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Model reduction for the Kuramoto-Sakaguchi model:
The importance of nonentrained rogue oscillators
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The Kuramoto-Sakaguchi model for coupled phase oscillators with phase frustration is often studied in
the thermodynamic limit of infinitely many oscillators. Here we extend a model reduction method based on
collective coordinates to capture the collective dynamics of finite-size Kuramoto-Sakaguchi models. We find
that the inclusion of the effects of rogue oscillators is essential to obtain an accurate description, in contrast to
the original Kuramoto model, where we show that their effects can be ignored. We further introduce a more
accurate ansatz function to describe the shape of synchronized oscillators. Our results from this extended
collective coordinate approach reduce in the thermodynamic limit to the well-known mean-field consistency
relations. For finite networks we show that our model reduction describes the collective behavior accurately,
reproducing the order parameter, the mean frequency of the synchronized cluster, and the size of the cluster at
a given coupling strength, as well as the critical coupling strength for partial and for global synchronization.
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I. INTRODUCTION

Synchronization is a ubiquitous phenomenon observed
across a variety of different natural and artificial systems
[1–3], from pace-maker cells of circadian rhythms [4] and net-
works of neurons [5], to chemical oscillators [6,7] and power
grid systems [8]. A paradigmatic model for studying the dy-
namics of synchronization is the celebrated Kuramoto model
of sinusoidally coupled phase oscillators [1,2,9–14]. Real-
world oscillatory systems are often prone to time-delayed
or phase-frustrated coupling, which are not described by the
Kuramoto model. To capture the effects of phase frustra-
tion, the Kuramoto model was extended to the Kuramoto-
Sakaguchi model [15]. Phase frustration, often associated
with time-delayed couplings [16], is important in various
physical contexts including arrays of Josephson junctions
[17–19], power grids [20], and seismology [21,22]. Nonzero
phase frustration leads to a synchronized cluster rotating
collectively with a nonzero frequency in the rest frame, in con-
trast with the Kuramoto model, for which the synchronized
cluster is stationary in the rest frame provided the intrinsic
frequencies are symmetric about zero. Besides the familiar
behavior of transitioning from incoherence through partial
synchronization to full synchronization with increasing cou-
pling strength, the Kuramoto-Sakaguchi model displays much
richer dynamical behavior, such as bistability of incoherence
and partial synchronization, transition from coherence to inco-
herence with increasing coupling strength [23,24], as well as
chaotic dynamics [25]. Furthermore, the Kuramoto-Sakaguchi
model has been the showground to study chimera states,
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where identical oscillators evolve to a state of coexistence
between synchronization in some part and incoherence in
other parts [26–28].

To understand and describe this plethora of collective dy-
namical scenarios, one seeks to derive reduced equations that
facilitate analysis while still capturing the essential dynamics.
Previous model reduction methods for Kuramoto-like models
primarily consider the thermodynamic limit of infinitely many
oscillators. For the Kuramoto model without phase frustration,
the Ott-Antonsen (OA) ansatz achieves a reduction to a one-
dimensional equation for the order parameter [29]. In the
Kuramoto-Sakaguchi model, a frequency-dependent version
of the OA ansatz was developed to describe the nonzero
rotation frequency of the synchronized cluster [23,24]. How-
ever, these model reduction methods only apply to the ther-
modynamic limit of infinitely many oscillators. Real-world
systems are of finite size, and the behavior of finitely many
oscillators may strongly deviate from their thermodynamic
limit [30]. To relax the restriction of the thermodynamic limit
used in mean-field theory and in model reduction approaches
such as the OA ansatz, a model reduction framework using
collective coordinates has been developed recently for the
original Kuramoto model [31]. The collective coordinate ap-
proach has been applied successfully to capture finite-size
effects in the original Kuramoto model [31] and in a stochastic
Kuramoto model [30], and it has been extended to coupled
oscillator models with arbitrary network topology [32]. For
the Kuramoto model with multimodal intrinsic frequency
distributions, the collective coordinate framework was used to
describe collective chaos with multiple interacting synchro-
nized clusters [33]. It has been established recently that in
the thermodynamic limit, the collective coordinate framework
recovers the exact bifurcation structure of the OA ansatz [34].

In this paper, we extend the approach to the Kuramoto-
Sakaguchi model with nonzero phase frustration. We show
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that to accurately reproduce the macroscopic dynamics, we
must account for the nonentrained rogue oscillators, i.e., those
that do not partake in the collective synchronized behav-
ior. The rogue oscillators significantly affect the collective
behavior of the synchronized cluster via their mean field.
The influence of the rogue oscillators on the synchronized
oscillators is particularly prominent close to the onset of syn-
chronization where the number of rogue oscillators is larger
than the number of synchronized oscillators. The inclusion of
the effect of the rogue oscillators requires careful analytical
treatment. This is achieved by judiciously considering their
average effect with respect to a specific probability distribu-
tion function. This is in contrast with the original Kuramoto
model with no phase frustration, for which we show that the
effect of the rogue oscillators can be ignored for symmetric
intrinsic frequency distributions. We apply the collective co-
ordinate approach with two ansatz functions: a linear ansatz
that corresponds to linearization of a mean-field solution, and
a fully nonlinear arcsine ansatz. The arcsine ansatz has higher
accuracy and recovers classical self-consistency results in
the thermodynamic limit. The collective coordinate approach
captures the transitions from incoherence to synchronized
states. Our collective coordinate approach accurately captures
several other collective quantities of the Kuramoto-Sakaguchi
model, such as cluster mean frequency, cluster size, and
critical coupling strength corresponding to the onset of partial
and global synchronization.

The paper is organized as follows. Section II introduces the
Kuramoto-Sakaguchi model and discusses some of its collec-
tive behavior. Section II A reviews the self-consistency analy-
sis for the Kuramoto-Sakaguchi model in the thermodynamic
limit. Section III revisits the collective coordinate framework
and develops its generalization for the Kuramoto-Sakaguchi
model, in particular how to incorporate the dynamical ef-
fects of the rogue oscillators. Section IV presents numerical
results of the collective coordinate approach, showcasing its
effectiveness to quantitatively describe the collective behavior
of phase-frustrated oscillators. Section V concludes with a
summary and an outlook.

II. THE KURAMOTO-SAKAGUCHI MODEL

The Kuramoto-Sakaguchi model describes the dynamics of
N coupled phase oscillators. It has the form

φ̇i(t ) = ωi + K

N

N∑
j=1

sin(φ j − φi − λ), (1)

where φi(t ) denotes the phase of the ith oscillator with intrin-
sic frequency ωi, K represents the strength of the coupling,
and λ describes the phase frustration. The constant phase
frustration is often viewed as an approximation for a time-
delayed coupling when the delay is small [16]. The intrinsic
frequencies ωi are drawn from a frequency distribution g(ω).
We consider here a Lorentzian distribution

g(ω) = �

π (�2 + ω2)
(2)

with � = 0.5, and a uniform distribution

g(ω) ∼ U [−γ , γ ] (3)

with γ = 1. The oscillators are ordered and indexed with
increasing intrinsic frequency ωi, i.e., i = 1 corresponds to
the smallest and i = N to the largest intrinsic frequency. To
mitigate against finite sampling effects such as frequency clus-
ters, we shall consider frequencies that are drawn from g(ω)
equiprobably [35]. This avoids that a particular realization of
the frequencies may lead to either large or small gaps in the
frequencies, which implies local clustering. Finite-size effects
are still dynamically relevant as they determine the range of
coupling strengths before new oscillators can be entrained, as
will be discussed below.

To describe the collective behavior of the Kuramoto-
Sakaguchi model, mean-field variables r and ψ are introduced
such that

reiψ = 1

N

N∑
j=1

eiφ j . (4)

The time average of the order parameter r,

r̄ = lim
T →∞

1

T

∫ T0+T

T0

r(t )dt,

quantifies the degree of synchronization. Synchronized states
correspond to r̄ ≈ 1, whereas incoherent states correspond to
r̄ ∼ 1/

√
N .

In the following, we present results on the collective be-
havior of the Kuramoto-Sakaguchi model (1), which will be
captured quantitatively via the collective coordinate approach
developed in Sec. III.

Figure 1 depicts the transition from incoherence with
r̄ ∼ 1/

√
N to synchronization with r̄ > 0 upon increasing the

coupling strength K beyond a critical coupling strength Kc for
(a) the Lorentzian frequency distribution (2) and (b) the uni-
form frequency distribution (3). For a Lorentzian distribution,
inclusion of the phase frustration λ impedes synchronization,
both lowering r̄ for a given coupling strength K as well as
delaying the onset of synchronization to a higher value of K
for larger λ > 0. For K > Kc, a partially synchronized cluster
emerges, which increases in size upon increasing the coupling
strength. Since a Lorentzian frequency distribution has an
unbounded support in the thermodynamic limit N → ∞, for
each value of K there are oscillators that are not entrained,
and hence global synchronization, in which all oscillators
partake in the synchronized collective behavior, does not
occur in the thermodynamic limit. For finite systems, how-
ever, there always exists a coupling strength Kg above which
all oscillators are synchronized. For N = 50 oscillators at
λ = π/4 with intrinsic frequencies drawn equiprobably from
a Lorentzian distribution with � = 0.5, as shown in Fig. 9(a),
the transition to global synchronization occurs at Kg ≈ 53.7,
which is outside the range of the figure.

For a uniform distribution, increasing λ similarly increases
the critical coupling strength corresponding to global syn-
chronization (not shown). However, unlike for a Lorentzian
distribution, the onset of partial synchronization around
K ≈ 1 occurs at decreasing values of K as λ increases. For
λ = 0, it is well known that the transition is explosive from
incoherence to global synchronization [36].

For K > Kc, a subset of the oscillators forms a synchro-
nized cluster that collectively evolves at a common nonzero
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(a)

(b)

FIG. 1. Order parameter r̄ of the Kuramoto-Sakaguchi model (1)
with N = 50 oscillators for different phase-frustration parameters
λ. (a) Lorentzian frequency distribution (2). (b) Uniform frequency
distribution (3).

frequency. To identify those oscillators that partake in the
synchronized cluster, we compute the effective frequency
	i = 〈φ̇i(t )〉t for each oscillator where φ̇i(t ) are instantaneous
frequencies and 〈−〉t denotes a temporal average. Oscillators
with a common 	i are identified as the synchronized cluster C,
with indices imin � i � imax, and minimal and maximal intrin-
sic frequencies ωmin := ωimin and ωmax := ωimax . The common
frequency of the cluster C is estimated as 	 = 1

Nc

∑
j∈C 	 j ,

where Nc = |C| = imax − imin + 1 denotes the size of the syn-
chronized cluster.

In the original Kuramoto model with zero phase frustration
λ = 0, synchronized clusters of size Nc are always symmetric
about ω = 0 provided the intrinsic frequencies ωi are sym-
metric about ω = 0 [as is the case for equiprobable draws of
a frequency distribution g(ω) that is symmetric about ω = 0].
In particular, for λ = 0 we have ωmax = −ωmin, and as the
coupling strength K decreases, oscillators break off from the
cluster in symmetric pairs, as shown in Fig. 2(a). In contrast,
in the Kuramoto-Sakaguchi model with nonzero phase frustra-
tion λ, the synchronized cluster is not symmetric about ω = 0

(a)

(b)

FIG. 2. Minimum (ωmin) and maximum (ωmax) intrinsic frequen-
cies of oscillators within the synchronized cluster at different cou-
pling strengths K for N = 50 oscillators. Intrinsic frequencies drawn
from a Lorentzian distribution (2). (a) λ = 0, (b) λ = π/4.

and oscillators break off from the cluster asymmetrically, as
shown in Fig. 2(b) for λ = π/4.

For nonzero λ, the synchronized cluster rotates at a nonzero
common frequency 	 in the rest frame, in contrast to the
Kuramoto model at λ = 0 where the synchronized cluster
is stationary. Figure 3 shows the cluster mean frequency
	 as a function of the coupling strength K for different
values of λ. We observe that at high coupling strength, 	

has a nearly linear dependence on K with 	 ≈ −K sin λ for
both a Lorentzian frequency distribution (2) and a uniform
frequency distribution (3). For the Lorentzian distribution,
the linear dependence extends over the whole range of cou-
pling strengths. For the uniform distribution, 	 exhibits a
nonlinear dependence of 	(K ) close to the onset of partial
synchronization.

In the following, we present the well-known self-
consistency result obtained from mean-field analysis in the
thermodynamic limit. These results will be used subsequently
in our model reduction via the collective coordinate approach,
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(a)

(b)

FIG. 3. Mean frequency 	 of the synchronized cluster as a func-
tion of coupling strength K for different phase-frustration parameters
λ for the Kuramoto-Sakaguchi model (1) with N = 50 oscillators.
(a) Lorentzian frequency distribution (2). (b) Uniform frequency
distribution (3).

and they will be instructive in extending the collective coor-
dinate approach developed in [30–34] to incorporate nonen-
trained rogue oscillators.

A. Classical mean-field approach and self-consistency analysis

The Kuramoto-Sakaguchi model allows for a mean-field
description in the thermodynamic limit, which reduces the
dynamics to two mean-field variables r and 	. Here we follow
the approach developed by Sakaguchi and Kuramoto [15] to
find a self-consistency relation between r and 	. We shift to
the frame rotating with the cluster mean frequency 	 = 	(K )
and consider the phase variables θi(t ) = φi(t ) − 	t . The
Kuramoto-Sakaguchi model (1) is then written as

θ̇i(t ) = ωi − 	 + K

N

N∑
j=1

sin(θ j − θi − λ), (5)

and the mean-field variables (4) are expressed as

reiψ =
⎛
⎝ 1

N

N∑
j=1

eiθ j

⎞
⎠ei	t . (6)

In the thermodynamic limit, after a sufficiently long tran-
sient, r and 	 asymptote toward steady states, and without
loss of generality we set ψ = 	t . Substituting (6) into the
Kuramoto-Sakaguchi model (5), we obtain the mean-field
formulation of the Kuramoto-Sakaguchi model,

θ̇i(t ) = ωi − 	 − Kr sin(θi + λ). (7)

In this form, θi is coupled to the phases of the other oscillators
only via the mean-field variables r and 	.

Oscillators with frequencies |ωi − 	| � Kr allow for sta-
tionary solutions

θi = arcsin

(
ωi − 	

Kr

)
− λ, (8)

and partake in the collective rotation with frequency 	. These
oscillators form the synchronized cluster C. On the other hand,
oscillators with frequencies |ωi − 	| > Kr do not allow for
fixed point solutions and instead drift with

θ̇i = v(θi; ωi ),

where

v(θi; ωi ) = ωi − 	 − Kr sin(θi + λ). (9)

These oscillators are the nonentrained, rogue oscillators.
In the thermodynamic limit N → ∞, the phases can be

described by a probability density function ρ(θ, t ; ω) with
normalization condition∫ 2π

0
ρ(θ, t ; ω)dθ = 1. (10)

The probability density ρ(θ, t ; ω) satisfies the continuity
equation

∂ρ

∂t
+ ∂

∂θ
(ρv) = 0, (11)

which is a consequence of conservation of the number of
oscillators at each intrinsic frequency. We now consider par-
ticular stationary solutions of the continuity equation (11),
pertaining to the entrained synchronized oscillators and the
nonentrained rogue oscillators.

After a sufficiently long transient, oscillators with
|ω − 	| � Kr become entrained and are described by a sta-
tionary probability density function

ρ(θ ; ω) = δ

(
θ − arcsin

(
ω − 	

Kr

)
+ λ

)
. (12)

The nonentrained, rogue oscillators with |ω − 	| > Kr have
the stationary phase distribution

ρ(θ ; ω) = C(ω)

v(θ ; ω)
= C(ω)

ω − 	 − Kr sin(θ + λ)
, (13)

where C(ω) is a normalization constant.
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The mean-field variable (6) can then be expressed in the
thermodynamic limit as

r =
∫ ∞

−∞

∫ 2π

0
eiθρ(θ, t ; ω)g(ω)dθ dω. (14)

Substituting the stationary probability densities for the en-
trained and for the nonentrained oscillators, (12) and (13),
into the equation for the mean-field order parameter (14), we
obtain

reiλ =
∫

|ω−	|�Kr

(√
1 − (ω − 	)2

K2r2
+ i

ω − 	

Kr

)
g(ω)dω

+ i
∫

|ω−	|>Kr

ω − 	

Kr

⎛
⎝1 −

√
1 − K2r2

(ω − 	)2

⎞
⎠g(ω)dω.

(15)

Considering real and imaginary parts of (15), we arrive at the
following self-consistency relation for r and 	:

r cos λ =
∫

|ω−	|�Kr

√
1 − (ω − 	)2

K2r2
g(ω)dω, (16)

r sin λ =
∫

|ω−	|�Kr

ω − 	

Kr
g(ω)dω

+
∫

|ω−	|>Kr

ω − 	

Kr

⎛
⎝1 −

√
1 − K2r2

(ω − 	)2

⎞
⎠g(ω)dω.

(17)

Although they are complicated, in principle, for a specified
distribution g(ω), the self-consistency equations (16) and (17)
implicitly determine r and 	 for a given coupling strength K
and phase frustration λ.

Remark 1. For the Kuramoto model with λ = 0, the left-
hand side of (17) is zero. If g(ω) is symmetric about ω = 0,
then (17) is satisfied for 	 = 0 and (16) becomes

r =
∫ Kr

−Kr

√
1 − ω2

K2r2
g(ω)dω, (18)

which is the classical self-consistency result for the Kuramoto
model [1,9].

Remark 2. If the intrinsic frequency distribution g(ω) has fi-
nite support, then for large enough K the synchronized cluster
|ω − 	| � Kr contains all the oscillators, and if additionally
g(ω) is symmetric about ω = 0, (17) becomes

r sin λ =
∫ ∞

−∞

ω − 	

Kr
g(ω)dω + 0 = − 	

Kr
, (19)

leading to 	 = −Kr2 sin λ. For high K , r ≈ 1 and 	 ≈
−K sin λ, agreeing with the linear dependence observed in
Fig. 3.

In Appendix B we apply the Ott-Antonsen ansatz for a
Lorentzian intrinsic frequency distribution to obtain expres-
sions for r(K, λ) and 	(K, λ). We find that for the Lorentzian
frequency distribution, the transition to partial synchroniza-
tion is via a supercritical pitchfork bifurcation.

III. COLLECTIVE COORDINATE APPROACH

A model reduction method based on collective coordinates
has recently been proposed and developed for finite-size Ku-
ramoto models [30–34]. The approach is based on projecting
the dynamics of the full model onto a judiciously chosen low-
dimensional ansatz manifold to capture the collective dynam-
ics of the system. The variables that are used to parametrize
the ansatz manifold are the so-called collective coordinates.

For the Kuramoto-Sakaguchi model, at sufficiently high
coupling strengths, a group of oscillators form a synchronized
cluster with a well-defined shape profile that rotates at a
constant frequency. Motivated by this observation, we propose
that in the frame corotating at the cluster mean frequency 	,
the phases of oscillators within the synchronized cluster i ∈ C
are approximated by

θi(t ) ≈ �i(α(t ),	), (20)

where �i is the shape profile of phases of oscillators within
the cluster C, α(t ) is a collective coordinate representing the
spread of the phases, and 	 is a collective parameter repre-
senting the cluster mean frequency. For ease of presentation
we assume here that the synchronized cluster C is known a
priori; we will discuss later how C is determined within the
collective coordinate framework. Note that 	 does not have
explicit time dependence. The method of collective coordi-
nates requires specifying the shape profile �, and determining
the evolution of the collective coordinate α(t ) and an expres-
sion for the rotation frequency 	. We begin by specifying the
ansatz function for the shape �i for the Kuramoto-Sakaguchi
model (5). We will specify two ansatz functions; a linear
function, approximating the shape for large coupling strengths
K , and a nonlinear function, which describes the mean field in
the thermodynamic limit.

Linearization of the stationary mean-field solution (8)
around 1/K 
 1 suggests a shape profile of the form

�i = ωi − 	

Kr
− λ, (21)

by expanding the stationary solution (8) up to linear order. We
coin this the linear ansatz.

Alternatively, using the full nonlinear stationary mean-field
solution (8), we arrive at

�i = arcsin

(
ωi − 	

Kr

)
− λ. (22)

We coin this the arcsine ansatz. Note that the arcsine ansatz is
exact for globally synchronized systems.

For both ansätze (21) and (22), we identify α(t ) = r(t ) as
the collective coordinate, and 	 as the collective parameter
that does not have explicit time dependence. Figure 4 com-
pares the phases predicted by the linear ansatz (21) and the
arcsine ansatz (22) with the phases obtained from simulations
of the full Kuramoto-Sakaguchi model (5). Here the values
of r and 	 that appear in the ansätze (21) and (22) are taken
from time averages from the numerical simulation. We will
see below how to obtain the order parameter and the fre-
quency from the collective coordinate approach. The arcsine
ansatz produces phases that are barely distinguishable with
the naked eye from those obtained from the simulations. The
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FIG. 4. Stationary phases from the linear ansatz (21), the arcsine
ansatz (22), and a snapshot of the phases obtained from a simulation
of the full Kuramoto-Sakaguchi model (5) with N = 50 oscillators at
coupling strength K = 10 and with phase-frustration parameter λ =
π/4, and a Lorentzian frequency distribution (2). The synchronized
cluster forms for 2 � i � 47. Each set of phases is shifted to have
mean zero.

linear ansatz is also found to approximate the actual phases
reasonably well.

In previous work on collective coordinates model reduction
[30–34], nonentrained rogue oscillators i /∈ C and their effect
on the entrained oscillators, which are described by (20), were
ignored. Here we extend the collective coordinate framework
to include the effect of nonentrained rogue oscillators, which
will be shown in Sec. IV to be crucial to accurately reproduce
the collective dynamics of the Kuramoto-Sakaguchi model.
We propose that their phases are described by a distribu-
tion function inversely proportional to their instantaneous
“velocity,”

θi ∝ Pi(θi ) = C(ωi )

v(θi; ωi )
, (23)

where the velocity v(θi; ωi ) is given by (9). Here r and
	 appearing in the velocity (9) are given by the collective
coordinates. This statistical ansatz for the rogue oscillators
is motivated by the fact that dt/dθi = 1/vi(θi ) measures the
time the phase of the ith oscillator spends near the value
θi, and, since the dynamics of the rogues is fast relative to
the slow synchronization dynamics, the effect of the rogues
on the entrained oscillators is determined by their statis-
tical time average. Figure 5 provides numerical evidence
for the statistical ansatz (23). We show a comparison of
the proposed distribution function (23) with the normalized
phase histogram for a single rogue oscillator θ49 obtained
from a long-time simulation of the full Kuramoto-Sakaguchi
model (5).

We now set out to determine the evolution equations for
the collective coordinates α(t ) = r(t ) and 	, where for the
first time we incorporate the effect of the rogue oscillators.
Following the collective coordinate framework [30–34], the
dynamics of the collective coordinates is obtained by mini-
mizing the error associated with the ansatz. The ansatz �i

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

FIG. 5. Normalized phase distribution of a single rogue oscilla-
tor θ49 obtained from numerical simulation of the full Kuramoto-
Sakaguchi model (1) (histogram) and obtained from the ansatz (23)
for the density function Pi(θi ) (continuous curve). Parameters are as
in Fig. 4. The phases of the simulation are globally shifted to obtain
the corresponding phases θi(t ) in the reference frame rotating with
frequency 	.

[e.g., the linear ansatz (21) or the arcsine ansatz (22)] is
substituted into the original Kuramoto-Sakaguchi model (5)
to obtain the associated error for i ∈ C,

Ei = ṙ
∂�i

∂r
(r(t ),	) − (ωi − 	)

− K

N

⎡
⎣∑

j∈C
sin(� j − �i − λ) +

∑
j /∈C

sin(θ j − �i − λ)

⎤
⎦,

(24)

where we split the sum into a contribution coming from
interactions with other entrained oscillators ( j ∈ C) and a con-
tribution coming from interactions with nonentrained rogue
oscillators ( j /∈ C).

The nonentrained rogue oscillators evolve on a timescale
much faster than the synchronized cluster, which is stationary
in the corotating frame. This separation of timescales suggests
that a synchronized node θi, i ∈ C, feels the time-averaged dy-
namics of the rogue oscillators θ j , j /∈ C. Invoking Birkhoff’s
ergodic theorem, the temporal average can be approximated
by averaging over the phase distribution Pi(θi) (23), and
the contribution of the interaction term involving the rogue
oscillators can be written as∑

j /∈C
sin(θ j − �i − λ) ≈

∑
j /∈C

∫ 2π

0
sin(θ j − �i − λ)Pj (θ j )dθ j

= cos(�i + 2λ)
∑
j /∈C

k j,

where

k j = ω j − 	

Kr

(
1 −

√
1 − K2r2

(ω j − 	)2

)
. (25)
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Note that for the original Kuramoto model with λ = 0 and
with intrinsic frequencies ωi, which are symmetric about
ω = 0, the collective frequency 	 of the synchronized clus-
ter is zero, which implies

∑
j /∈C k j = 0. This justifies that

for the Kuramoto model and symmetric frequency distribu-
tions, the rogue oscillators can be neglected, as was assumed
in [30–34]. For a general Kuramoto-Sakaguchi model with
λ �= 0,

∑
j /∈C k j �= 0 in general.

We shall see in the numerical simulations presented in
Sec. IV that the inclusion of the rogue oscillators via the
averaged effect on the synchronized cluster is crucial to obtain
qualitative agreement between the reduced dynamics and the
full Kuramoto-Sakaguchi model. Ignoring the interaction term
by setting

∑
j /∈C k j = 0 will be shown to only describe the

collective behavior for large values of the coupling strength K
beyond the onset of global synchronization.

To obtain the dynamics of the collective coordinate r(t ),
the error (24) is minimized, which is achieved when it is or-
thogonal to the tangent space of the ansatz manifold spanned
by the collective coordinates r and 	, i.e., when∑

i∈C
Ei

∂�i

∂r
= 0 and

∑
i∈C

Ei
∂�i

∂	
= 0. (26)

This yields a system of algebro-differential equations for the
collective coordinates r and 	 of the form

ṙ = Fa(r,	), (27)

0 = Fb(r,	). (28)

We provide explicit expressions for Fa,b in Appendix A for
the linear ansatz (21) and the arcsine ansatz (22). We remark
that solving the algebraic equation (28) yields 	 = 	(r),
which, upon substitution into (27), gives an explicit evolution
equation for the order parameter,

ṙ = Fa(r,	(r)). (29)

We are concerned with stationary solutions ṙ = 0, since
stable stationary solutions correspond to synchronized states.
For the arcsine ansatz with rogues included, the equations for
stationary solutions of (27) and (28) reduce to

r cos λ = 1

N

∑
j∈C

√
1 − (ω j − 	)2

K2r2
, (30)

r sin λ = 1

N

⎛
⎝∑

j∈C

ω j − 	

Kr
+

∑
j /∈C

k j

⎞
⎠. (31)

In the thermodynamic limit N → ∞ this recovers the mean-
field self-consistency equations (16) and (17), as shown in
Appendix A. This correspondence with the mean-field theory
is only achieved for the arcsine ansatz and when the rogue
oscillators are taken into account.

In Sec. IV we further show that the collective coordinate
equations using the arcsine ansatz capture the collective dy-
namics of the full Kuramoto-Sakaguchi model with finitely
many oscillators more accurately than when using the linear
ansatz. However, we remark that the linear ansatz (21), de-
fined here for an all-to-all coupling network, can be extended
to arbitrary network topologies, while the (more accurate)
arcsine ansatz (22) is restricted to a globally connected all-
to-all network.

At this stage, we have tacitly assumed that the cluster is
known, and we can separate the oscillators into those that syn-
chronize i ∈ C and the nonentrained rogues i /∈ C. To obtain
the cluster via the collective coordinate method, we assume
that if nodes can synchronize, they will do so. We therefore
seek the maximal set of synchronized oscillators C such that
the system of reduced algebro-differential equations (27) and
(28) has a stable stationary solution. If stationary solutions
cannot be found, we exclude nodes i with a maximal value of
|	 − ωi|, check again for the existence of stationary solutions,
and, if needed, repeat this procedure until we arrive at a set C
for which a stationary solution can be found. This criterion,
however, is not sufficient to find the best approximation for the
synchronized cluster, as there may be a stationary solution of
(27) and (28) that is linearly stable within the ansatz manifold
�i(r,	), but is unstable in the full Kuramoto-Sakaguchi
model (5), that is, the dynamics transverse to the ansatz man-
ifold near the stationary solution is unstable. To account for
this, we study the stability of the approximated phases �i by
substituting θi(t ) = �i + ηi(t ), where ηi(t ) represents small
perturbations, into the full Kuramoto-Sakaguchi model (5).
Expanding up to linear order of η and assuming �i satisfies
the equation at lowest order, we arrive at a linear system of
the form

η̇i =
∑
j∈C

Li jη j, (32)

where

Li j =
{

cos(� j − �i − λ), j �= i,

−∑
l∈C,l �=i cos(�l − �i − λ) − sin(�i + 2λ)

∑
l /∈C kl , j = i.

(33)

The matrix L always has an eigenvector (1, 1, . . . , 1) with
eigenvalue λ1 = 0, corresponding to the system’s invariance
to a constant phase shift, if all oscillators partake in synchro-
nization. The presence of rogue oscillators leads to perturba-
tions of this eigenvector and its associated eigenvalue. If all

other eigenvectors have eigenvalues with negative real parts,
we consider the phases �i and the stationary solution r and
	 to be stable in the full Kuramoto-Sakaguchi model. Note
that this assumes that our collective coordinate ansatz and the
stationary solutions r and 	 are indeed a good approximation
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of the actual phases θi. If �i is not stable according to this
definition, we again exclude the node with intrinsic frequency
having maximal |	 − ωi|. This procedure is repeated until a
stable stationary solution of the reduced Eqs. (27) and (28) is
found. At each step, we check that there are no stable solutions
possible for nearby clusters, displaced by up to five nodes.

Given an ansatz function �, i.e., the linear ansatz (21)
or the arcsine ansatz (22), we can now determine the order
parameter r̄, the cluster mean frequency 	, the size of the
synchronized cluster, and other properties of the collective
behavior. When the effect of the rogue oscillators on the syn-
chronized cluster is taken into account, the order parameter r
obtained as the stationary solution of the collective coordinate
evolution Eq. (29) should satisfy

r =
∣∣∣∣∣∣

1

N

⎛
⎝∑

j∈C
ei� j +

∑
j /∈C

∫ 2π

0
eiθ j Pj (θ j )dθ j

⎞
⎠

∣∣∣∣∣∣, (34)

where Pj (θ j ) is the probability density function of the rogue
oscillators (23). This equality, however, is only ensured for the
arcsine ansatz and only if the rogue oscillators are included
in the collective coordinate approach. For the arcsine ansatz
(22) and the distributional ansatz for the rogue oscillators (23),
splitting the real and imaginary parts of the sum within the
absolute value readily yields (30) and (31), respectively. For
the linear ansatz function, the equality is only approximately
satisfied up to O(1/K2).

In the following section, we demonstrate how each of the
two ansatz functions (21) and (22) performs in reproduc-
ing the collective behavior of the full Kuramoto-Sakaguchi
model, and in particular, we show how the inclusion of
the rogue oscillators is necessary to accurately capture the
dynamics of the partially synchronized state near the onset
of synchronization.

IV. NUMERICAL RESULTS

In this section, we illustrate the efficacy of the collective
coordinate approach with the linear ansatz (21) and the arcsine
ansatz (22) to approximate the collective behavior of the
full Kuramoto-Sakaguchi model (5). We will cast particular
emphasis on the inclusion or neglect of the effect of the rogue
oscillators. Specifically, we present estimates for the order
parameter r̄ and the mean cluster frequency 	, as well as
identification of the synchronized cluster C and the critical
coupling strength for partial synchronization Kc and for global
synchronization Kg. In the collective coordinate framework,
the approximation for 	 is obtained directly from the stable
stationary solution of the reduced equations (27) and (28),
and the approximation for r̄ is obtained by substituting the
stationary solution into (34). We note that for the arcsine
ansatz with rogues included, r̄ obtained from (34) coincides
with the stationary solution of the order parameter of (27)
and (28), i.e., it is self-consistent, as discussed in the previous
section. For the linear ansatz we found that using r̄ obtained
from (34) yields a more accurate approximation of the order
parameter than using the stationary solution directly. Note
that in the cases in which the rogue oscillators are ignored
when finding the solution to (27) and (28), we still include
the influence of rogues in (34). We find there is only a small

difference between including or ignoring the rogue oscillators
in (34) in these cases.

Before we embark on our numerical study, we describe
briefly the parameters used for numerically simulating the
full Kuramoto-Sakaguchi model (1). We use random initial
conditions with a fourth-order Runge-Kutta method for at
least 2000 time units to ensure convergence of the order
parameter. The first half is discarded to exclude transient
behavior.

Real stationary solutions r and 	 of the collective coordi-
nate approximation (27) and (28) are found numerically using
MATLAB’s fsolve function [37]. The algebraic differential
equations for the collective coordinates (27) and (28) typically
have a pair of solutions, one stable and one unstable, corre-
sponding to a saddle-node bifurcation, and care needs to be
taken to select the correct stable solution. This is achieved by
maintaining continuity when K is varied. Furthermore, (27)
and (28) contain square roots and arcsine functions, and we
need to check that their arguments are within the respective
domain.

A brief comment is in order on the computational cost of
the collective coordinate method compared to direct numeri-
cal simulation of the Kuramoto-Sakaguchi model. To estimate
the order parameter using the collective coordinate method,
there are several steps involved. The root finding method to
obtain the stationary solutions of the collective coordinates
involves fast standard root finding routines such as fsolve
in MATLAB [37]. When cycling through different values of the
coupling strength, the stationary solutions of a previous value
of the coupling strength can be used as initial condition for
the adjacent coupling strength to facilitate the root finding.
If no stationary solution can be found, we check whether a
stationary solution exists for synchronized clusters shifted up
to five frequencies in each direction. The stability of stationary
solutions that are found is then tested by employing standard
eigenvalue routines for the Jacobian. The computational cost
has to be set against the computational complexity associated
with the temporal evolution of the full Kuramoto-Sakaguchi
model. Since the Kuramoto-Sakaguchi model does not evolve
into stationary states due to the effect of the rogue oscillators,
the length of the simulation may be very large to ensure con-
vergence of the averaged order parameter. This is especially
the case close to the bifurcation from incoherence to partial
synchronization when the number of rogue oscillators is large,
which can be prohibitive.

A. Order parameter r̄

Figure 7 shows the order parameter r̄ for a phase-
frustration parameter λ = π/4. We show results obtained
from the collective coordinate approach, where r̄ is defined
via (34), using both the linear ansatz (21) and the arcsine
ansatz (22), and both with and without the inclusion of the
rogue oscillators. This is compared with the order parameter
obtained from a numerical simulation of the full Kuramoto-
Sakaguchi model (1). We show results for a Lorentzian in-
trinsic frequency distribution (2) [Fig. 6(a)] and for a uniform
intrinsic frequency distribution (3) [Fig. 6(b)].

It is seen that including the rogue oscillators is crucial in
obtaining a correspondence between the results of the full
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(a)

(b)

FIG. 6. Order parameter r̄ for the Kuramoto-Sakaguchi model
(1) with phase-frustration parameter λ = π/4 and N = 50 oscilla-
tors. Shown are estimates obtained using the collective coordinate
approach (labeled cc) with a linear ansatz (21) and an arcsine
ansatz (22), both with and without including the effect of rogue
oscillators, as well as obtained from a numerical simulation of the
full Kuramoto-Sakaguchi model (1). (a) Lorentzian distribution (2).
(b) Uniform distribution (3).

Kuramoto-Sakaguchi model (1) and of our model reduction,
for both frequency distributions and for both types of ansatz.
The effect of the rogue oscillators is particularly striking for
the arcsine ansatz; including the rogues leads to a very small
error in the estimate of the order parameter for all values of the
coupling strength K , whereas without the rogue oscillators no
stationary solutions can be found for K � 4 for the Lorentzian
distribution and for K � 2.5 for the uniform distribution, com-
pletely missing the critical coupling strengths for the onset
of partial synchronization at Kc ≈ 1.45 and Kc ≈ 0.95, for
the respective intrinsic frequency distributions. Similarly, the
inclusion of rogue oscillators markedly improves the estimate
of the order parameter for the linear ansatz.

To quantify the accuracy of the collective coordinate ap-
proaches, we compute the error in their estimates of r̄, when
the rogue oscillators are included, compared to r̄ obtained

from a simulation of the full Kuramoto-Sakaguchi model
(1). We also compute the order parameter r̄ using the Ott-
Antonsen ansatz in the thermodynamic limit N → ∞ for
Lorentzian frequency distributions (explicit expressions are
provided in Appendix B). The errors are plotted in Figs. 7(a)
and 7(b) for the Lorentzian and the uniform frequency dis-
tribution, respectively. The error is lowest for the arcsine
ansatz, which is designed for finite networks. For the uniform
frequency distribution, the error of the arcsine ansatz is of the
order of the numerical round-off error when the system is in
global synchronization with K > Kg ≈ 3.2; this is because for
global synchronization the arsine ansatz (22) is exact. For the
Lorentzian frequency distribution, Kg ≈ 53.7, which is not in
the range shown in Fig. 6. The mean-field solution is generally
more accurate than the collective coordinate solution using the
linear ansatz. The sharp drops in the errors of the mean-field
limit for the Lorentzian frequency distribution stem from the
estimate of r̄(K ) intersecting the curve of the order parameter
of the full Kuramoto-Sakaguchi model near K ≈ 7.5 for the
mean-field limit.

B. Cluster mean frequency �

Figures 7(c) and 7(d) shows the error in estimating the
cluster mean frequency 	 for a phase-frustration parameter
λ = π/4 [cf. Fig. 3 for 	(K ) for the full Kuramoto-Sakaguchi
model]. We show the error for the collective coordinate
approach, for the linear ansatz (21) and the arcsine ansatz
(22), both with the inclusion of the rogue oscillators. The
cluster mean frequency 	 for the collective coordinates is
again obtained as the stationary solution 	 of the reduced
Eqs. (27) and (28). We further show the error of the Ott-
Antonsen ansatz for the Lorentzian frequency distribution.
Again, the collective coordinate approach using the arcsine
ansatz achieves the smallest error, and since the ansatz is exact
for globally synchronized oscillators, the error is negligible
for K > Kg.

Not surprisingly, the behavior of the error for 	 echoes
the behavior of the error for the order parameter. As for the
order parameter r̄, including the effect of the rogue oscillators
is crucial to accurately estimate the cluster mean frequency of
the actual Kuramoto-Sakaguchi model (1) for the whole range
of coupling strengths. When the effect of the rogue oscillators
is included, the cluster mean frequency 	(K ) is very well ap-
proximated by the collective coordinate approach, for both the
linear and the arcsine ansatz. In particular, the nonmonotonic
dependence of 	 on K for the uniform distribution near the
onset of partial synchronization as observed in Fig. 3(b) is
well captured (not shown). Recall that for the range of cou-
pling strengths K used here, the onset of global synchroniza-
tion is only depicted for the case of uniformly distributed fre-
quencies. Again, the collective coordinate approach using the
linear ansatz exhibits the largest errors, except for dips when
the curves 	(K ) obtained from the collective coordinates
intersect the curve of the full Kuramoto-Sakaguchi model.

C. Synchronized cluster C
Figure 8 shows the minimal and maximal intrinsic fre-

quencies ωmin and ωmax, respectively, such that all oscilla-
tors with intrinsic frequencies ωmin � ωi � ωmax partake in
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(a)

(b)

(c)

(d)

FIG. 7. Error in estimates of the order parameter r̄ ((a), (b)) and of the cluster mean frequency 	 ((c), (d)) for the various collective
coordinate approaches (labeled cc) shown in Fig. 6. Top row: Lorentzian distribution (2); shown also is the mean-field result (16) and (17) for
comparison. Bottom row: uniform distribution (3).

synchronized dynamics. The rogue oscillators, by definition,
are those with intrinsic frequencies outside this range (i.e.,
with intrinsic frequencies ωi < ωmin or ωi > ωmax). We show
results of the synchronized cluster obtained from numerical
simulation of the full Kuramoto-Sakaguchi model (1), as well
as results from the collective coordinate approach using the
linear ansatz (21) and the arcsine ansatz (22), both with the
inclusion of the rogue oscillators. We recall that, for the
collective coordinate approach, the synchronized cluster C is
defined as the largest set of oscillators for which the reduced
Eqs. (27) and (28) have a stationary solution that is stable
in the full Kuramoto-Sakaguchi model. It is seen that the
arcsine ansatz captures the synchronized cluster very well,
with small discrepancies occurring only close to the onset
of partial synchronization at Kc. The linear ansatz tends to
overpredict the size of the synchronized cluster.

D. Critical coupling strengths Kc and Kg

We estimate the critical coupling strength Kc = Kc(λ)
corresponding to the onset of partial synchronization as the
smallest value of K such that the order parameter r̄ exceeds

a threshold value r̄ > 0.2, where r̄(K ) is sampled in incre-
ments �K = 0.01. We obtain Kc(λ) in this way for the full
Kuramoto-Sakaguchi model (1) and for the collective coor-
dinate approach with the arcsine ansatz and rogues included
[(27) and (28)]. The critical coupling strength Kg correspond-
ing to the onset of global synchronization is obtained such that
all of the oscillators synchronize. For the collective coordinate
approach, Kg is defined as the lowest value of K such that a
stationary solution of the reduced Eqs. (27) and (28) exists
for C consisting of all N oscillators, and is stable in the full
Kuramoto-Sakaguchi model (5).

In Fig. 9 we compare the critical coupling strength Kc and
Kg as a function of the phase-frustration parameter λ estimated
from numerical simulations of the full Kuramoto-Sakaguchi
model (1) with N = 50 oscillators, and from the collective
coordinate approach (using the arcsine ansatz including the
rogue oscillators) for the Lorentzian and the uniform fre-
quency distribution. For both frequency distributions, the col-
lective coordinate approach captures the onset of partial and
of global synchronization remarkably well. For the Lorentzian
frequency distribution we also show results of the mean-field
analysis for partial synchronization, which captures the onset
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(a)

(b)

FIG. 8. Minimal and maximal intrinsic frequencies (ωmin, ωmax)
of the synchronized cluster C for a phase-frustration λ = π/4. We
show results obtained from the collective coordinate approach (la-
beled cc) using the linear ansatz (21) and the arcsine ansatz (22),
both including the effect of rogue oscillators, and obtained from
a numerical simulation of the full Kuramoto-Sakaguchi model (1)
with N = 50 oscillators. (a) Lorentzian frequency distribution (2).
(b) Uniform frequency distribution (3).

very well even for the finite network with only N = 50 oscilla-
tors. The onset of global synchronization can be approximated
using the mean-field analysis relation 	 = −Kr2 sin λ [cf.
(19)]. Approximating r ≈ 1 and that the last oscillator to be
entrained at the onset of global synchronization is ωN , we
approximate Kg = ω50/(1 − sin λ). This approximation also
captures the onset of global synchronization very well.

V. SUMMARY AND OUTLOOK

We have derived reduced dynamics of the Kuramoto-
Sakaguchi model through the collective coordinate frame-
work. We have extended the collective coordinate approach by
including the effect of nonentrained rogue oscillators, and we
have shown that including these rogue oscillators is essential
for an accurate description of the collective dynamics of the

(a)

(b)

FIG. 9. Critical coupling strengths Kc and Kg as a function of the
phase-frustration parameter λ obtained from a numerical simulation
of the full Kuramoto-Sakaguchi model (1) with N = 50 oscillators,
and obtained from the collective coordinate approach (labeled cc)
using the arcsine ansatz (22) including the effect of rogue oscil-
lators. For the onset of global synchronization we also show the
estimate Kg = ω50/(1 − sin λ) borrowed from a mean-field analysis.
For the onset of partial synchronization we also show results from
the Ott-Antonsen ansatz for the Lorentzian frequency distribution.
(a) Lorentzian frequency distribution (2). (b) Uniform frequency
distribution (3).

Kuramoto-Sakaguchi model. We have compared two ansatz
functions: a linear ansatz function obtained as a linearization
around 1/K 
 1, and a nonlinear arcsine ansatz, motivated
by mean-field analysis. We find that the arcsine ansatz with
the effect of the rogues included provides a remarkably good
approximation of the collective dynamics of finite networks,
quantified by the order parameter, the cluster mean frequency,
the identification of the cluster, as well as the critical coupling
strengths for partial and for global synchronization. We find
that the arcsine ansatz is far superior to the linear ansatz.
However, the arcsine ansatz is limited to networks with an
all-to-all coupling topology, whereas the linear ansatz can be
applied to any complex network [32]. We have also shown
that for finite networks the arcsine ansatz is far superior to
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classical self-consistency equations, which assume N → ∞.
Moreover, in the thermodynamic limit of infinitely many
oscillators, we have shown that the arcsine ansatz recovers
well-known results obtained by mean-field analysis.

Independent of the issue of computational cost achieved by
the reduction from N oscillators to two collective coordinates,
the advantage of the model reduction presented here is that a
reduced dynamical description allows a more detailed analysis
of the macroscopic dynamics. In particular it allowed to
establish and quantitatively capture dominant effects such as
the influence of the mean field of the nonentrained rogue
oscillators on the synchronized macroscopic behavior.

Here we have considered the Kuramoto-Sakaguchi model
with an all-to-all coupling and a phase-frustration parameter
that is common to all oscillators. Generalizations of the model,
such as a system consisting of two populations of oscillators
with different inter- and intra-population coupling strengths
and phase frustrations, have been shown to display intriguing
dynamics such as chimera states and chaos [25–27]. The
success of the collective coordinate approach in the one-
population Kuramoto-Sakaguchi model suggests that it will
also be able to capture the complex collective dynamics of
those more general models. Furthermore, the methods devel-
oped in [32,34] allow us to study local frequency clusters,
caused by finite-size sampling effects in the natural frequen-
cies, and their mutual interaction in phase-frustrated systems.
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APPENDIX A: REDUCED EQUATIONS OF THE
COLLECTIVE COORDINATE APPROACH FOR

THE LINEAR AND THE ARCSINE ANSATZ

We recall the condition for the minimization of the error
(26): ∑

i∈C
Ei

∂�i

∂r
= 0 and

∑
i∈C

Ei
∂�i

∂	
= 0. (A1)

Linear ansatz. For the linear ansatz (21) we evaluate
∂�i
∂r = −ωi−	

Kr2 , ∂�i
∂	

= − 1
Kr , and (A1) leads to the following

system of two equations:

ṙH lin = F lin(r,	), (A2)

where

H lin =
(∑

i∈C
(ωi−	)2

K2r4∑
i∈C

ωi−	
K2r3

)
,

F lin = −
(∑

i∈C
(ωi−	)2

Kr2 + K
N

∑
i∈C

ωi−	
Kr2 hi∑

i∈C
(ωi−	)

Kr + K
N

∑
i∈C

1
Kr hi

)
,

with

hi =
∑
j∈C

sin(� j − �i − λ) + cos(�i + 2λ)
∑
j /∈C

k j,

where k j are as in (25). Simplifying (A2) leads to (27) and
(28).

Arcsine ansatz. Defining

si = ωi − 	

Kr
and ci =

√
1 − (ωi − 	)2

K2r2
,

we evaluate for the arcsine ansatz (22) ∂�i
∂r = − si

rci
,

∂�i
∂	

= − 1
Krci

, and (A1) leads to the following system of two
equations:

ṙHasin = Fasin(r,	), (A3)

where

Hasin =
(

1
r2

∑
i∈C

s2
i

c2
i

1
Kr2

∑
i∈C

si

c2
i

)
,

Fasin = −G

(
F1

F2

)
,

G =
(

KC KA
E Nc

)
,

F1 = 1 − 1

Nr
(A sin λ + B cos λ + D sin λ),

F2 = 1

Nr
(A cos λ − B sin λ + D cos λ),

with

A =
∑
i∈C

si, B =
∑
i∈C

ci, C =
∑
i∈C

s2
i

ci
,

D =
∑
i/∈C

ki, E =
∑
i∈C

si

ci
.

Simplifying (A3) leads to (27) and (28).
For the arcsine ansatz, to look for stationary solutions of

the reduced equation we set ṙ = 0, which results in

0 = Fasin(r,	).

This equation is satisfied if F1 = 0, F2 = 0, which is equiva-
lent to

r cos λ = 1

N

∑
j∈C

c j,

r sin λ = 1

N

⎛
⎝∑

j∈C
s j +

∑
j /∈C

k j

⎞
⎠.

In the thermodynamic limit N → ∞, the above equations
recover the self-consistency result derived from mean-field
analysis (16) and (17).

APPENDIX B: THE KURAMOTO-SAKAGUCHI MODEL
IN THE THERMODYNAMIC LIMIT

For the Kuramoto-Sakaguchi model in the thermodynamic
limit of infinitely many oscillators, relationships between r
and 	 as a function of the coupling strength K and the
phase-frustration parameter λ can be derived from the self-
consistency relation (16) and (17). For a Lorentzian intrinsic
frequency distribution (2), however, the Ott-Antonsen ansatz
[29] provides a simpler way to derive the relationship. In
the thermodynamic limit, a frequency-dependent version of
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the Ott-Antonsen ansatz was developed for the Kuramoto-
Sakaguchi model (1) that is applicable for general intrin-
sic frequency distributions [23,24] and also to a Kuramoto-
Sakaguchi model with two populations of phase oscillators
with different inter- and intrapopulation coupling strength in
the context of chimera states [26]. We apply here an extended
Ott-Antonsen ansatz following [23,26,29] to a Lorentzian
frequency distribution (2) to obtain explicit expressions for r
and 	 as functions of K and λ.

Recalling from Sec. II A, in the thermodynamic limit the
phases in the Kuramoto-Sakaguchi model (1) are described by
a normalized probability density function ρ(φ, t ; ω) satisfying
the continuity equation (11) (modulo a shift of the mean
frequency). Following the Ott-Antonsen ansatz [24,29], the
probability density function ρ can be expressed in the form

ρ(φ, t ; ω) = 1

2π

{
1 +

∞∑
n=1

[
z̄n(t ; ω)eniφ + zn(t ; ω)e−niφ

]}
.

(B1)

The ansatz (B1) satisfies the continuity equation (11) if z lies
on the so-called Ott-Antonsen manifold defined by

ż − iωz + 1
2 (Kre−iψz2eiλ − Kreiψe−iλ) = 0 (B2)

with

reiψ =
∫ ∞

−∞
z(t ; ω)g(ω)dω =: Gz. (B3)

The function z(t ; ω) can be analytically extended to the upper
half of the complex-ω plane, and |z(t ; ω)| → 0 as Im(ω) →
∞. For a Lorentzian intrinsic frequency distribution (2),
which we recall here,

g(ω) = �

π (�2 + ω2)
= 1

2π i

(
1

ω − i�
− 1

ω + i�

)
,

the integral Gz = ∫ ∞
−∞ z(t ; ω)g(ω)dω can be computed by

completing a contour in the upper-half ω plane and applying

the residual theorem, which yields Gz = z(t ; i�). Then from
(B3) we obtain

r(t )eiψ (t ) = Gz = z(t ; i�), (B4)

i.e., the value of the order parameter depends on the value
of the function z = z(t ; ω) at ω = i� only. In (B2), setting
ω = i� and substituting (B4) gives

ṙ = −1

2
Kr cos λ

(
r2 − 1 + 2�

K cos λ

)
, (B5)

rψ̇ = −1

2
Kr sin λ(1 + r2). (B6)

For 0 � λ < π
2 , r = 0 is a stable stationary solution of (B5)

for 0 < K < Kc, where

Kc = 2�

cos λ
. (B7)

For K � Kc, a pair of stable stationary solutions of (B5)

r = ±
√

1 − 2�

K cos λ
= ±

√
1 − Kc

K
(B8)

emerges via a supercritical pitchfork bifurcation at K = Kc.
The positive solution corresponds to the partially synchro-
nized state, and thus Kc marks the onset of partial synchro-
nization. Substituting the positive solution of r into (B6)
yields the cluster mean frequency

	 = ψ̇ = � tan λ − K sin λ. (B9)

In Sec. IV, the order parameter r = r(K, λ) (B8) and the
cluster mean frequency 	 = 	(K, λ) (B9) are compared with
the corresponding values obtained from numerical simula-
tions of the full Kuramoto-Sakaguchi model (1) [cf. Fig. 6(a)
and Figs. 7(a) and 7(c)]; numerical results for the critical
coupling strength Kc = Kc(λ) (B7) are presented in Fig. 9(a).
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