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ABSTRACT

We explore chaos in the Kuramoto model with multimodal distributions of the natural frequencies of oscillators and provide a comprehensive
description under what conditions chaos occurs. For a natural frequency distribution withM peaks it is typical that there is a range of coupling
strengths such that oscillators belonging to each peak form a synchronized cluster, but the clusters do not globally synchronize.We use collective
coordinates to describe the intercluster and intracluster dynamics, which reduces the Kuramoto model to 2M − 1 degrees of freedom. We
show that under some assumptions, there is a time-scale splitting between the slow intracluster dynamics and fast intercluster dynamics,
which reduces the collective coordinate model to an M − 1 degree of freedom rescaled Kuramoto model. Therefore, four or more clusters
are required to yield the three degrees of freedom necessary for chaos. However, the time-scale splitting breaks down if a cluster intermittently
desynchronizes.We show that this intermittent desynchronization provides amechanism for chaos for trimodal natural frequency distributions.
In addition, we use collective coordinates to show analytically that chaos cannot occur for bimodal frequency distributions, even if they are
asymmetric and if intermittent desynchronization occurs.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5109130

Synchronization of coupled oscillators occurs in many natural
processes and engineering applications. The dynamics of the glob-
ally synchronized state is regular and the phases typically rotate
with a constant mean frequency. In the case of multimodal distri-
butions of natural frequencies of the oscillators, one can observe
more complex dynamics including chaos. Under which condi-
tions the synchronized state may exhibit chaos has not been fully
addressed. Distinct peaks in a multimodal natural frequency dis-
tribution correspond to synchronized clusters for a range of cou-
pling strengths and network parameters.We study the intercluster
and intracluster dynamics using a collective coordinate approach,
which reduces the dimension of the full Kuramoto model to a
small number of active degrees of freedom. We �nd necessary
conditions for chaos to occur. In particular, at least four peaks in
the natural frequency distribution are required to produce phase
chaos, and chaos can also occur for three peaks via intermittent
desynchronization of clusters.

I. INTRODUCTION

Synchronization in networks of coupled oscillators occurs
in many natural systems, including the activity of the brain1,2

and synchronous �re�y �ashing,3 as well as many engineering
applications such as power grids4 and Josephson junction arrays.5,6

In typical models of synchronization, the dynamics is either
incoherent, partially synchronized, or fully synchronized. In the
case of a unimodal frequency distribution, the dynamics transitions
upon increasing the coupling strength from the incoherent state
at low coupling strength, to a partially synchronized state where a
collection of oscillators synchronize (those with native frequency
closest to the mean frequency), to the fully synchronized state at
high coupling strengths. For multimodal frequency distributions,
however, several synchronized clusters may emerge in the partially-
synchronized regime. That is, there are clusters of oscillators that
remain synchronized within themselves, but the oscillators do not
form a single synchronized cluster. These clusters may have complex
interactions, both intercluster and intracluster, producing complex
dynamics, including chaos.

Chaos in coupled oscillator networks has been previously stud-
ied. For the Kuramoto model,7–14 which is the model focused on
here, chaos has been observed in the incoherent state, termed phase
chaos,15–17 provided there are at least four oscillators. This type
of phase chaos occurs at the microscopic level and is associated
with the chaotic dynamics of individual phase oscillators. For such
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microscopic phase chaos, the Lyapunov exponent was found to scale
inversely proportionally to the number of oscillators.18 In particular,
this implies that in the thermodynamic limit of in�nitely many oscil-
lators the Lyapunov exponent is zero, i.e., no chaos. Here we focus
on collective chaotic behavior of synchronized subpopulations of
phase oscillators. Such collective chaos has been studied for systems
with symmetric bimodal natural frequency distributions which were
subjected to a time-periodic coupling strength19 or for di�erent inter-
and intracluster coupling strengths as well as a phase lag.20 However,
for the classical Kuramoto model, it has been shown that in the
thermodynamic limit with bimodal natural frequency distributions
chaos is impossible.19 For trimodal frequency distributions, which
yield three synchronized subpopulations, chaos has been observed
for superposed Lorentzian natural frequency distributions, but only
in the partially synchronized state, which involves microscopic chaos
of incoherent oscillators.21

Here, we present and analytically study generic situations of
collective chaos in which the dynamics of synchronized subpopu-
lations of coupled oscillators, termed clusters, can be chaotic. We
distinguish between two types of chaotic dynamics, one akin to phase
chaos and the other due to intermittent desynchronization. Here, we
refer to collective phase chaos when each of the synchronized clusters
preserves their shape while the phases of the clusters show chaotic
behavior. In this case, the possibility of chaos is determined by the
number of synchronized clusters, which determines the number of
active degrees of freedom. We shall see that to obtain phase chaos at
least four synchronized clusters are necessary. This is analogous to
needing at least four oscillators to generate microscopic phase chaos
in the incoherent state of the Kuramoto model.15–17

A di�erent type of chaos is observed when clusters intermit-
tently desynchronize through their mutual interactions. In this case,
as wewill show, chaosmay occur even for trimodal natural frequency
distributions.

The key underlying reason for both types of chaos is that chaos
can only occur when there are at least three degrees of freedom.
Each synchronized cluster can be characterized by a time-varying
shape variable and a mean phase variable, which are the active
degrees of freedom, and the interaction of these collective coordi-
nates can lead to chaos. We reduce the full Kuramoto model to the
evolution equations for these collective coordinates.22–24 We demon-
strate a time-scale splitting between the (slow) shape and the (fast)
phase variables, that enables further reduction. Under this reduction,
the full Kuramoto model with M clusters reduces to a renormal-
ized Kuramoto model with M oscillators, which has M − 1 degrees
of freedom, implying that M ≥ 4 is necessary for phase chaos to
occur. However, when a cluster intermittently desynchronizes, the
time-scale splitting is invalid, yielding additional active degrees of
freedom, and the potential for chaos with three clusters.

The paper is organized as follows: in Sec. II, we describe the
Kuramoto model. Then in Sec. III, we present the collective coor-
dinate ansatz and derive the evolution equations for the collective
coordinates. In Sec. IV, we show that phase chaos occurs for four
clusters, and that there is quantitative agreement between the leading
Lyapunov exponent for the full Kuramoto model and the collec-
tive coordinate reduction. In Sec. V, we show that chaos can occur
for three clusters via intermittent desynchronization of a cluster and
provide a detailed description of this mechanism. Again, there is

quantitative agreement between the leading Lyapunov exponent for
the full Kuramoto model and the collective coordinate reduction. In
Sec. VI, we show that chaos is not possible for two clusters in the ther-
modynamic limit of in�nitely many oscillators. Lastly, in Sec. VII, we
summarize our results and provide an outlook for future studies.

II. THE MODEL

The Kuramoto model has been widely used to model networks
of coupled oscillators7–14 in large part due to its analytical tractabil-
ity. For a network of N coupled oscillators, each with phase φi, the
dynamics is given by

φ̇i = ωi +
K

N

N
∑

j=1

Aij sin(φj − φi), (1)

where the natural frequencies ωi are drawn from a distribution g(ω),
A is the adjacency matrix of the network, i.e., Aij = 1 if nodes i and j
are connected, otherwise Aij = 0, and K is the coupling strength. We
shall restrict our study of collective chaos to an all-to-all coupling
topology with Aij = 1 − δij. For the exposition of the model reduc-
tion technique presented in Sec. III, however, we choose to present
the Kuramoto model (1) with a general topology. It is widely known
that if the coupling strength is su�ciently large, then the oscilla-
tors spontaneously synchronize, all oscillating at the same frequency,
even though their natural frequencies are di�erent. Furthermore,
below the global synchronization threshold, synchronized clusters
may emerge due to either clusters in the network topology, or distinct
modes in the natural frequency distribution, or both.

We consider multimodal natural frequency distributions g(ω)
of the form

g(ω) =
M
∑

m=1

γmgm(ω;�m, σ
2
m) (2)

such that each gm is a normal distribution with mean �m and vari-
ance σ 2

m, and the weights 0 ≤ γm ≤ 1 satisfy
∑

γm = 1. In particular,
we primarily consider the case of well-separated peaks, such as the
the example shown in Fig. 1. The distribution (2) has M peaks,
which typically correspond to M clusters of synchronized oscilla-
tors for a range of coupling strengths. Note that the Kuramoto model
is invariant under uniform phase shifts. Therefore, we may assume
without loss of generality that the mean natural frequency is zero,
i.e.,

∑

m γm�m = 0.
A characterization of the state of the system is the instantaneous

order parameter r(t) which is de�ned as

r(t)eiψ(t) = 1

N

N
∑

j=1

eiφj(t)

and describes the mean position of all oscillators in the complex
plane. The long term dynamics can be characterized by the time-
averaged order parameter

r̄ = 1

T

∫ t0+T

t0

r(t)dt,
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FIG. 1. Amultimodal natural frequency distribution of the form (2) with four peaks
and equal weights γm = 1/4. The means �m are equally spaced between −1
and 1 and the standard deviations are all equal with σm = 0.05.

which is independent of t0 and T for su�ciently long transient times
t0 and averaging times T. If r̄ is close to 1, the oscillators are glob-

ally synchronized. If r̄ ≈ 1/
√
N, the oscillators are in the incoherent

state. In addition, for cases with multiple synchronized clusters, we
can de�ne analogous instantaneous and time-averaged order param-
eters for each cluster. For example, the instantaneous order parameter
for themth cluster is

rm(t)e
iψm(t) = 1

Nm

∑

j∈Cm

eiφj(t),

where Cm is the set of oscillators in cluster m and Nm is the number
of oscillators in Cm.

Consider, for example, the frequency distribution shown in
Fig. 1, with four peaks. Themodes�m are equally spaced between−1
and 1, and the standard deviations are all the same with σm = 0.05.
ForN = 100 equiprobably25 drawn oscillators from this distribution,
the time-averaged order parameter, r̄, is shown for 0 < K < 2.5 in
Fig. 2. ForK < 0.3, the oscillators are incoherent, and r̄ is of the order

1/
√
N. For K > 1.6, the oscillators globally synchronize, forming a

single cluster, and r̄ ≈ 1. For intermediate values, i.e., 0.3 < K < 1.6,
the oscillators corresponding to each peak in g(ω) synchronize to
form a cluster, but they do not globally synchronize, resulting in
r̄ ≈ 0.45. In this study, we are mostly interested in these intermedi-
ate values, where there can be complex interactions within and in
between clusters. Note that r̄ exhibits unusual nonmonotonic behav-
ior around 1 < K < 1.25, which, as we shall see, is the region where
chaotic dynamics occurs.

Synchronization of clusters is shown by the snapshots of oscilla-
tors in the complex plane in Fig. 3 for four di�erent values of K. The
oscillators of each color (corresponding to the same colored peak in
Fig. 1) are synchronized, but there are clearly four distinct clusters.
These clusters have both their own internal dynamics and interact
with the other clusters. For K = 0.9, the dynamics is quasiperi-
odic, demonstrated by the trajectory of the complex order parameter
r(t)eiψ(t) shown as the blue curve inside the circle in Fig. 3(a) (Mul-
timedia view). Increasing K, at a critical coupling strength Kc the
dynamics becomes chaotic. For example, with K = 1.2, shown in

0. 0.5 1. 1.5 2. 2.5
0.

0.2

0.4

0.6

0.8

1.

FIG. 2. Time averaged order parameter r̄ for the multimodal natural frequency
distribution shown in Fig. 1 over a range of coupling strengths K for the Kuramoto
model (1) with N = 100 oscillators.

Fig. 3(b) (Multimedia view), the dynamics is chaotic (which is con-
�rmed by computing the leading Lyapunov exponent, λ = 6.18 ×
10−2). The dynamics then becomes regular again, for example with
K = 1.22 and K = 1.3 the trajectory of the complex order parameter
is periodic [cf. Fig. 3(c) (Multimedia view) and Fig. 3(d) (Multime-
dia view), respectively]. For K = 1.3, the trajectory is con�ned to a
straight line due to the existence of an attracting symmetric mani-
fold. Four cluster cases such as these will be discussed in more detail
in Sec. IV.

III. MODEL REDUCTION VIA COLLECTIVE

COORDINATES

Since we are primarily interested in the macroscopic inter- and
intracluster dynamics, we use model reduction to reduce the high
dimensional full Kuramoto model (1) to a small number of active
degrees of freedom.One frequently usedmethod is theOtt-Antonsen
approach,26 which assumes in�nitely many oscillators. Recently, an
alternative approach for model reduction has been proposed, termed
collective coordinate reduction,22–24 which can be readily applied to
�nite networks of coupled oscillators.

The idea of the collective coordinate reduction22–24 is to express
the N-dimensional phase vector φ as a linear combination of a small
number of dynamically relevant modes. Intuitively, the reduction is
motivated by the fact that synchronization is characterized by oscilla-
tors forming a collective entity which is described by its mean phase
and its shape. The time-varying coe�cients of the linear combination
are coined collective coordinates, and encode the temporal evolu-
tion of the modes. Identi�cation of the relevant modes is situation-
dependent. In the case of a single synchronized cluster of oscillators,
where the global phase is not relevant, a single mode 8 describing
the shape su�ces, and we approximate φ(t) ≈ α(t)8. When mul-
tiple clusters interact, phase variables need to be accounted for. We
will denote the shape modes by 8(m) and the phase modes by 1Nm

(the vector consisting of Nm 1s, where Nm is the size of themth clus-
ter Cm), with associated collective coordinatesαm and fm, respectively,
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(a) (b)

(c) (d)

FIG. 3. Snapshots of oscillators in the
complex plane, and the trajectories of
the complex order parameter r(t)eiψ(t)

after a transient integration time for
the Kuramoto model (1) with N = 100
oscillators with natural frequency distri-
bution shown in Fig. 1. (a) For K = 0.9,
the dynamics are quasiperiodic. (b) For
K = 1.2 the dynamics are chaotic. (c) For
K = 1.22 the dynamics are periodic. (d)
For K = 1.3 the dynamics are periodic,
and the complex order parameter is
confined to a symmetric invariant man-
ifold (a straight line). Multimedia views:
https://doi.org/10.1063/1.5109130.1;
https://doi.org/10.1063/1.5109130.2;
https://doi.org/10.1063/1.5109130.3;
https://doi.org/10.1063/1.5109130.4

such that

φ(t) ≈
M
∑

m=1

αm(t)8
(m) + fm(t)1Nm , (3)

where typically 2M � N.
The method of collective coordinates22–24 is in e�ect a Galerkin

approximation, where the residual error made by the ansatz (3) is
minimized and the minimization leads to a system of evolution
equations for the collective coordinates αm(t) and fm(t).

The choice of basis functions is crucial. The shape mode 8(m)

can be chosen via linearization of Kuramoto model (1), restricted to
oscillators in Cm. For su�ciently large coupling strengthsK,8(m) will
solve the Kuramoto model to good accuracy (ignoring the interac-
tions with any oscillators outside of Cm).

We follow the methods outlined previously22–24 and derive a
collective coordinate reduction for multimodal natural frequency
distributions of the form (2). We �rst present the reduction for a sin-
gle synchronized cluster of oscillators, and then present results for
several interacting clusters.

A. Single cluster ansatz

Linearizing the full Kuramotomodel (1) around φi − φj = 0 for
all i, j results in

φ̇ = ω − K

N
Lφ, (4)

where L = D − A is the graph Laplacian andD is the diagonal degree
matrix, i.e., Dii is the degree of node i. Note that L has a nontriv-
ial kernel with L1N = 0, associated with the invariance to a global
constant phase shift. Global synchronization corresponds to all oscil-
lators rotating at the mean natural frequency� = (1/N)

∑

i ωi. Sub-
stituting φ̇ = �1N into (4), we obtain the global synchronization
mode

φ̂ = N

K
L+ω, (5)

where L+ denotes the pseudoinverse of L, and we note that L+1n = 0.
Therefore, the single cluster ansatz function is

8 = α(t)φ̂, (6)
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with collective coordinate α(t). For all-to-all coupling, L = NIN −
1N1

T
N . Therefore, L

+ = 1
N
(IN − 1

N
1N1

T
N)

27 and

φ̂ = 1

K
(ω −�1N).

Note that for a single synchronized cluster, as a result of the phase
shift invariance, we may assume, without loss of generality, that
� = 0. For multiple synchronized clusters, the di�erent mean natu-
ral frequencies of each cluster must be accounted for, which we show
in Sec. III B.

The evolution equation for the collective coordinate α(t) can be
found as a Galerkin approximation using the same approach as in
previous studies.22–24 The ansatz (6) is substituted into the Kuramoto
model (1), yielding a residual error

Ei = α̇φ̂i − ωi −
K

N

N
∑

j=1

Aij sin
(

α

(

φ̂j − φ̂i

))

.

This residual error, which is a two-dimensional manifold parame-
trized by α and α̇, is minimized when it is orthogonal to the one-

dimensional line αφ̂ that we are restricting the solution to. Setting

E · φ̂ = 0, we obtain an evolution equation for the collective coordi-
nate α

α̇ = φ̂Tω

φ̂T φ̂
+ 1

φ̂T φ̂

K

N

N
∑

i,j=1

φ̂iAij sin
(

α

(

φ̂j − φ̂i

))

.

For all-to-all coupling with mean frequency� = 0, this simpli�es to

α̇ = K + K2

62N2

N
∑

i,j=1

ωi sin
( α

K

(

ωj − ωi

)

)

,

where 62 = (1/N)
∑

i ω
2
i is the variance of the natural frequencies.

Setting β = α/K, so that φ ≈ βω yields

β̇ = 1 + K

62N2

N
∑

i,j=1

ωi sin
(

β
(

ωj − ωi

))

. (7)

Stationary points of (7) correspond to synchronized states for the
Kuramoto model.

In the thermodynamic limit, N → ∞, (7) becomes

β̇ = 1 + K

62

∫∫

ω sin (β (η − ω)) g(ω)g(η)dωdη = I(β). (8)

For normally distributed natural frequencies, with mean zero and
variance σ 2, we obtain

I(β) = 1 − Kβ exp
(

−σ 2β2
)

. (9)

Since I(0) = 1, it follows that β has a stationary point if and only

if I has a negative local minimum. Solving dI
dβ

= 0 and d2I
dβ2

> 0

yields β = (σ
√
2)

−1
. Therefore, β has a stationary point if and only

if I
(

(σ
√
2)

−1
)

≤ 0, which is equivalent to

K ≥ σ
√
2e. (10)

If condition (10) is satis�ed, the oscillators synchronize and form a
single cluster.

The instantaneous order parameter for the collective coordi-
nates can be calculated as

r(t) = exp

(

−σ
2β2

2

)

. (11)

This relation shows that β measures the spread of the oscillators.
Large values of β correspond to small r, meaning the oscillators are
evenly distributed on the circle, whereas small values of β for which
|8| � 1 correspond to r ≈ 1, corresponding to tightly clustered
oscillators.

For the multimodal natural frequency distribution (2) with M
peaks, we obtain

I(β) =1 + K

62

M
∑

i,j=1

γiγje
− 1

2 β
2(σ 2i +σ 2j )

×
[

�j sin
(

β
(

�i −�j

))

− βσ 2
j cos

(

β
(

�i −�j

))

]

.

As for a unimodal distribution, I(0) = 1, and a stable stationary
solution of (8), corresponding to global synchronization of oscilla-
tors, exists if and only if theminimumofI(β) (obtainednumerically)
is negative. Therefore, the condition for global synchronization is

min
β

I(β) < 0. (12)

B. Multiple cluster ansatz

For multimodal frequency distributions, there is generally a
range of K values which are su�ciently large that oscillators form
synchronized clusters, C1, . . . , CM , corresponding to each peak in the
distribution, but which are not su�ciently large to allow for global
synchronization. In such a case, we use a modi�ed ansatz, which
accounts for intracluster and intercluster dynamics. Note that while
we are primarily concerned with clusters originating from a mul-
timodal natural frequency distribution, the same analysis can be
performed for topological clusters.24 For oscillators in cluster Cm, the
intracluster dynamics is given by the restricted Kuramoto model

φ̇
(m)
i = ω

(m)
i + K

N

∑

j∈Cm

Aij sin
(

φ
(m)
j − φ

(m)
i

)

,

where for now we ignore the in�uence of oscillators belonging to dif-
ferent clusters k 6= m. Following the same linearization procedure as
for the full Kuramoto model yields the intracluster mode

φ̂(m) = N

K
L+
mω(m), (13)

where L+
m is the pseudoinverse of the graph Laplacian of the subgraph

obtained by restricting to nodes in cluster Cm. In the case of all-to-all
coupling, we obtain

φ̂(m) = N

KNm

(

ω(m) −�m1Nm

)

,

where Nm is the number of oscillators in cluster m and �m is
the mean frequency of cluster m. Note that for well separated
peaks in the frequency distribution, such as the example in Fig. 1,
Nm/N ≈ γm, where γm is the weighting of peak m in the natural
frequency distribution (2).
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The intracluster mode φ̂(m) does not account for interactions
with oscillators not belonging to cluster m. Therefore, φ̂(m) does not
capture the asymptotic dynamics of the system for large K, where
the oscillators will globally synchronize and form a single cluster.

For global synchronization, the single cluster ansatz φ̂ in (5) is a
more appropriate mode.We remark that one can perform a Galerkin
approximation valid for all coupling strengths by considering a lin-
ear superposition of the single cluster mode (5), the superposition of
all possible synchronized clusters (13), as well as all possible merg-
ings of synchronized clusters, each of these equipped with their own
collective coordinate. However, since the advantage of employing
the collective coordinate reduction is simplicity, which allows us to
study the dynamics of theN-dimensional Kuramotomodel, we prefer
to use Galerkin approximations tailored for a particular dynamical
range, parametrized by the coupling strength K.

When studying intercluster dynamics between cluster modes
(13), the Galerkin approximation needs to account for the mean
phases of each cluster, denoted fm. These phases vary in time due
to interactions between clusters. Accounting for these phase interac-
tions, and the possibility of all clusters merging into a single cluster,
for oscillators in clusterm, we propose the ansatz

8(m) = απ (m)φ̂ + αmφ̂
(m) + fm1Nm , (14)

where π (m) denotes the projection onto the nodes in cluster m, i.e.,
π (m)(vi) = vi if i ∈ Cm and π (m)(vi) = 0 if i /∈ Cm. Here, α,αm and fm,
m = 1, . . . ,M, are the collective coordinates. As for the single clus-
ter ansatz, the dynamics for the collective coordinates are obtained
by substituting ansatz (14) into Kuramoto model (1) to determine
the residual error. Then, to ensure that errors are minimized, we
require the error to be orthogonal to the restricted solution hyper-

plane, spanned by φ̂, φ̂(m) and 1Nm . The condition that the residual

error is orthogonal to φ̂ is given by

φ̂T φ̂α̇ +
M
∑

m=1

(π (m)φ̂)
T
(

φ̂(m)α̇m + 1Nm ḟm

)

= φ̂T
G(8), (15)

where G(8) is the right hand side of the Kuramoto model (1) in
vector form with components

Gi(8) = ωi +
K

N

N
∑

j=1

sin(8j −8i). (16)

The condition that the residual error is orthogonal to φ̂(m) is given by

(φ̂(m))
T
π (m)φ̂α̇ + (φ̂(m))

T
φ̂(m)α̇m = (φ̂(m))

T
π (m)G(8). (17)

(We note that since φ̂(m) is orthogonal to 1Nm there is no ḟm term).
Lastly, the condition that the residual error is orthogonal to 1Nm is

given by

1TNm
π (m)φ̂α̇ + Nm ḟm = 1TNm

π (m)G(8).

Equations (15)–(17) form a system of linear equations

Aẋ = b(x),

where x = (α,α1, . . . ,αm, f1, . . . , fm)
T is the vector comprised of the

collective coordinates. This linear system can be solved to �nd the
evolution equations for each of the collective coordinates.

In the case of all-to-all coupling, the projection π (m)φ̂ (5), the

cluster modes φ̂(m) (13) and the constant vectors 1Nm are linearly
dependent, and so the ansatz (14) simpli�es to

8
(m)
i = α

ωi

K
+ αm

(

N

KNm

(ωi −�m)

)

+ fm

= βm (ωi −�m)+ f̃m, (18)

where βm = 1
K

(

N
Nm
αm + α

)

and f̃m = fm + α �m
K
. This means that

the global synchronization ansatz (5) can be fully described by the
cluster modes (13) with suitable mean phases of each mode, and so
the collective coordinate α associated with global synchronization
can e�ectively be ignored.28 In essence, βm measures the spread of the

oscillators within clusterm and f̃m determines the collective phase of
the cluster.

For the ansatz (18), the evolution equations for the collective
coordinates obtained from (15)–(17) become

β̇m = 1 + 1

Nm62
m

K

N

M
∑

k=1

∑

j∈Ck

∑

i∈Cm

(

ω
(m)
i −�m

)

sin
(

βk

(

ω
(k)
j −�k

)

−βm
(

ω
(m)
i −�m

)

+ fk − fm

)

, (19)

ḟm = �m + 1

Nm

K

N

M
∑

k=1

∑

j∈Ck

∑

i∈Cm

sin
(

βk

(

ω
(k)
j −�k

)

−βm
(

ω
(m)
i −�m

)

+ fk − fm

)

, (20)

where we have dropped the tilde on fm and 62
m = 1

Nm

∑

i∈Cm

(ω
(m)
i −�m)

2
is the variance of the frequencies in cluster m. In the

following, we consider all-to-all networks, unless stated otherwise,
and consider (19)–(20). Therefore, forM peaks in the frequency dis-
tribution, there are 2M equations of motion. By introducing phase
di�erence variables, Fm = fm+1 − fm, we reduce the dimension of the
system to 2M − 1 degrees of freedom. This suggests that chaos may
be possible as long asM ≥ 2. However, as we will show, chaos is only
possible ifM ≥ 3.

In the thermodynamic limit,N → ∞, with a multimodal natu-
ral frequency distribution of the form (2),Nm/N → γm (theweight of
clusterm), and the evolution equations for the collective coordinates
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(19) and (20) become

β̇m = 1 − Kβme
− σ2mβ

2
m

2

M
∑

k=1

γke
−
σ2
k
β2
k

2 cos
(

fk − fm
)

, (21)

ḟm = �m + Ke−
σ2mβ

2
m

2

M
∑

k=1

γke
−
σ2
k
β2
k

2 sin
(

fk − fm
)

. (22)

Note that forM = 1, i.e., unimodal, normally distributed frequencies
with γ1 = 1 and �1 = 0, (21) recovers the single cluster evolution
Eq. (9), and (22) is identically zero.

C. Slow-fast splitting of the shape and phase

coordinates

Each synchronized cluster viewed in isolation contains oscil-
lators with normally distributed natural frequencies. Therefore, the
instantaneous order parameter for each cluster is given in the ther-
modynamic limit [cf. (11)] by

rm(t) = exp

(

−σ
2
mβ

2
m

2

)

.

Expressing the evolution Eqs. (21) and (22) for the collective coordi-
nates βm and fm in terms of rm, we obtain

ṙm = −σmrm
√

log r−2
m

×
(

1 − Krm

σm

√

log r−2
m

M
∑

k=1

γkrk cos
(

fk − fm
)

)

, (23)

ḟm = �m + Krm

M
∑

k=1

γkrk sin
(

fk − fm
)

. (24)

In the case that each cluster remains tightly clustered for all
time, we have rm(t) = 1 − εm(t), with 0 < εm(t) � 1 for all t. This is
ensured provided the σm are su�ciently small, K is su�ciently large
[i.e., the condition (10) is satis�ed for each σm], and the means �m

are su�ciently far apart relative to the coupling strength [i.e., condi-
tion (12) fails and global synchronization does not occur]. Expanding
(23) and (24) in powers of ε yields

ṙm = −ε1/2m σm
√
2 + 2Kεm

M
∑

k=1

γk cos
(

fk − fm
)

+ O
(

ε3/2
)

(25)

ḟm = �m + K

M
∑

k=1

γk sin
(

fk − fm
)

+ O (ε). (26)

We can view the order parameters rm as describing the intr-
acluster dynamics and the phase coordinates fm as describing the
intercluster dynamics. Since εm � 1, the evolution Eqs. (25) and (26)
for rm and fm reveal a time-scale splitting of the dynamics, whereby
the order parameters rm evolve slowly, whereas the phase variables
fm evolve on a fast time scale. The intercluster dynamics is, to �rst-
order, decoupled from the intracluster dynamics [cf. (26)]. Hence,
the intercluster dynamics obeys a reduced, renormalized Kuramoto
model. Since the reduced intercluster dynamics has M − 1 degrees

of freedom (taking into account a change to phase di�erence vari-
ables), chaos is only possible if M ≥ 4. We label this type of chaos
where clusters remain localized, with only small changes in their
order parameter, as phase chaos. However, it is possible that one or
more of the clusters intermittently break-up such that rm � 1 and
εm is not small anymore. In such a case, there is signi�cant inter-
play between the intracluster and intercluster dynamics. This will be
discussed in more detail in Sec. V.

IV. FOUR CLUSTERS: COLLECTIVE PHASE CHAOS

Phase chaos is typically observed in systems with multimodal
natural frequency distributions with at least four peaks [cf. Fig. 3(b)].
The simplest case is to take four oscillators with natural frequencies
equally spaced between −1 and 1 and let them interact to pro-
duce chaotic dynamics.15–18 One may then consider N oscillators
distributed over these four distinct natural frequencies, or, more gen-
erally, consider the natural frequency distribution ofM distinctmean
frequencies�m

g(ω) =
M
∑

m=1

1

M
δ (ω −�m), (27)

where δ(x) denotes the Dirac delta-function. If N frequencies,
ω1, . . . ,ωN , are distributed equiprobably onto theM mean frequen-
cies �m, with N divisible by M, then each mean frequency �m is
populated by N/m oscillators with ωi = �m. That is, we can relabel
such that ω1, . . . ,ωN/M = �1, ωN/M+1, . . . ,ω2N/M = �2, and so on.
The Kuramoto model (1) for oscillators with natural frequency �m

and all-to-all coupling in this case becomes

φ̇
(m)
i = �m + K

N

M
∑

k=1

N/M
∑

j=1

sin
(

φ
(k)
j − φ

(m)
i

)

. (28)

Since the coupling is all-to-all, oscillators with the same natural
frequency will synchronize such that φ(m)(t) = fm(t)1N/M and (28)
becomes

ḟm = �m + K

M

M
∑

k=1

sin
(

fk − fm
)

, (29)

which is of the exact form as the Kuramoto model forM oscillators.
Hence, chaos is expected for arbitrarily many oscillators if their nat-
ural frequencies are distributed according to (27) with M ≥ 4 with
equally spaced �m. Note that the evolution equation for the phases
fm (29) is equivalent to the collective coordinate equations forM clus-
ters (25) and (26) in the limit εm → 0, which is the limit of perfectly
synchronized clusters, with identical phases within each cluster.

Considering the Dirac δ-function as the limit of normal distri-
butions, i.e., δ(x) = limσ→0 N (0, σ), we expectmultimodal distribu-
tions of the form (2) withM ≥ 4 to yield phase chaos for su�ciently
small σ and su�ciently large spacings between peaks in the natural
frequency distribution, |�m+1 −�m|. Our focus in this section is to
explore the collective dynamics of the Kuramoto model for natural
frequency distributions g(ω) of the form (2) with identical weights
γm = 1/4, identical standard deviations σm = σ , and equally spaced
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means�m = −1 + 2(m − 1)/3 form = 1, . . . , 4, that is,

g(ω) = 1

4σ

4
∑

m=1

P

(

ω −�m

σ

)

,

where P is the standard normal distribution.
We now numerically explore these cases for the full Kuramoto

model (1) with N = 100 oscillators; and shall compare our results
with the reduced collective coordinate description (19) and (20) for
N = 100 oscillators as well as with the reduced collective coordinate
description (21) and (22) in the thermodynamic limit of in�nitely
many oscillators. The collective coordinate systems involve 7 degrees
of freedom: four shape parameters βm and three phase-di�erence
variables fm+1 − fm (the evolution equations, however, are written
for fm and hence are 8-dimensional). We shall see that the collective
coordinate equations provide a reducedmodel that allows for a quan-
titative description of the chaotic dynamics of the Kuramoto model,
and, in particular, for the estimation of the Lyapunov exponents of the
full Kuramoto model. We compute and compare the time-averaged
order parameter r̄ and the leading Lyapunov exponentλ across amul-
titude of cases for di�erent coupling strengths K and for di�erent
standard deviations of the natural frequency distribution σ .

Before discussing the results on the leading Lyapunov expo-
nent, we shall describe the dependence of r̄ on K and σ , shown
in the left column of Fig. 4. Shown is the order parameter r̄ for
the full Kuramoto model (1) with N = 100 oscillators [Fig. 4(a)],
the 8D collective coordinate model (19) and (20) with N = 100
oscillators [Fig. 4(c)], and the 8D collective coordinate model with
in�nitely many oscillators (21)–(22) [Fig. 4(e)]. We see good quan-
titative agreement between all three models throughout most of the
parameter space. All three models show transitions from r̄ ≈ 0.45 to
r̄ ≈ 1 near K ≈ 1.58, which is the transition from four synchronized
clusters to global synchronization with one synchronized cluster.
This transition can be predicted by the collective coordinate ansatz,
using the single cluster ansatz (6) applied to the full distribution
g(ω). The transition curve is given by condition (12) for global syn-
chronization, and is shown by the dashed, approximately vertical,
curves in Fig. 4. The transition from the incoherent state (r̄ ≈ 0)
to the synchronized cluster state (r̄ ≈ 0.45) is predicted by the line

K = σ
√
2e (dotted-dashed in Fig. 4), which derives from condition

(10) for the collective coordinate ansatz. However, this line does
not accurately capture the transition from incoherence to synchro-
nized clusters in the full Kuramoto model with N = 100 oscillators
[cf. Fig. 4(a)] for which the transition occurs at lower values of K.
This discrepancy is due to the fact that the collective coordinate
models (19)–(20) and (21)–(22) do not account for partial synchro-
nization of the clusters. In the full Kuramotomodel (1), the transition
from the incoherent state to a partially synchronized state is a soft
second-order phase transitionwhereby, upon increasing the coupling
strength, more and more oscillators with natural frequencies close to
the mean frequency mutually synchronize until at a critical coupling
strength all oscillators in a cluster have synchronized. Although this
can be quantitatively described by the collective coordinate ansatz22,24

we knowingly do not account for this in our simulations here to limit
the computational cost of the parametric sweep.

It is remarkable that the collective coordinate models—(19) and
(20) for N = 100 oscillators [Fig. 4(d)] and (21) and (22) for N →

∞ [Fig. 4(f)]—reproduce the leading Lyapunov exponent λ of the
full Kuramoto model (1) [Fig. 4(b)] with good quantitative agree-
ment. In particular, there is a chaotic “bubble” within the region
with four synchronized clusters (between the dot-dashed and dashed
curves) whose width shrinks as σ increases. The occurrence of par-
tial synchronization of clusters in the full Kuramoto model with
N = 100 results in a positive Lyapunov exponent above and near to
the dotted-dashed line in Fig. 4(b), which is not captured by the col-
lective coordinate models [Figs. 4(d) and 4(f)]. This di�erence is due
to complex interactions between the synchronized clusters and the
small number of oscillators that do not synchronize, which are not
accounted for by the collective coordinate models.

In the limit as σ → 0, the dynamics of four interacting clusters
becomes equivalent to the dynamics of four interacting oscillators
[cf. (29)], which has been studied extensively by Maistrenko et al.16

and Popovych et al.15 Following the approach of previous studies, we
consider the �rst four Lyapunov exponents of the collective coor-
dinate model (21)–(22). For small values of σ < 10−2, we obtain
Lyapunov exponents that are qualitatively the same as those observed
for four individual oscillators [compare Fig. 5(a) with Fig. 1(a) in
Ref. 15]. Therefore, for these small values of σ , the bifurcation
sequence is essentially the same as for four individual oscillators. At
K = Ksn ≈ 0.91, there is a saddle-node bifurcation, which transitions
fromquasiperiodic to periodic dynamics. AtK = Ktd ≈ 0.94, there is
a transition to chaos via the Afraimovich-Shilnikov torus destruction
scenario.29 At K = Kcr ≈ 1.22, the chaotic attractor is destroyed in a
boundary crisis, yielding a chaotic saddle. Lastly, at K = Kc ≈ 1.58,
the transition to global synchronization occurs. There aremany peri-
odic regions observed within the chaotic region Ktd < K < Kcr, and
also near K = 1.5, which correspond to the resonances discussed by
Maistrenko et al.16 The resonances within the chaotic region can also
be observed within the chaotic bubble shown in the right plots of
Fig. 4, evident aswhite bands (λ1 = 0) that extend approximately ver-
tically from the horizontal axis σ = 0 [most clearly seen in Fig. 4(f)
which has the highest resolution]. The resonances near K = 1.5 can
be seen in the right plots of Fig. 4 as thin bands of positive largest Lya-
punov exponent. For larger values of σ , such as σ = 5 × 10−2 shown
in Fig. 5(b), we see similar dynamics, but there are some key di�er-
ences. First, the chaotic window is smaller, and is punctuated by a
large periodic region near K = 1.05. In addition, there appears to be
only one resonance near K = 1.5.

The complex bifurcation structure shown in Fig. 5 also explains
the discontinuous transition curves between di�erent shades of gray
in the plots for r̄ (left plots of Fig. 4). These transitions are due to
bifurcations between di�erent stable chaotic, periodic, and quasiperi-
odic states.

V. THREE CLUSTERS: CHAOS VIA INTERMITTENT

CLUSTER DESYNCHRONIZATION

For three clusters, as discussed previously, if the reduction and
time-scale splitting shown in (25)–(26) is valid, the dynamics is
essentially phase dynamics of three oscillators, excluding chaotic
dynamics because there are only two degrees of freedom (recall that
due to the phase-gauge invariance of the Kuramoto model, we may
assume without loss of generality that

∑

i fi = 0). However, the time-
scale splitting requires εm = 1 − rm � 1 for all time. If this is not
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FIG. 4. Time averaged order parameter, r̄
(left column), and leading Lyapunov exponent,
λ1 (right column), for a range of coupling
strengths K and multimodal natural frequency
distributions with four peaks and means
�m =−1+ 2(m − 1)/3, weights γm = 1/4,
and identical standard deviations σm = σ , for
m = 1, . . . , 4. (a) and (b) Full Kuramotomodel
(1) with N = 100 oscillators. (c) and (d) Col-
lective coordinate model (19)–(20) withM = 4
and N = 100. (e) and (f) Collective coordinate
model in the thermodynamic limit (21)–(22)
with M = 4. The dotted-dashed lines denote
the condition (10), K = σ

√
2e, for synchro-

nized clusters. The dashed, approximately ver-
tical, curves denote condition (12) for global
synchronization.

true, e.g., one cluster intermittently desynchronizes, then chaos is
possible.

As an example, consider the trimodal natural frequency dis-
tribution shown in Fig. 6. Simulating the 6D collective coordinate
model, (23)–(24), for K = 1.205 we �nd a positive largest Lyapunov

exponent, λ = 0.036, as well as time-averaged cluster-wise order
parameters r̄1 = 0.989, r̄2 = 0.981, r̄3 = 0.918. Hence, the system is
both chaotic and collectively organized. While r̄3 is close to one, and,
hence, the cluster would be considered synchronized, the time series
for r3(t), shown in Fig. 7(c), intermittently dips to values around 0.5,
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(a)

(b)

FIG. 5. The first four Lyapunov exponents of the collective coordinate model
(21)–(22) for a range of coupling strengths K and multimodal natural frequency
distributions with four peaks and means �m = −1 + 2(m − 1)/3, weights
γm = 1/4, and identical standard deviations σm = σ , for m = 1, . . . , 4, (a)
σ = 10−2, (b) σ = 5 × 10−2.

showing that the cluster intermittently desynchronizes, with oscilla-
tors spreading over the entire circle. Therefore, we cannot say that ε3
is close to zero for all time, meaning the time-scale splitting is invalid
for r3, and, hence, chaos is possible.

This intermittent desynchronization phenomenon predicted by
our collective coordinate reduction is con�rmed in the full Kuramoto
model (1). For N = 200 oscillators, with natural frequencies drawn
equiprobably from the distribution g(ω) shown in Fig. 6, we com-
pute the leading Lyapunov exponent as λ = 0.039, which is within
10% of the Lyapunov exponent computed using collective coordi-
nates in the thermodynamic limit, (23)–(24), which has λ = 0.036.
Furthermore, the time-series of r1, r2, r3, shown in Figs. 7(d)–7(f), are
qualitatively similar to those shown in Figs. 7(a)–7(c). In particular, r1
and r2 remain close to 1 for all time, whereas r3 experiences intermit-
tent dips. The dips occur in the collective coordinatemodel (23)–(24)
with an average period of 48.9, compared to an average period of 52.6
in the full Kuramoto model. For the full Kuramoto model (1) with
N = 1000 oscillators, which is closer to the thermodynamic limit, the
dips occur at the same frequency as withN = 200, i.e., with a period
of 52.6, and the time series of r1,2,3, shown in Figs. 7(g)–7(i), are even
more similar to the collective coordinate model in the thermody-
namic limit (23)–(24), shown in Figs. 7(a)–7(c), in that the dynamics

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

FIG. 6. Trimodal natural frequency distribution that results in chaotic dynam-
ics of the Kuramoto model (1). Parameters of the distribution function
(2) are chosen as (σ1, σ2, σ3) = (0.05617, 0.1042, 0.04521), (�1,�2,�3)

= (−0.9423, 0.3517, 1), and (γ1, γ2, γ3) = (0.3628, 0.4552, 0.1818).

between the dips becomes more regular, with high frequency oscil-
lations and a slow negative trend. The collective coordinate model is
representative of the full Kuramoto model, and has the advantage of
being more analytically tractable.

We now investigate more closely the nature of this type of
chaotic dynamics and how it is generated. We �rst describe qual-
itatively the dynamics of a single desynchronization event in the
full Kuramoto model (1). We then show that these desynchroniza-
tion events can be resolved by considering further reductions of
the collective coordinate Eqs. (23)–(24). This collective coordinate
reduction is then used to show that chaos via intermittent desynchro-
nization is a robust phenomenon.

We describe the dynamics of a desynchronization event qual-
itatively using the snapshots of the phases of oscillators shown in
Figs. 8(b)–8(g) (Multimedia view), which correspond to the red
points marked on the time series of r3 shown in Fig. 8(a). In the lead-
up to a dip in r3, the second and third clusters are phase-locked, with
an approximately constant phase di�erence F2 = f3 − f2. However,
each time the �rst cluster passes by the second cluster, the second
cluster slows down, which causes a small increase in the phase sep-
aration between the second and the third clusters, implying a small
increase in F2, as shown in Figs. 8(b) and 8(c) as a small increase in
separation between the second and third clusters. Eventually, a criti-
cal point is reached, such that the oscillators in the third cluster that
are furthest from the second cluster [those with the highest natural
frequencies, closest to i = 1000 in Figs. 8(b)–8(i)] begin to desyn-
chronize with the rest of the oscillators in the cluster, as shown in
the transition from Figs. 8(b) to 8(d). This desynchronization results
in the oscillators in the third cluster wrapping around and cover-
ing the entire circle, and corresponds to a sharp dip in r3, as shown
in Fig. 8(a). The desynchronization of the third cluster occurs as a
traveling front, starting �rst with the oscillators with highest natural
frequency, traveling down to the oscillatorswith the lowest frequency.
The oscillators in the third cluster eventually cover the entire cir-
cle, and those with the highest natural frequencies [furthest to the
right in Fig. 8] overtake those with the lowest natural frequencies
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FIG. 7. Time series of the cluster order parameters r1, r2, and r3 for the trimodal natural frequency distribution shown in Fig. 6. Note the different scales on the vertical axis
for r3 compared to r1 and r2. (a)–(c) Collective coordinate reduction in the thermodynamic limit (23)–(24) withM = 3. (d)–(f) Full Kuramoto model (1) with N = 200 oscillators
drawn equiprobably from the distribution shown in Fig. 6. (g)–(i) Full Kuramoto model (1) with N = 1000 oscillators drawn equiprobably from the distribution shown in Fig. 6.

[furthest to the left in Fig. 8], meaning they experience additional
revolutions during each “dip” event. Once the oscillators in the third
cluster with lowest natural frequencies catch up with the second clus-
ter, the third cluster resynchronizes, as shown in Figs. 8(f) and 8(g),
once again becoming phase-locked with the second cluster, and the
process repeats.

We now use collective coordinate reductions to analyze the
dynamical scenario described above. As seen in Fig. 7, r1(t) and r2(t)
are close to one for all time, demonstrating that the time-scale split-
ting remains valid for those variables. This suggests that we may
set r1(t) = r̄1 and r2(t) = r̄2 as constant in the collective coordinate
Eqs. (23)–(24). Then, the collective coordinate model reduces to a
system of four fast variables, r3, f1,2,3, with three degrees of freedom
(again since, without loss of generality,

∑

i fi = 0). The evolution
equations become

ṙ3 = −σ3r3
√

−2 log r3

(

1 − Kr3

σ3

√

−2 log r3 (γ1 r̄1 cos (F1 + F2)

+ γ2 r̄2 cos(F2)+ γ3r3)

)

, (30)

Ḟ1 = 1�1 + K [−(1 − γ3)r̄1 r̄2 sin F1 + γ3 r̄2r3 sin F2

− γ3 r̄1r3 sin(F1 + F2)], (31)

Ḟ2 = 1�2 + K [γ1 r̄1 r̄2 sin F1 − (1 − γ1)r̄2r3 sin F2

− γ1 r̄1r3 sin(F1 + F2)], (32)

where Fm = fm+1 − fm and1�m = �m+1 −�m. We see good agree-
ment in the time series plots of r3 for the 3D system (30)–(32), shown
as dashed black in Fig. 9 and for the full 6D collective coordinate
system (23) and (24), shown as solid gray in Fig. 9. In both models,
r3 experiences the same oscillations at the start and end, and both
have a signi�cant dip to r3 ≈ 0.4 between t = 10 and t = 30. Fur-
thermore, the Poincaré sections through the plane F1 = 0, shown in
the (r3, F2)-plane in Fig. 10, are similar for both models.

To explain the pronounced dips in r3 inmore detail, observe that
for the time series of r3, shown in Fig. 7(c), in between the sharp dips,
r3 exhibits small oscillations and a small negative trend. To explain
this, let us assume that r3 is constant, so the dynamics (30)–(32)
reduces to a 2D system for F1 and F2, given by (31)–(32), with r3
being a parameter. For r3 > rc ≈ 0.981, this 2D system (31)–(32) has
one stable and one unstable limit cycle, as demonstrated in Fig. 11(a)
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FIG. 8. (a) Time series of r3 for the full Kuramoto model (1) with N = 1000 oscillators [the same as Fig. 7(i)]. The labels of the red circles correspond to the snapshots of the
oscillator phases φi , shown in (b)–(g) illustrating the intermittent desynchronization of the third cluster from a coherent cluster, that is phase-locked with the second cluster
(b), to a desynchronized state (c)–(f), and back to a synchronized state (g). Multimedia view: https://doi.org/10.1063/1.5109130.1

for r3 = 1 by the thick solid and dashed red curves, respectively. The
gray arrows in Fig. 11(a) are the 2D velocity �eld. As r3 decreases, the
stable and unstable limit cycles move toward each other, as demon-
strated in Fig. 11(b) for r3 = 0.981. At r3 = rc, the stable and unstable
limit cycles annihilate via a saddle-node bifurcation, and the dynam-
ics is topologically equivalent to quasiperiodic rotation on the torus.
We observe in Fig. 11(c) that trajectories of the full 6D collective
coordinate system (23)–(24), projected onto the F1, F2 plane, follow
curves that closely match the limit cycles corresponding to con-
stant r3. The tracer (whose trajectory is shown in thin black) slowly
advances upward in between the lower limiting stable limit cycle cor-
responding to r3 = 1 (lower thick red curve), and the upper limiting
stable limit cycle corresponding to r3 = rc (upper thick red curve).
This slow advance upward corresponds to the slow decay of r3 in
between the sharp dips.

Expanding further, starting at a time t0 when r3 ≈ 1, a tracer
in the full 6D collective coordinate model (23)–(24) will have a
trajectory in the F1, F2 plane that is very similar to the limit cycle
obtained from the assumption that r3 is constant [equal to r3(t0)].
However, while r3 is approximately constant, it decreases slightly over
one period of the limit cycle. We can approximate the decrease in
r3 by computing 1r3 = r3(t0 + T)− r3(t0), where T = T(r3(t0)) is

the period of the stable limit cycle, denoted by Cr3 , of the 2D system
(31)–(32) with r3 = r3(t0) held constant. Here, r3(t0 + T) is found by
integrating (30) along the stable limit cycle Cr3 . This is valid under the
assumption that r1,2,3 are all constant between t = t0 and t = t0 + T.
Note that the values r3(t0 + T) and1r3 are independent of the initial
locations of F1, F2 on the limit cycle Cr3 . We �nd that1r3 < 0 for all
r3 > rc, and so it is inevitable that r3 will eventually reach the critical
value, rc, where the stable limit cycle bifurcates.

The scenario of chaotic dynamics through intermittent desyn-
chronization events is a robust phenomenon, occurring for a range of
parameters of the natural frequency distribution (2).We show this by
investigating the e�ect of varying σ3. As σ3 decreases, we observe that
the average time interval between dips in r3 increases, and at a criti-
cal value of σ3 = σc ≈ 0.035 the dips no longer occur. For σ3 < σc, r3
remains close to 1 for all time, and so the slow-fast splitting found in
Sec. III C is valid, and the dynamics is nonchaotic. The value of σc can
be estimated using the collective coordinate system (30)–(32). Con-
sider1r3, the change in r3 over the stable limit cycle that exists under
the assumption that r3 is constant. The distribution of 1r3 across a
range of r3 and σ3 values is shown in Fig. 12. The turning point of
the curve 1r3 = 0 (dashed black in Fig. 12) yields the approxima-
tion σ ∗

c = 0.038 (solid black line in Fig. 12) for σc. For σ3 > σ ∗
c ,1r3
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FIG. 9. Time series of r3 for the 6D collective coordinates three-cluster equations
(23)–(24) with M = 3 (solid gray) and for the reduced 3D collective coordinate
system (30)–(32) (dashed black).

is negative for all values of r3 that have a stable limit cycle. Hence
r3 decreases after each period of the limit cycle until reaching the
saddle-node bifurcation (solid gray curve in Fig. 12). For σ3 < σ ∗

c ,
the curve 1r3 = 0 (dashed black in Fig. 12) indicates the locations
of �xed points of the map r3 7→ r3 +1r3, with the right-most �xed
point being stable. The presence of these stable �xed points indi-
cates a periodic solution of the three-dimensional system (30)–(32).
Therefore, σ ∗

c represents a bifurcation between periodic dynamics
and intermittent desynchronization dynamics, i.e., it is an approxi-
mation forσc. Note thatσ

∗
c = 0.038 slightly over-predictsσc = 0.035,

which is due to the inaccuracies that occur frommaking the assump-
tion that r3 is constant over the period of the limit cycle Cr3 , when,
as we have seen, it is both oscillating and slowly decreasing [cf.
Fig. 8(a)]. A similar approach can be used to determine critical values
at which chaos ceases to occur when other parameters in the natural
frequency distribution are varied, such as the distance between peaks
and the proportion of oscillators in each cluster.

We now explain why the transition into desynchronization
occurs on a fast time-scale, as observed in Fig. 8(a), using the collec-
tive coordinate Eqs. (30)–(32) for the three-cluster interactions. The
intercluster interaction term between the second and third cluster in
ṙ3 isG(r3) cos F2, whereG(r3) scales as r

2
3

√

−2 log r3 [see (30)], which
is positive for 0 < r3 < 1 and equal to zero at r3 = 0 and r3 = 1. On
the stable limit cycles, F2 oscillates around π/2. Therefore, the inter-
action term is small while on the limit cycles, but when r3 < rc, and
the saddle-node bifurcation occurs, F2 increases away from π/2, and
so ṙ3 becomes strongly negative, explaining the sharp decline of r3.
At the point where F2 crosses 3π/2, the sign of cos(F2) changes, and
so ṙ3 becomes strongly positive, until F2 once again approaches π/2,
at which point r3 once again becomes slow, and the system relaxes to
a limit cycle corresponding to r3 ≈ 1. This restarts the cycle of slow
decay followed by a sharp decline and recovery.

We have established how chaos is generated through the delicate
interaction of three clusters using the collective coordinate frame-
work. As a summary, chaos occurs as a sensitivity between the entry
and exit locations to the regular limit cycle zone. This sensitivity is

FIG. 10. Poincaré section of the collective coordinate dynamics for the tri-
modal natural frequency distribution shown in Fig. 6 through the plane F1 = 0,
shown in the (r3, F2)-plane. Shown are results for the 6D collective coordinate
Eqs. (23)–(24) with M = 3 (gray), and for the reduced 3D system (30)–(32)
(black). The zoomed in region shows a fractal folding pattern for both models,
indicating the presence of chaos.

shown by the in�nite, fractal accumulation of folds in the zoomed
in Poincaré section through the plane F1 = 0 (cf. Fig. 10). The folds
accumulate in the small region with r3 ≈ 1 and F2 ≈ π/2, corre-
sponding to the regular limit cycle dynamics and slow, predictable
decay of r3. While we have shown that chaos is possible for trimodal
natural frequency distributions, it is a rare phenomenon. In the pro-
cess of �nding the natural frequency distribution shown in Fig. 6,
we computed themaximal Lyapunov exponent for 5 × 104 randomly
drawn sets of natural frequency distribution parameters (�, σ , γ )
and coupling strengths K that produce synchronized clusters, and
found that only 90 cases were chaotic (with a positive Lyapunov
exponent), i.e., only 0.18%.

VI. TWO CLUSTERS: NO CHAOS

For two clusters, M = 2, the thermodynamic limit collective
coordinate Eqs. (23)–(24) become

ṙ1 = −σ 2
1 β1r1 (1 − Kβ1r1 (γ1r1 + γ2r2 cos F)), (33)

ṙ2 = −σ 2
2 β2r2 (1 − Kβ2r2 (γ2r2 + γ1r1 cos F)), (34)

Ḟ = 1�− Kr1r2 sin F, (35)

where F = f2 − f1 is the phase di�erence of the two clusters and
1� = �2 −�1. Hence, it appears that there are three degrees of
freedom, and chaos is theoretically possible.

We now show, using the collective coordinate approach, that
chaos is not possible. In particular, phase chaos is not possible as it
would reduce the dimension of the system to 1D with both r1 and r2
being constant. The case of intermittent desynchronization leads to
decoupled 1D slow and 2D fast dynamics, excluding the possibility
of chaos.

Let us begin with excluding the possibility of phase chaos. If the
time scale splitting between r1, r2 (slow) and F (fast) is valid, i.e., if
the two clusters remain synchronized for all time, we can average the
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FIG. 11. (a) and (b) The vector field (31)–(32) and stable (thick solid red) and unstable (thick dashed red) limit cycles in the (F1, F2) plane for fixed r3. (a) r3 = 1 and (b)
r3 = 0.981 ≈ rc, the critical value at which the limit cycles annihilate via a saddle-node bifurcation. (c) The stable limit cycles from (a) and (b) are shown together with a
trajectory of the full 6D collective coordinate model (23)–(24), projected onto the (F1, F2)-plane (thin black). The tracer spends most of its time in the region between the
stable limit cycles.

slow r1, r2 dynamics over the fast dynamics F. Assuming r1 and r2 are
constant, the dynamics of F can be solved analytically, with solution

F(t) = 2 arctan

(

κ

1�
+ B

1�
tan

(

B

2
t + C

))

, (36)

0.975 0.980 0.985 0.990 0.995 1.000

0.030

0.035

0.040

0.045

SN

FIG. 12. The change in r3 over one period of the associated limit cycle,1r3, over
a range of r3 and σ3 values. Limit cycles do not exist in the gray region, to the left of
the saddle-node (SN) bifurcation curve (solid gray). The curve1r3 = 0 (dashed
black) indicates fixed points of the map r3 7→ r3 +1r3 for each value of σ3. The
line σ3 = σ ∗

c (solid black) separates chaotic cases (σ3 > σ ∗
c ) and nonchaotic

cases (σ3 < σ ∗
c ).

where κ = Kr1r2, B =
√
1�2 − κ2, C = arctan

(

−κ+1� tan
F0
2

B

)

, and

F(0) = F0. Note that F is a periodic function, with period T = 2π/B.
For the bimodal frequency distribution shown in Fig. 13(a), where
the peaks have very little overlap, the approximate solution (36)
[dashed black in Fig. 13(b)] for the phase di�erence closely matches
the time series ofF of the collective coordinatemodel (33)–(35) [solid
red in Fig. 13(b)].

Furthermore, since F(t) ranges from 0 to π , we can choose,
without loss of generality, our starting time such that F0 = π/2, and
so C = arctan 1�−κ

B
. It can be shown that

F(t) = π

2
+ 2 arctan

[

1�− κ

B
tan

(

B

2
t

)]

,

which implies that

cos F(t) = − sin

(

2 arctan

[

1�− κ

B
tan

(

B

2
t

)])

.

Therefore, cos F(t) is an odd periodic function, and so its average
over one period, 〈cos F(t)〉, is zero. This means the dynamics of the
time-averaged variables r̄1, r̄2 becomes decoupled from one another.
The dynamics for each cluster is equivalent to the single cluster ansatz
Eq. (9), with K replaced by Kγi for i = 1, 2. Hence r1(t) [solid blue
curve in Fig. 13(c)] and r2(t) [solid red curve in Fig. 13(c)] oscillate
around the stable equilibria, r∗1 and r∗2 (dashed blue and red respec-
tively), obtained from the respective single cluster ansatz equations,
and phase chaos cannot occur.

Now we go on to exclude the case that one cluster intermit-
tently desynchronizes, like in the three cluster case discussed in the
previous section. This occurs for the natural frequency distribution
shown in Fig. 13(d), where the second cluster intermittently desyn-
chronizes, approaching r2 ≈ 0.4, as shown by the solid red curve in
Fig. 13(f). In this case, the dynamics of r1, which remains close to 1
for all time, is slower than r2 and F. This is con�rmed in Fig. 13(e),
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FIG. 13. Dynamics for two bimodal frequency distributions. (a) and (d) Natural frequency distributions, g(ω). (a):(σ1, σ2) = (0.15, 0.1), (�1,�2) = (−0.5, 1), (γ1, γ2)
= (2/3, 1/3). (d):(σ1, σ2) = (0.2, 0.3), (�1,�2) = (−0.8, 1), (γ1, γ2) = (5/9, 4/9). (b) and (e) Time series of F for the 3D collective coordinate model (33)–(35) (solid
red), and the function F(t) given by (36) (dashed black). (b) K = 1, (e) K = 1.85. (c) and (f) Time series of r1 (solid blue, upper) and r2 (solid red, lower). Also shown are
the values of r1 (dashed blue) and r2 (dashed red) that are the stable solutions to the single cluster ansatz (9) for each cluster. These are also the stationary solutions of the
time-averaged dynamics, assuming the time-scale splitting between F (fast) and r1,2 (slow) is valid.

where it is shown that the time evolution of F given by numerical
simulation of (33)–(35) (solid red) is not well approximated by the
function (36) (dashed black), which assumes perfect time-scale split-
ting. Therefore, we may not assume time-scale separation between
r2 and F. We have an e�ective 2D fast system for r2 and F. This 2D
system has a stable limit cycle in cases with two clusters that do not
globally synchronize. In turn, the dynamics of r1 cannot be chaotic,
since the time-averaged dynamics is a 1D system with time-periodic
forcing.

The only other possibility is that both clusters intermittently
desynchronize. However, since it is the intercluster terms in ṙ1 and ṙ2
that drive the push away from the single cluster ansatz equilibrium,
and both intercluster terms are multiples of r1r2 cos F, it follows that
r1 cannot rapidly decaywithout r2 also rapidly decaying. If one, say, r1,
decays faster than the second, r2, then it will asymptote toward r1 = 0,
and so it has no e�ect on the second cluster. The second cluster is then
governed by the single cluster ansatz and will either approach the sta-
ble synchronized state, or approach r2 = 0, depending on whether r2
crosses the unstable �xed point of the single cluster ansatz equation
while the �rst cluster is desynchronizing. In either case, the dynamics
is regular, and stationary in the long run. If both r1 and r2 decay at
the same rate, then the system possesses a symmetry, which further
reduces the e�ective dimension, excluding the possibility of chaos.

The above discussion used the thermodynamic limit. In �nite
size networks, however, chaos can occur for bimodal natural fre-
quency distributions. This occurs due to sampling e�ects. In our
numerical simulations of �nite size networks, we found that it is
typical that when chaos occurs, a small group of oscillators, with nat-
ural frequencies at one or the other extreme of the distribution (i.e.,
very high or very low), do not synchronize with the other oscillators

corresponding to the same peak in the natural frequency distribu-
tion. This group of “rogues” may either constitute a set of incoherent
oscillators or another small cluster. In either case, the system must
be considered as having more than two clusters, which agrees with
our results obtained in Secs. IV and V. We �nd fewer chaotic cases
as the number of oscillators increases, which con�rms that the issue
is a �nite-size e�ect. It is important to note that we have found
no bimodal cases with �nite N that are chaotic and do not have
unsynchronized rogue oscillators.

VII. SUMMARY AND OUTLOOK

A. Summary

Employing detailed numerical simulations guided by analytical
results from a collective coordinate reduction we have established
necessary conditions for collective chaos in the Kuramoto model
with multimodal natural frequency distributions. We have shown
that phase chaos can occur provided there are at least four peaks in
the natural frequency distribution. This is due to a time-scale splitting
between slow intracluster collective coordinates and fast intercluster
collective coordinates, which reduces the Kuramoto model toM − 1
active degrees of freedom, where M is the number of peaks in the
natural frequency distribution.

For three peaks in the natural frequency distribution, we have
shown that chaos can occur via intermittent desynchronization of
clusters. When a cluster desynchronizes, its intracluster collective
coordinate becomes fast, resulting in an additional active degree of
freedom. Through the slow-fast splitting, the collective coordinate
description has allowed us to study the intricate dynamics of inter-
mittent desynchronization, and show that it is a robust phenomenon.
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For two peaks in the natural frequency distribution, the collec-
tive coordinate description has allowed us to rule out the possibility
of chaos.

We have shown that for both phase chaos and chaos via
intermittent desynchronization, the reduced collective coordinate
description can be used to quantitatively predict the leading Lya-
punov exponent, and, hence, regions of the parameter space where
chaos occurs.

However, it is important to note that these results are primarily
for the thermodynamic limit. For �nite size networks, even bimodal
natural frequency distributions can be chaotic. In those cases, there
are rogue oscillators that do not synchronize with the rest of their
cluster. These rogues can be treated as separate clusters, each of which
requiring its own additional collective coordinate, increasing the
number of active degrees of freedom, and opening up the possibility
of chaos.

B. Outlook

In our numerical simulations, we have observed regions in
the parameter space of multimodal natural frequency distributions
with four peaks that exhibit multistability, including natural fre-
quency distributions that yield both strange attractors and limit
cycles, depending on the initial condition. For example, Fig. 14 shows
that for K = 0.95 and multimodal distributions like Fig. 1, a sec-
ond stable branch exists for σ > 0.022 for the full Kuramoto model
(1) with N = 100 oscillators (green squares). This multistability is
well reproduced by the collective coordinate model (19)–(20) with
N = 100 (red +’s) and by the collective coordinate model in the ther-
modynamic limit (21)–(22) (not shown). On the lower branch, the
dynamics is periodic, and has the property that r1(t) = r4(t + T/2)
and r2(t) = r3(t + T/2), where T is the period of the system. On
the upper stable branch there is no such relation between the clus-
ter order parameters. Further study is required to understand this

0.00 0.01 0.02 0.03 0.04 0.05
0.44

0.45

0.46

0.47

0.48

FIG. 14. Multistability of the order parameter r̄ for K = 0.95 and multimodal nat-
ural frequency distributions with four peaks, as in Fig. 1, such that each peak
has variance σ 2. Shown are results for the full Kuramoto model (1) with N = 100
oscillators (green squares) and the collective coordinate model (19) and (20) with
N = 100 (red +’s). For each model, 100 random initial conditions are seeded to
determine regions of multistability.

phenomenon, and the bifurcations that control it. Since the reduced
collective coordinate models are more analytically tractable than
the full Kuramoto model and accurately predict the existence of
multistability, they may be used to provide deeper insight into this
phenomenon.

Here, we have considered all-to-all networks with synchronized
clusters that result from distinct peaks in the natural frequency dis-
tribution. However, synchronized clusters can also occur due to the
network topology. Future studies should consider whether topologi-
cal clusters can yield chaos. Furthermore, chaos could result from a
combination of frequency clustering and topological clustering. For
example, a bimodal natural frequency distribution and a network
with two clusters, which would result in four synchronized clusters
of oscillators and the three degrees of freedom required for chaos.
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