this method performs remarkably well. Whenever N = 2i - 1, theD
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Figure 3. Mixing the two-color initial condition (top row) using the permutation 132 and the ad hoc method,
where the two cuts (red) are made in the middle of the longest black and gray segments at each iteration. The
bottom row at N = 20 corresponds to \Phi = 21/16 \approx 1.3, whereas \Phi = 1 at N = 1, 3, 7, 15.

segments all have equal length, and the maximum number of segments, N(L - 1)+k = 2N+2,
has been created, meaning \Phi = 1 (N = 1, 3, 7, 15 in Figure 3). However, for any other value
of N , mixing is suboptimal. For instance, \Phi = 21/16 \approx 1.3 at N = 20 (the bottom row of
Figure 3). In the next section, we demonstrate how to find optimal variable IETs (\Phi = 1).

2.2. Finding optimal variable IETs. Consider the two-color initial condition with the
first half of the line colored black and the second half gray (top row of Figure 4(a)), and
a variable IET TL,\pi that cuts the line into L pieces, with the jth cut in the Nth iteration
located at cNj , and rearranges the cut pieces according to a permutation \pi . After cutting,
but before rearrangement, there are L cut pieces, each with a left edge and a right edge. After
rearrangement, new segments and new interfaces can only be created if left and right edges
of different colors join. Hence, at most L - 1 new segments/interfaces can be created (taking
into account the existing interface in the initial condition between the beginning and end ofD
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the line). For example, the permutation 132 has three cut pieces and creates at most two new
segments per iteration, as demonstrated in Figure 4(a). Therefore, after N iterations there
can be at most N(L  - 1) new segments. However, not all variable IETs produce L  - 1 new
segments per iteration, the trivial example being any IET that uses the identity permutation,
which cuts but does not shuffle, leaving the line unchanged regardless of the cut locations.
Similarly, rotation permutations, i.e., those of the form R(i) = i + r mod L, do not shuffle,
and so cannot produce new segments [56]. The following proposition gives the necessary and
sufficient conditions for a variable IET to be able to produce L - 1 new segments per iteration.

Proposition 2.1. For the left-right two-color initial condition, there exists a variable IET
TL,\pi that creates L - 1 new segments per iteration if and only if L is odd and \pi is of the form

(2.5) \pi = 1\pi 2(n+ 2)

\Biggl[ 
k\prod 

i=2

\pi 1(i)\pi 2(i+ n+ 1)

\Biggr] 
(n+ 1)

\Biggl[ 
n\prod 

i=k+1

\pi 1(i)\pi 2(i+ n+ 1)

\Biggr] 
,

where n = (L - 1)/2, \pi 1 is a permutation of the set \{ 2, . . . , n\} , \pi 2 is a permutation of the set
\{ n+ 2, . . . , L = 2n+ 1\} , and 1 \leq k \leq n, or \pi is a rotation of a permutation of this form.

By a rotation of a permutation \pi \in Sn, we mean a permutation \tau \in Sn of the form
\tau (i) = \pi (i + r mod L) for some r. For example, the rotations of the permutation \pi = 1324
are 3241, 2413, and 4132. The rotated permutation \tau is the composition \pi \circ R, where R is
the rotation permutation R(i) = i+ r mod L.

As an example of Proposition 2.1, for L = 7 choose \pi 1(2 3) = (3 2), \pi 2(5 6 7) = (6 5 7), and
k = 2; then

(2.6) \pi = 1\pi 2(5)\pi 1(2)\pi 2(6) 4\pi 1(3)\pi 2(7) = 1635427.

By Proposition 2.1, there exist cut locations such that the corresponding variable IET, TL,\pi ,
creates L  - 1 = 6 new segments per iteration. The same is true for any rotation of \pi , e.g.,
6354271.

Corollary 2.2. For L = 2n+ 1 odd, there are (n!)2(2n+ 1) permutations \pi for which there
is a variable IET TL,\pi that can produce L - 1 new segments per iteration.

Proof. There are (n  - 1)! choices for the permutation \pi 1, n! choices for the permutation
\pi 2, n choices for k, and 2n + 1 rotations of a permutation of length 2n + 1. Therefore, the
number of rotations of permutations of the form (2.5) is

(2.7) n(n - 1)!n!(2n+ 1) = (n!)2(2n+ 1).

We prove Proposition 2.1 using the following results.

Proposition 2.3. For the left-right two-color initial condition and a permutation \pi with
length L, if there exist cut locations c1j, j = 1, . . . , L  - 1, such that cutting and rearranging
the initial condition according to \pi yields L  - 1 new segments, then there exist cut locations
cNj for all N > 1 and j = 1, . . . , L - 1 such that the corresponding variable IET, TL,\pi , creates
L - 1 new segments per iteration.D
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(c)

(a)

(d) (e)

(b)

Figure 4. Demonstration of Proposition 2.3 for the two-color initial condition (top row of (a)) and permu-
tation \pi = 132. The colors of the left edges of cut pieces are labeled lN1, lN2, lN3, and the colors of the right
edges of cut pieces are labeled rN1, rN2, rN3. (a) In the first iteration, N = 1, cutting within the black segment
and within the gray segment yields the maximum number of segments, 2N +2 = 4. This is because r1j = l1,j+1,
j = 1, 2, i.e., cuts are within segments, and r1,\pi (j) \not = l1,\pi (j+1), i.e., each cut creates a new black-gray interface
after rearrangement by \pi . (b)--(d) For N = 2, as long as the first cut is located within a black segment and the
second cut is located within a gray segment, the maximum number of segments, 2N + 2 = 6, is produced. This
is because l2j = l1j and r2j = r1j for j = 1, 2, 3, and so r2j = l2,j+1, j = 1, 2, and r2,\pi (j) \not = l2,\pi (j+1). (e) For
N = 2, locating the first cut within a gray segment and the second cut within a black segment does not yield the
maximum number of segments. There are still only four segments. (Due to periodic boundary conditions, the
black segments at the beginning and end of the line form a single segment.)

Proof. Suppose there exist cut locations c1j , j = 1, . . . , L  - 1, such that cutting and
rearranging the initial condition according to \pi produces L - 1 new segments. Let lN1, . . . , lNL

denote the colors of the left edges of the cut pieces for the Nth iteration, and let rN1, . . . , rNL

denote the colors of the right edges of the cut pieces. From the initial condition, we know l11
is black (the left edge of the line) and r1L is gray (the right edge of the line), and since L - 1D
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new segments are created after rearrangement by \pi , each left edge must join with a differently
colored right edge, i.e., r1,\pi (j) \not = l1,\pi (j+1) for j = 1, . . . , L. After rearrangement there are two
cases: the leftmost segment is either black or gray. If the leftmost segment is black, for the
second iteration choose the cut locations c2j , j = 1, . . . , L  - 1, such that the left edges and
right edges satisfy l2j = l1j and r2j = r1j , respectively, for j = 1, . . . , L. It follows that after
rearrangement by \pi , adjacent segments satisfy r2,\pi (j) = r1,\pi (j) \not = l1,\pi (j+1) = l2,\pi (j+1), so each
left edge joins with a differently colored right edge, and L - 1 new segments have been created.

If the leftmost segment is gray, for the second iteration choose the cut locations c2j ,
j = 1, . . . , L  - 1, such that the left edges and right edges satisfy l2j \not = l1j and r2j \not = r1j ,
respectively, i.e., the left and right edges of cut pieces have the opposite colors of the first
iteration. Again, \pi must join every left edge with a differently colored right edge, since that
was the action in the first iteration. Choosing the opposite color sequence is equivalent to
switching the two colors (black segments become gray, and vice versa), then performing the
cut and shuffle, and then switching the two colors back.

In successive iterations, as long as the cut locations cNj are chosen such that the left
edges lNj and right edges rNj of cut pieces have the colors l11, . . . , l1L and r11, . . . , r1L (or
their opposites if the first colored segment at the Nth iteration is gray), then L  - 1 new
segments will be created.

For example, for the two-color initial condition, variable IETs with permutation \pi = 132
create two new segments in the first iteration, N = 1, as long as the first cut c11 is in the black
segment and the second cut c12 is in the gray segment, as shown in Figure 4(a). In successive
iterations, N \geq 2, two new segments are created if the first cut cN1 is in a black segment and
the second cut cN2 is in a gray segment, as shown in Figure 4(b)--(d) for N = 2. Note that
the cuts do not need to occur in the first black and gray segments, e.g., Figure 4(c),(d).

Proposition 2.3 shows that the creation of new segments depends only on the colors of the
edges of the cut pieces and does not depend on the colors within the interior of each cut piece.

From Proposition 2.3, it suffices to consider only whether there exist cut locations for a
permutation that can create L - 1 new segments in the first iteration.

Proposition 2.4. For a permutation \pi , if there exist cut locations cNj such that the corre-
sponding variable IET TL,\pi yields L  - 1 new segments per iteration, then for any rotation \tau 
of \pi , there exist cut locations c\prime Nj such that TL,\tau yields L - 1 new segments per iteration.

Proof. The action of the IET with permutation \tau (i) = \pi (i+ r mod L), i.e., \tau is a rotation
of \pi , is to perform the rearrangement of the cut pieces by \pi and then shift all the segments
along the line. Therefore, if L - 1 new segments are created in the first iteration by TL,\pi with
cuts c1j , then the same number of segments is created by TL,\tau with cuts c\prime 1j = c1j . From
Proposition 2.3 there exist cut locations c\prime Nj for all N > 1 such that TL,\tau produces L - 1 new
segments per iteration.

Therefore, we need only consider permutations \pi such that \pi (1) = 1, as all other permu-
tations are rotations of these.

Proposition 2.5. For the left-right two-color initial condition and a permutation \pi , there
exist cut locations cNj such that the corresponding variable IET TL,\pi yields L - 1 new segments
per iteration only if L is odd, and at each iteration n = (L - 1)/2 cuts are within black segments,
and n cuts are within gray segments.
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Proof. A new black-gray interface can only be created when the right edge of a black
cut piece joins with the left edge of a gray cut piece, and vice versa for gray-black interfaces.
Therefore, the maximal number of new segments, L - 1, can only be created at each iteration if
the number of black right edges matches the number of gray left edges, and the number of gray
right edges matches the number of black left edges. Otherwise, right and left edges of the same
color would have to join, meaning a new interface would not be created. Furthermore, cuts
must not occur at existing interfaces, because that cannot lead to a net increase in interfaces.
This means cuts must occur within colored segments, and for each black/gray right edge there
must also be a left edge with the same color. To create L  - 1 new interfaces, the number
of cuts within black segments must match the number of cuts within gray segments at each
iteration. Otherwise, there is an imbalance of either black or gray edges. When L is odd
(L  - 1 cut locations), this can be achieved by having (L  - 1)/2 cuts in black segments and
(L  - 1)/2 cuts in gray segments. However, when L is even, there must be either more cuts
within black segments or more cuts within gray segments, resulting in an imbalance in the
number of black edges and gray edges.

We can now return to the proof of Proposition 2.1. From the previous three propositions
we can restrict our attention to the first iteration of variable IETs TL,\pi , such that \pi (1) = 1,
L = 2n + 1 is odd, and cuts c1j are located such that n are in the black segment and n are
in the gray segment. After cutting (but before rearranging) the left-right initial condition,
there are 2n + 1 cut pieces; let's call them p1, . . . , p2n+1. The first n cut pieces, p1, . . . , pn,
are black, and we label them b1, . . . , bn, i.e., bi = pi. The final n cut pieces, pn+2, . . . , p2n+1,
are gray, and we label them g1, . . . , gn, i.e., gi = pi+n+1. There is also one middle piece, pn+1,
that is black on the left and gray on the right. Since \pi (1) = 1, after rearrangement by \pi , the
first piece remains in the first position. For optimal mixing, the next piece must be gray, so
it can be any one of the gi. Ignoring the black-gray piece, pn+1, for now, the next piece must
be black, i.e., one of the bi, and we simply alternate between black and gray pieces to get a
sequence

(2.8) b1g\pi \ast 
2(1)

b\pi 1(2)g\pi \ast 
2(2)

. . . b\pi 1(n)g\pi \ast 
2(n)

,

where \pi 1 is a permutation of \{ 2, . . . , n\} , and \pi \ast 
2 is a permutation of \{ 1, . . . , n\} , representing

the permutations of the black and gray pieces, respectively. Since bi = pi and gi = pi+n+1,
this is equivalent to the sequence

(2.9) p1p\pi \ast 
2(1)+n+1p\pi 1(2)p\pi \ast 

2(2)+n+1 . . . p\pi 1(n)p\pi \ast 
2(n)+n+1

= p1p\pi 2(n+2)p\pi 1(2)p\pi 2(n+3) . . . p\pi 1(n)p\pi 2(2n+1),

where \pi 2(i) = \pi \ast 
2(i  - n  - 1) + n + 1 is the permutation of \{ n + 2, . . . , 2n + 1\} obtained by

conjugating \pi \ast 
2 with the shift i \mapsto \rightarrow i+ n+ 1. Returning to the black-gray piece, pn+1, we can

insert it immediately after any of the gray pieces, i.e., those of the form p\pi 2(i), to get L  - 1
new segments. In such a case, the permutation of the pieces, i.e., the sequence of indices, is
of the form

(2.10) \pi = 1\pi 2(n+ 2)

\Biggl[ 
k\prod 

i=2

\pi 1(i)\pi 2(i+ n+ 1)

\Biggr] 
(n+ 1)

\Biggl[ 
n\prod 

i=k+1

\pi 1(i)\pi 2(i+ n+ 1)

\Biggr] 
,

D
ow

nl
oa

de
d 

11
/1

2/
18

 to
 1

29
.7

8.
69

.1
34

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMIZED MIXING BY CUTTING-AND-SHUFFLING 2555

where 1 \leq k \leq n indicates which gray piece the black-gray piece follows. This proves Propo-
sition 2.1.

Note that some reducible permutations, such as 132, can produce optimal mixing in the
two-color variable case (Figure 5(b)), but they cannot even produce weak-mixing in the fixed
case, as they do not satisfy the Keane minimality condition [24].

Now that we know which permutations can produce the maximal number of new colored
segments; the question is where the cuts need to be located within the black and gray segments
to achieve optimal mixing such that each segment in the final state has the same length.
Consider the case when L = 3 and \pi = 132; at each iteration we cut the first black segment
in half and the first gray segment in half at cut locations cNj , as shown in Figure 5(a).
By Proposition 2.1 and the proof of Proposition 2.3, the maximum number, L  - 1 = 2, of
new segments will be created at each iteration. However, the colored segments will not have
equal lengths, so the protocol does not mix optimally. This can be overcome by rescaling the
segments after the desired number of iterations, N\ast , is reached so that all segments have the
same length, and then iterating backward to find where the cuts need to be located. In this
case, the rescaling occurs after N\ast = 2 iterations, between the bottom rows of Figure 5(a),(b).
By iterating backward (upward) in Figure 5(b), the optimal cut locations c\prime Nj are found, such
that \Phi = 1 at N = N\ast = 2. This procedure for finding optimally mixing variable IETs is
outlined in Algorithm 2.1, and can be used in conjunction with Proposition 2.1 to find variable
IETs TL,\pi that achieve \Phi = 1 for any number of iterations N\ast and any number of cut pieces
L.

Algorithm 2.1 Find an optimally mixing variable IET with L pieces and N\ast iterations.

1: Choose a permutation \pi that satisfies Proposition 2.1
2: for N = 1, . . . , N\ast do
3: Choose cut locations cNj , 1 \leq j \leq L - 1, such that the first n = (L - 1)/2 are in black

segments and the last n are in gray segments
4: Perform the IET TN with permutation \pi and cut locations cNj

5: end for
6: Rescale segments in output such that all have equal length
7: for N = N\ast , . . . , 1 do
8: Perform the inverse of TN , adjusting for the rescaled segment lengths, i.e., reconnect

black and gray segments in the opposite way to how TN cut them
9: Record the points where reconnection occurs after the inverse IET; call them c\prime Nj

10: end for
11: return Optimal cut locations c\prime Nj , for 1 \leq N \leq N\ast and 1 \leq j \leq L - 1

Cutting the first black segment and first gray segment at each iteration, as in Figure 5,
gives one optimal mixing protocol, but there are many more. For instance, before cutting at
N = 2, there are two black segments and two gray segments. Instead of performing the cuts in
the first black segment and first gray segment, we can also achieve optimal mixing by cutting
in the first black segment and in the second gray segment (Figure 4(c)), or in the second black
segment and in the second gray segment (Figure 4(d)). As long as the first cut is in a black
segment and the second cut is in a gray segment to its right, optimal mixing will be achieved.D
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1 2 3

1 23

1 2 3

1 23

1 2 3

1 23

1 2 3

1 23

rescale

(a) (b)

Figure 5. Finding optimal cut locations for the two-color initial condition and variable IET with permuta-
tion 132, using Algorithm 2.1. Red lines indicate cut locations. (a) Cutting at the midpoint of the first black
and gray segments at each iteration yields the maximum number of segments, 2N + 2, but for N \geq 2 segment
lengths are unequal. Cut locations are denoted cNj, where 1 \leq j \leq L  - 1 is the location of the jth cut in the
N th iteration. Optimal cut locations can be found by rescaling the bottom row of (a) so that all segments have
the same length, as shown in the bottom row of (b), then iterating backward (upward) using the same sequence
of cuts as in (a) to find the optimal cut locations, c\prime Nj.

We code the different optima as pairs (i, j), where i represents which black segment is cut
(e.g., i = 1 if the first black segment is cut) and j represents which gray segment is cut (e.g.,
j = 2 if the second gray segment is cut). At the Nth iteration, there are N black segments
and N gray segments, so 1 \leq i \leq j \leq N . Hence, at the Nth iteration, there are (N+1

2 ) distinct
pairs of optimal cut locations, where

\bigl( 
a
b

\bigr) 
denotes the binomial coefficient. Over the full N

iterations, the total number of distinct sets of optimal cut locations equals

(2.11)
N\prod 
i=1

\biggl( 
N + 1

2

\biggr) 
=

(N !)2 (N + 1)

2N
.

This same approach can be used to find optimal mixing protocols for arbitrary numbers of
iterations, N , and cut pieces, L = 2n+1. At the Nth iteration, there are (N - 1)(L - 1)+2 =
2[n(N  - 1) + 1] total segments, half black and half gray. Assuming that the first segment is
always black (or recoloring as needed), that the first n cuts are always within black segments,
and that the final n cuts are within gray segments, by the proof of Proposition 2.3 optimal
mixing (\Phi = 1) is guaranteed (after rescaling segment lengths). As in the case L = 3 above,
we code the optimal cut locations by 2n-tuples (i1, . . . , in, j1, . . . , jn), where the i's represent
which black segments are cut (e.g., i3 = 2 means the third cut occurs in the second black
segment), and the j's represent which gray segments are cut (e.g., j5 = 3 means the fifth gray
segment cut occurs in the third gray segment). Since the cuts in the black segments must
come first, the i's and j's satisfy 1 \leq i1 \leq \cdot \cdot \cdot \leq in \leq j1 \leq \cdot \cdot \cdot \leq jn \leq n(N  - 1) + 1, and hence
there are (n(N+1)

2n ) possibilities. However, in some cases there are even more optima, because
it is not always necessary to perform the first n cuts within black segments and the final n cutsD
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within gray segments. For example, for variable IETs using the permutation 14325, it can be
shown that after the first iteration we can achieve optimal mixing by locating the cuts in the
order black, black, gray, gray (BBGG) as described above, or the orders BGGB, GBBG, and
GGBB. The orders BGBG and GBGB cannot produce optimal mixing (see Appendix A for
full details). In the case L = 3 with permutation 132, the first cut must always be in a black
segment and the second in a gray segment. Hence, (2.11) accounts for all possibilities (see
Appendix A).

2.3. Extension to more than two colors. What is important is that we have a formulaic
approach to find variable IETs that produce optimal mixing. Even though most of the results
in this section use a two-color initial condition, many of the ideas can be extended to initial
conditions with more colors. The main challenge when extending to more than two colors
is that the metrics U and D are not equivalent. Optimal mixing is not simply a matter of
producing the maximal number of segments as in the two-color case; the ordering of the colored
segments is equally important to minimize D. Therefore, it is more difficult to find necessary
conditions for mixing to be optimal. However, it is relatively easy to find permutations and
cut locations that produce optimal mixing for more than two colors. We follow essentially the
same construction as the two-color case. For k colors, C1, . . . , Ck, L - 1 must be a multiple of k
in order to produce the same number of each colored segment at each iteration (equivalent to
the condition that L must be odd in Proposition 2.5). In the first iteration, we make (L - 1)/k
cuts within each of the k segments (as in Proposition 2.5). For the permutation \pi , we choose
\pi (1) = 1 (Proposition 2.4 is valid for any number of colors), so that after rearranging, the first
colored segment is still color C1. Then, through trial and error or solving a system of linear
equations with the colors of the left and right edges of cut pieces as variables (see Appendix A),
we find the permutations that yield the sequence C1, . . . , Ck repeated 1 + (L  - 1)/k times,
i.e., those permutations that yield (L  - 1)/k new sequences of the colors. This is equivalent
to repeating the black-gray pair for the two-color case. In successive iterations, as long as cut
segments have the same colors as in the first iteration (i.e., the first (L - 1)/k cuts are within
segments with color C1, the next (L  - 1)/k cuts are within segments with color C2, and so
on), the IET will yield the sequence C1, . . . , Ck repeated 1 + N(L  - 1)/k times, where N is
the number of iterations. We then use the same rescaling process outlined in Algorithm 2.1
and demonstrated in Figure 5 to find cut locations such that all the segments have the same
length after a desired number of iterations, which means the IET mixes optimally, i.e., \Phi = 1.

Consider the three-color initial condition (k = 3) in Figure 6. To produce optimal mixing,
L  - 1 must be a multiple of 3. For L = 4, one cut is made within each of the black, gray,
and white segments, as shown in the top row of Figure 6(a). We assume that \pi (1) = 1, so
that after rearrangement by \pi , the first piece, p1, does not move. Since p1 has a black right
edge, to obtain the sequence black-gray-white repeated 1+(L - 1)/k = 2 times, the next piece
must have a gray left edge, meaning it must be p3. Now, the right edge of p3 is white, so the
next piece must have a black left edge, meaning it must be p2. Lastly, the fourth piece, p4,
remains in place. Therefore, the permutation \pi = 1324 yields two repeating black-gray-white
sequences. In subsequent iterations, the sequence black-gray-white will be repeatedN+1 times
as long as the first cut is within a black segment, the second cut is within a gray segment, and
the third cut is within a white segment. This is demonstrated in Figure 6(a), where the cutsD
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1 2 3 4

1 23 4

1 2 3 4

1 23 4

1 2 3 4

1 23 4

1 2 3 4

1 23 4

rescale

(a) (b)

Figure 6. Finding optimal cut locations for the three-color initial condition and variable IET with permu-
tation 1324. Red lines indicate cut locations. (a) Cutting at the midpoint of the first black, gray, and white
segments at each iteration yields the maximum number of segments, N(L  - 1) + k = 3N + 3, but for N \geq 2
segment lengths are unequal. Optimal cut locations can be found by rescaling the bottom row of (a) so that all
segments have the same length, as shown in the bottom row of (b), then iterating backward (upward) using the
same sequence of cuts as in (a) to find the optimal cut locations.

are made at the midpoints of the first black, gray, and white segments. However, for N = 2
in Figure 6(a), mixing is suboptimal because the segment lengths are unequal. Optimal cut
locations are found using the same rescaling process demonstrated in Figure 5; i.e., segments
in the bottom row of Figure 6(a) are rescaled to obtain the bottom row of Figure 6(b), and
then the IET is iterated backward.

The above approach provides a relatively easy way to find permutations and cut locations
that mix optimally for any number of colors. In fact, the permutations found using this
approach are the only permutations that can mix optimally. The only permutations that
this method would not capture are those that permute the repeating sequence of colors, for
instance, changing from repeating black-gray-white to repeating black-white-gray. Consider
the first iteration, N = 1, in Figure 6(a), and suppose that the repeating sequence of colors
changed from black-gray-white to black-white-gray. Since the piece p1 has a black left edge,
after rearrangement it must be preceded by a piece with a gray right edge, meaning it must
be preceded by p2. However, p2 followed by p1 results in the sequence black-gray-black, and
so colors cannot be evenly distributed along the line (each pair of black segments must have
a gray segment and a white segment between them). Therefore, for the case with three colors
and L = 4, the repeating sequence of colors must remain black-gray-white.

More generally, since cuts must occur within the colored segments, in the first iteration
there must be k  - 1 cut pieces where each has exactly two colors, Ci on the left and Ci+1

on the right, for i = 1, . . . , k  - 1. For example, with three colors (black-gray-white), there
must be a black-gray piece and a gray-white piece (p2 and p3 at each iteration in Figure 6).
For an optimally mixing permutation, after the first iteration (and every iteration) each set
of k colored segments must have one of each color (evenly distributed colors), and so theD
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same sequence of colors Ca1 , . . . , Cak must repeat itself, where a1, . . . , ak is a permutation of
1, . . . , k. Assuming a1 = 1 (we can always start with the first color in the initial condition),
there is a cut piece with two colors, C1 on the left and C2 on the right, so C2 must always
follow C1, and a2 = 2. Similarly, there is a cut piece with C2 on the left and C3 on the right,
so C3 must always follow C2, and a3 = 3. Continuing this process for all the pieces with two
colors yields ai = i for all i = 1, . . . , k, i.e., the ordering of the colors cannot change, and so
our method captures all optimally mixing permutations.

Now that we know how to find optimally mixing variable IETs, the question is: How much
better is the mixing they produce compared to fixed IETs?

3. Variable vs. fixed cutting-and-shuffling. Intuitively, the added parametric freedom of
variable protocols should enable significantly improved mixing. In this section we compare
mixing produced by optimal variable IETs, such as those discussed in the previous section, to
mixing produced by fixed IETs with random cut locations and to fixed IETs with optimally
chosen cut locations. Considering two, three, and four colors in the initial condition, we
show that in all cases optimal variable IETs produce significantly better mixing than random
fixed IETs and that the degree of improvement increases with the number of iterations, N .
Furthermore, with more colors in the initial condition, optimal variable IETs improve mixing
more than both random and optimal fixed IETs.

First, consider mixing the two-color initial condition in the top row of the space-time
plot in Figure 5. For permutations with L = 3, from Proposition 2.1 there are only three
permutations that can achieve optimal mixing in the variable case: 132, 321, and 213. The
permutations 132 and 213 are both reducible and hence do not mix in the fixed case (the IET
is periodic with period equal to two). On the other hand, the permutation 321 is irreducible
and hence can at least achieve weak-mixing in the fixed case (when the two cut locations are
chosen to satisfy the Keane minimality condition). However, weak-mixing only guarantees
mixing over infinite iterations, and we are more interested in optimizing mixing over finite
numbers of iterations. For fixed IETs with permutation 321, we calculate \Phi across the cut
location parameter space, 0 < c1 < c2 < 1 (sampling on a grid with a spacing of 5 \times 10 - 3

in each direction). The results are shown in Figure 7 for N = 2, 4, 6, and 8 iterations, with
the darkest color intensity indicating the value of the mixing metric \Phi closest to the optimum
of \Phi = 1. The average value of \Phi , \Phi \mathrm{a}\mathrm{v}\mathrm{e} across the (c1, c2) parameter space is the expected,
or ``typical,"" degree of mixing for randomly chosen fixed cut locations. As the number of
iterations N increases, \Phi \mathrm{a}\mathrm{v}\mathrm{e} grows approximately linearly, shown by the dotted black curve
in Figure 8(a). This means that on average, the mixing quality, compared to the variable
optimum (\Phi = 1), becomes worse as the number of iterations increases. To show a typical
space-time plot for an average fixed IET, we arbitrarily select a particular IET such that
\Phi \approx \Phi \mathrm{a}\mathrm{v}\mathrm{e} for each N , which is shown in the left column of Figure 9. As N increases, there is a
small improvement in mixing, i.e., there are more black and gray segments, and the length of
the longest colored segment, U , decreases. However, the colored segments vary substantially
in their lengths. Therefore, for the average ``typical"" fixed IET, the mixing metric \Phi , which
is normalized by the optimal variable IET, increases rapidly as N increases. In contrast, for
the optimal variable IETs (right column of Figure 9), the number of segments grows faster
(as N(L  - 1) + k = 2N + 2), and U decreases more rapidly (as (2N + 2) - 1), indicating all
segments have uniform length.

Now we compare optimal variable IETs to optimal fixed IETs, again with the two-color
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(a) (b)

(c) (d)

Figure 7. Mixing metric \Phi across the cut location parameter space 0 < c1 < c2 < 1 for fixed IETs using
the permutation 321 and the two-color initial condition shown in the top rows of Figure 5. Cut locations with
minimum \Phi (optimal mixing) are marked by a green \times . Due to symmetry through the line c2 = 1 - c1, there is
also a second minimum (not indicated). Note that each plot has a different range for \Phi , spanning the extremes
of \Phi .

initial condition and L = 3. Optimal fixed IETs are found for each N by progressively refining
the sample grid in the (c1, c2) parameter space around a minimum value of \Phi , \Phi \mathrm{m}\mathrm{i}\mathrm{n}, shown
as green \times s in Figure 7.2 For the two-color initial condition, in contrast to the average, \Phi \mathrm{m}\mathrm{i}\mathrm{n}

remains close to 1 (dotted black curve in Figure 8(b)), indicating that the optimal fixed IET
mixes almost as well as the optimal variable IET. This is demonstrated in the middle column
of Figure 9. The optimal fixed IETs (middle column) yield the maximum number of segments,
N(L - 1) + k = 2N + 2, and the segments are relatively uniform, with the uniformity of the
segments improving with N . As a result, \Phi approaches 1 as N increases.

2Due to symmetry of the parameters about the line c2 = 1  - c1 there are two minima. We find the one
such that c2 < 1 - c1.D
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(a)

(b)
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Figure 8. (a) Average and (b) minimum of the mixing metric \Phi across the 0 < c1 < \cdot \cdot \cdot < cL - 1 < 1
parameter space for fixed IETs with different irreducible permutations and initial conditions. Dotted black line:
two-color initial condition and the 321 permutation. Dashed blue line: three-color initial condition and the
permutations 3241, 2413, and 4132 (in (a) the curves all overlap, and in (b) the curves overlap in several
regions). Red solid line: four-color initial condition and the permutations 52413, 35241, and 41352 (the curves
for the first two permutations are the same due to a reflection symmetry). Optimal variable IETs have \Phi = 1.

We perform similar analyses for three-color and four-color initial conditions. As discussed
in subsection 2.3, for the three-color initial condition, L  - 1 must be a multiple of three to
achieve optimal mixing. Thus, L = 4 is the minimum permutation length. In this case,
the only permutations that can achieve optimal mixing are the rotations of 1324, and of
these, three are irreducible, namely 3241, 2413, and 4132. Similarly, for the four-color initial
condition, L  - 1 must be a multiple of four to achieve optimal mixing. For L = 5, the only
permutations that can achieve optimal mixing are the rotations of 13524, and of these, three
are irreducible, namely 35241, 52413, and 41352. For each initial condition, each irreducible
permutation, and each N , we find the average, \Phi \mathrm{a}\mathrm{v}\mathrm{e}, and minimum, \Phi \mathrm{m}\mathrm{i}\mathrm{n}, values of \Phi for fixed
IETs by sampling the parameter space 0 < c1 < \cdot \cdot \cdot < cL - 1 < 1, similarly to the approach
to generate Figure 7 for two colors and L = 3. As with the two-color initial condition, \Phi \mathrm{a}\mathrm{v}\mathrm{e}

grows approximately linearly as N increases for both the three-color (dashed blue curves in
Figure 8(a); all three curves overlap) and four-color (solid red curves in Figure 8(a); two of the
three curves overlap due to a reflection symmetry) initial conditions, meaning mixing using
random fixed cuts, compared to the variable optimum (\Phi = 1), becomes progressively worseD
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Average fixed IET Optimal fixed IET Optimal variable IET

Figure 9. Space-time plots for IETs with the two-color initial condition using the permutation \pi = 321 for
N = 2, 4, 6, and 8. Cut locations are shown by red lines. Left column: fixed IETs with \Phi \approx \Phi ave. Middle
column: optimal fixed IETs with \Phi = \Phi min. Cut locations correspond to the green \times 's in Figure 7. Right
column: optimal variable IETs (\Phi = 1) obtained using the methods described in subsection 2.2.

as N increases. This is demonstrated in the space-time plots for fixed IETs with \Phi \approx \Phi \mathrm{a}\mathrm{v}\mathrm{e} in
the left columns of Figures 10 and 11. As N increases, the number of segments increases, the
length of the longest segment decreases, and the colors become more evenly distributed along
the line, indicating improved mixing. However, when compared to the optimal variable IETs
(right columns of Figures 10 and 11) it is clear that at each N , the average fixed IETs have
fewer segments, the segments are longer, and the colors are not as evenly distributed, leading
to large values of \Phi . Since the discrepancy in mixing quality between average fixed IETs and
optimal variable IETs becomes greater as N increases, \Phi \mathrm{a}\mathrm{v}\mathrm{e} increases with N (Figure 8(a)).

Comparing \Phi \mathrm{a}\mathrm{v}\mathrm{e} for the different initial conditions, Figure 8(a) shows that when N > 14,D
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Average fixed IET Optimal fixed IET Optimal variable IET

Figure 10. Space-time plots for IETs with the three-color initial condition using the permutation \pi = 2413
for N = 2, 4, 6, and 8. Cut locations are shown by red lines. Left column: fixed IETs with \Phi \approx \Phi ave. Middle
column: optimal fixed IETs with \Phi = \Phi min. Right column: optimal variable IETs (\Phi = 1) obtained using the
methods described in section 2.3.

\Phi \mathrm{a}\mathrm{v}\mathrm{e} is greater when there are more colors in the initial condition (the curves are ordered
vertically according to the number of colors in the initial condition). This means that when
there are more colors in the initial condition, mixing using random fixed cut locations becomes
worse relative to the optimum (\Phi = 1). The same vertical ordering of curves occurs when
considering optimal fixed IETs (those with \Phi = \Phi \mathrm{m}\mathrm{i}\mathrm{n}) as well, shown in Figure 8(b). Therefore,
when there are more colors in the initial condition, mixing using optimal fixed cut locations
also becomes worse relative to the optimum (\Phi = 1). While the optimal fixed IETs for the two-
color initial condition could achieve near optimal values of \Phi , the optimal fixed IETs for the
three-color and four-color initial conditions perform significantly worse. This is demonstratedD
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Average fixed IET Optimal fixed IET Optimal variable IET

Figure 11. Space-time plots for IETs with the four-color initial condition using the permutation \pi = 35241
for N = 2, 4, 6, and 8. Cut locations are shown by red lines. Left column: fixed IETs with \Phi \approx \Phi ave. Middle
column: optimal fixed IETs with \Phi = \Phi min. Right column: optimal variable IETs (\Phi = 1) obtained using the
methods described in subsection 2.3.

by the space-time plots for optimal fixed IETs in the middle columns of Figures 10 and 11.
In each case the maximum number of segments is created, but they are not quite equal in
length, and, more importantly, the colors are not evenly distributed.

To summarize, increasing complexity in the initial condition (more colors) results in in-
creased improvement in the mixing quality achieved by optimal variable IETs compared to
both random fixed IETs and optimal fixed IETs. A simple explanation for this behavior is
that there are more competing interests, i.e., competition between equal segment lengths and
even distribution of the colors, when there are more colors in the initial condition. With
more colors it becomes increasingly difficult to maintain a repeating fixed order of the coloredD
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segments without moving the cut locations. Using variable IETs overcomes these limitations
in fixed IETs.

4. Strategies for cutting-and-shuffling over many iterations in general systems. While
optima can be found analytically for variable IETs with simple initial conditions for arbitrary
numbers of iterations, more complex cutting-and-shuffling systems require computationally
expensive numerical optimization methods. For variable systems, this computational expense
is compounded because the number of control parameters grows linearly with the number of
iterations. In typical mixing problems, it is desired to optimize mixing over a small number
of iterations, where numerical optimization methods are feasible. However, there may be
situations where it is not possible to reach the desired mixing quality in a small number
of iterations, and optimization over the required number of iterations is computationally
prohibitive.

Even for fixed protocols, where the number of control parameters does not grow with
the number of iterations, the distribution of the mixing metric across the parameter space is
likely to be multimodal, discontinuous, and complex, as demonstrated in Figure 7(d) for the
relatively simple case with the two-color initial condition, L = 3, and only eight iterations.
This complexity generally increases with the number of iterations, making finding optima
more challenging, as higher resolutions in the initial search grid are required.

There are other general strategies for optimizing mixing over a large number of iterations
that can be used for cutting-and-shuffling systems. The first is to use geometric properties
of the piecewise isometry. For IETs, the Keane minimality condition can be used to predict
long-term mixing quality: a fixed IET with irreducible, nonrotation, permutation, and cut
piece lengths that are rationally independent will almost always be weak-mixing, and will
always be ergodic [24, 52, 3].

Definition 4.1 (ergodic [54, 49]). Given a measure \mu for a set M , a measure-preserving
transformation f : M \rightarrow M is ergodic if and only if for any two measurable sets A,B \subset M
we have

(4.1) lim
n\rightarrow \infty 

1

n

n - 1\sum 
k=0

\mu 
\Bigl( 
fk (A) \cap B

\Bigr) 
= \mu (A)\mu (B) .

That is, for any set A, fn(A) becomes independent of any set B on average. Strong
mixing (1.2) implies weak mixing (1.1), which implies ergodicity (4.1). Weak-mixing fixed
IETs, while not optimal, can achieve good mixing over large numbers of iterations, i.e., in the
limit of infinitely many iterations the domain will be completely homogenized. In addition,
Krotter et al. [28] found conditions for protocols to achieve good mixing in a finite time.

To explore this further, we use the same IET formulation as that in Krotter et al. [28],
which is demonstrated in Figure 1. An irreducible permutation \pi is chosen that is not a
rotation, and a ratio of successive cut piece lengths, r = | \scrI i+1| /| \scrI i| , is chosen that determines
the lengths of the cut pieces. For example, in Figure 1 the irreducible permutation \pi = 3142
is used in all three examples, r = 1.5 is used in Figure 1(a),(b), and r = 1+ 1/(2\pi ) is used in
Figure 1(c). Here we examine this fixed IET approach over a large number of iterations for
the two-color initial condition with a simpler irreducible permutation \pi = 321. We compareD
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ratios r = 1+ 1/(2i\pi ) for i =  - 1, 0, 1, 2, such that r is irrational, and so the IET satisfies the
Keane minimality condition. The dependence of the mixing metric \Phi on N for these cases is
shown in Figure 12 (note the logarithmic scale of the vertical axis). Some of these examples
produce relatively good mixing, with \Phi = 3.0 at N = 100, but for others, \Phi is quite large,
indicating poor mixing compared to the variable optimum (\Phi = 1).

A similar strategy can be employed for 2D fixed piecewise isometries (PWIs) using the
exceptional set (where cuts occur), which is an intrinsic structure associated with 2D fixed
PWIs. It has been shown that the area of the exceptional set can be used to predict the
long-term mixing quality produced by 2D fixed PWIs [35]. Hence, long-term mixing can be
improved by finding protocols that maximize the area of the exceptional set [42]. As for IETs,
over finitely many iterations this approach would likely yield poor mixing compared to the
variable optimum.

Another strategy for mixing over large numbers of iterations is to optimize over short
time-horizons, i.e., optimizing for every m iterations, where m is much smaller than the
total number of iterations N . This strategy has proven effective for optimizing mixing in
time-dependent fluid flows [10]. In many practical applications, the difference between the
optima obtained from short time-horizon optimization and the global optimum is likely to be
insignificant.

To demonstrate the effectiveness of short time-horizon optimization, we consider variable
IETs with a time-horizon m = 1; i.e., we optimize mixing at each iteration separately. The
result is the ad hoc method described briefly at the end of subsection 2.1, where the longest
segments of each distinct color are cut in half at each iteration. For example, in the two-
color case with permutation 132 (two cuts within the domain), the longest black segment
and longest gray segment are cut in half at each iteration, as shown in Figure 3. If there
are multiple segments that all have the longest length, then we can arbitrarily choose which
one to cut. In Figure 3, the cut is made in the first maximal black segment and in the first
maximal gray segment when there are multiple segments that share the longest length. This
ad hoc approach is computationally inexpensive and has a number of advantages compared
to fixed IETs. First, this approach achieves optimal mixing (\Phi = 1) whenever N = 2i  - 1,
corresponding to points in Figure 12 where the dashed black curve touches the horizontal
axis. Also, the worst mixing (maxima of \Phi ) occurs at the iterations N = 2i - 2, and it can be
shown that at these iterates, \Phi = 2 - 1/2i - 1, so \Phi < 2 for all N . Thus, the ad hoc approach
mixes significantly better than the weak-mixing protocols considered in Figure 12. The key is
that for fixed IETs, even weak-mixing ones, segments of the same color frequently reassemble.
This means that the number of segments is generally significantly lower than the maximum,
N(L - 1)+ k, that can be achieved by optimal variable IETs. On the other hand, reassembly
of identically colored segments never occurs using the ad hoc method, so the maximal number
of segments is always achieved. The only limitation is that the segments do not have equal
lengths.

Another advantage of the ad hoc method, compared to both fixed IETs and optimal
variable IETs, is that it is adaptive; i.e., it accounts for the current state of the scalar field.
This means that if cuts are imprecise, as has been considered for fixed IETs such as those in
Figure 1 [56], the method can correct itself and does not compound the error.

Therefore, the ad hoc method provides a good alternative for mixing when the requiredD
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0 20 40 60 80 100
1

2

5

10

20

Figure 12. Mixing with the ad hoc method (dashed black line), cutting the longest black and gray segments
in half at each iteration and rearranging according to \pi = 132, compared to four weak-mixing fixed IETs (solid
line) that use the irreducible permutation \pi = 321 and satisfy the Keane minimality condition. For the weak-
mixing fixed IETs, the same construction as in Krotter et al. [28] is used, as demonstrated in Figure 1, with
r = 1 + 1/(2i\pi ) for i =  - 1, 0, 1, 2. The optimal variable IET always results in \Phi = 1 (the horizontal axis).

number of iterations is large and finding optima for the total number of iterations is compu-
tationally prohibitive. Similar heuristics could be used for more general cutting-and-shuffling
systems, such that cuts are located to bisect the largest unmixed regions.

5. Conclusions. Variable cutting-and-shuffling strategies allow for significantly improved
mixing compared to fixed cutting-and-shuffling. We have identified optimal variable cutting-
and-shuffling strategies for IETs with an initial condition consisting of a number of differently
colored segments, and we have shown that these optimal variable IETs can produce signifi-
cantly better mixing than general fixed IETs. Furthermore, the improvement in mixing quality
increases with the number of colors in the initial condition. This is because when there are
more colors it is more difficult to satisfy the two competing interests: small colored segments
and evenly distributed colors.

We note that the output of optimal variable IETs is a perfect riffle, in which the segments
are of equal length and repeat the same sequence of colors. In essence, we are decomposing
the perfect riffle, which cuts and shuffles every segment in a single operation, into many cut-
and-shuffle operations, each with fewer cuts than the perfect riffle. By showing that there are
many different ways to achieve optimal mixing for a given number of cuts per iteration and
a given number of iterations, we have shown that there are many ways to decompose perfect
riffles into IETs.

For general systems with cutting-and-shuffling, optimizing mixing over large numbers of
iterations, or when there are many cuts per iteration, is generally computationally prohibitive.
This is especially true for variable strategies, where the number of control parameters increases
linearly with the number of iterations. We demonstrate that an ad hoc adaptive method,
cutting the largest unmixed regions in half, provides a computationally inexpensive alternative.D
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For IETs, this ad hoc method is equivalent to optimizing using a one-iteration time-horizon,
and it yields significantly better mixing than examples of weak-mixing fixed IETs. Using
the ad hoc method, the mixing metric \Phi is guaranteed to be within a constant factor of the
optimum for any number of iterations. The key to the success of the ad hoc method is that
segments of the same color never reassemble, meaning the maximum number of segments and
interfaces will always be created. The adaptive nature of the ad hoc method also means that it
self corrects for any inexactness in the cut locations [56] or inexactness in the initial condition.

A key assumption when finding optimal mixing protocols is that the initial condition is
known exactly. However, in many applications, the initial condition is not known exactly, but
rather has a probability distribution. If the mixing quality is highly sensitive to the initial
condition, then the optimal mixing protocol for a specific initial condition is irrelevant since
this initial condition, or any other specific initial condition, may be unattainable in practice.
In this case, it is more desirable to use a protocol that is optimal over a distribution of potential
initial conditions. Future work should focus on this problem, developing strategies to optimize
mixing when the initial condition has a probability distribution. This could be achieved by
replacing the mixing metric with a weighted mean of the metric over the distribution of
possible initial conditions. A yet more general approach could be to optimize mixing in a way
that is entirely independent of the initial condition, for instance, optimizing properties of the
map itself. For example, maximizing the eigenvalues of the transfer operator in fluid flows
maximizes the decay rate of any concentration field toward the uniform distribution [15].

Another important question is how best to optimize mixing in more general variable sys-
tems with cutting-and-shuffling, including 2D PWIs [41, 40, 17, 36, 35, 22, 42], and systems
with cutting-and-shuffling combined with stretching-and-folding and/or diffusion [2, 47, 27,
14, 46, 43, 45, 44]. The added complexity means that exact methods such as those in subsec-
tion 2.2 are unlikely to be possible, but numerical and heuristic optimization strategies could
be developed. For example, symmetries could be used to systematically destroy nonmixing
regions [12, 13].

Appendix A. Color orders for cuts in optimal variable IETs. Consider the two-color
initial condition, and a variable IET TL,\pi with permutation \pi = 132 and L = 3. For TL,\pi 

to produce the maximal number of new segments, in the first iteration one cut must be
located within the black segment, and one cut located within the gray segment, as shown in
Figure 4(a). Otherwise there would be an imbalance in the number of black and gray left and
right edges of cut pieces. We also show in subsection 2.2 that in subsequent iterations, the
maximum number of new segments will be created if we choose the first cut within a black
segment and the second cut within a gray segment. However, it is not clear that this is the only
choice that will work. What if we choose the first cut to be located within a gray segment,
and the second cut located within a black segment? Consider the second iteration, where
before cutting-and-shuffling the line, there are two black segments and two gray segments
(Figure 4(b)--(e)). Let l2j denote the colors of the left edges of the cut pieces, and let r2j
denote the colors of the right edges, as shown in Figure 4(b)--(e). Here we use 0 to represent
black and 1 to represent gray. We know that l21 = 0 because the left edge of the line is black,
and r23 = 1 because the right side of the line is gray. We show in subsection 2.2 that forD
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optimal variable IETs, cuts must occur within segments, which translates to

(A.1) r2j = l2,j+1, j = 1, 2.

After rearrangement, each black edge must join with a gray edge, which is expressed as

(A.2) r2,\pi (j) = l2,\pi (j+1) + 1 mod 2, j = 1, 2, 3.

Combining (A.1), (A.2), and the conditions l21 = 0 and r23 = 1, we have a linear system of
equations for the variables l2j , r2j , j = 1, 2, 3. Substituting (A.1) into (A.2) and using l21 = 0,
we reduce the system of equations to

(A.3) r2,\pi (j) =

\Biggl\{ 
r2,\pi (j+1) - 1 + 1 mod 2 if \pi (j + 1) \not = 1,

1 if \pi (j + 1) = 1

for j = 1, 2, 3, so that r21 and r22 are the only two variables. Substituting j = 1, 2, 3 into
(A.3), we obtain

r21 = r22 + 1,

r23 = r21 + 1,(A.4)

r22 = 1,

where each equation is modulo 2. This has the unique solution r21 = 0, r22 = 1. Hence,
the first cut must occur within a black segment, and the second cut must occur within a
gray segment. There are no other possibilities that will yield optimal mixing. Furthermore,
(A.1)--(A.4) hold for all N(just replace r2j with rNj and l2j with lNj), and so the first cut
must always occur within a black segment, and the second cut within a gray segment.

Following the same procedure as above, (A.3) must be satisfied for any variable IET TL,\pi 

that produces optimal mixing. We discuss two cases with L = 5. First, let \pi = 14253, which
satisfies Proposition 2.1, and so can produce optimal mixing. Substituting j = 1, . . . , 5 into
(A.3), we obtain

rN1 = rN3 + 1,

rN4 = rN1 + 1,

rN2 = rN4 + 1,(A.5)

rN5 = rN2 + 1,

rN3 = 1,

where each equation is modulo 2. In addition, rN5 = 1 because the right edge of the line
must always be gray, since the left edge is always black (\pi (1) = 1). The system specified by
(A.5) has the unique solution rN1 = rN2 = 0, rN3 = rN4 = 1, which means the first two cuts
must always occur within black segments, and the last two cuts must always occur within
gray segments.D
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Now consider \pi = 14325. Substituting j = 1, . . . , 5 into (A.3), we obtain

rN1 = rN3 + 1,

rN4 = rN2 + 1,

rN3 = rN1 + 1,(A.6)

rN2 = rN4 + 1,

rN5 = 1,

where each equation is modulo 2. Note that the first and third equations are equivalent, as
are the second and fourth. In addition, the last equation provides no new information. We
already know that rN5 = 1 because the right edge of the line must always be gray, since the
left edge is always black (\pi (1) = 1). Therefore, for the unknown variables rN1, . . . , rN4 we
effectively have only two equations. The color at the first cut must be the opposite of the
color at the third cut, and likewise for the second and fourth cuts, but we are free to choose
the colors of the third and fourth cuts. Hence there are four possible solutions:

(rN3, rN4) = (0, 0) \Rightarrow (rN1, rN2) = (1, 1),

(rN3, rN4) = (0, 1) \Rightarrow (rN1, rN2) = (1, 0),(A.7)

(rN3, rN4) = (1, 0) \Rightarrow (rN1, rN2) = (0, 1),

(rN3, rN4) = (1, 1) \Rightarrow (rN1, rN2) = (0, 0),

which means that at each iteration, cuts can occur in the order gray, gray, black, black
(GGBB), GBBG, BGGB, or BBGG, respectively. Therefore, there are many more optimal
variable IETs that use the permutation 14325 compared to the permutation 14253.

This approach can be repeated for any permutation that satisfies Proposition 2.1, and can
also be extended to initial conditions with k colors by simply changing (A.2) to be modulo k.
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