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Abstract. We use the Maslov index to study the eigenvalue problem arising from the
linearisation about a standing wave in a fourth-order cubic nonlinear Schrödinger equa-
tion. We use a homotopy argument to develop a lower bound for the number of purely
real unstable eigenvalues, as well as a Vakhitov-Kolokolov type stability criterion. The
interesting aspects of this problem as an application of the Maslov index are the instances
of non-regular conjugate points, with degenerate crossing forms of both zero and nonzero
rank encountered. We handle these degeneracies with the method of partial signatures as
developed by Giambò, Piccione and Portaluri.
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1. Introduction

The fourth-order cubic nonlinear Schrödinger (NLS) equation

iΨt = −β4
24

Ψxxxx +
β2
2

Ψxx − γ|Ψ|2Ψ. (1.1)

models the propagation of pulses in media with Kerr nonlinearity that are subject to both
quartic and quadratic dispersion [KH94,ABK94,BGBK21,TABRdS19]. Here Ψ is the slowly
varying complex envelope of the pulse, and β2, β4, and γ are real coefficients.

Solutions to (1.1) of the form Ψ(x, t) = eiβtφ(x), β ∈ R, are called standing wave solutions.
Following the convention of [BGBK21], when the wave profile φ is a homoclinic orbit of
the associated standing wave equation (given in (1.4)), we will call Ψ a soliton solution of
(1.1). Karlsson and Höök [KH94] discovered an exact analytic family of soliton solutions to
(1.1) with a squared hyperbolic secant profile. Akhmediev, Buryak and Karlsson [ABK94]
observed oscillatory behaviour in the tails of solitons for certain values of β. Akhemdiev
and Buryak [BA95] showed the existence of bound states of two-solitons (i.e. double-hump
pulses φ) in the same parameter regime, and derived a stability criterion by analysing
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the dependence of the associated Hamiltonian on the energy. Karpman and Shagalov
[Kar96, KS97, KS00] considered the extension of (1.1) to higher-order nonlinearities and
multiple space dimensions. All of these works considered the case β4 < 0 and β2 < 0.

More recently, (1.1) has been the focus of a number of studies following the experimental dis-
covery of pure quartic solitons (PQSs) in silicon photonic crystal waveguides [BRdSS+16].
These solitons exist through a balance of negative quartic dispersion and the nonlinear Kerr
effect, for which β2 = 0 and β4 < 0. They have attracted much attention for their potential
applicability to ultrafast lasers due to their favourable energy-width scaling [BRdSHE17,
TABRdS19]. Following the discovery of PQSs, Tam et al. [TABRdS19] numerically investi-
gated their existence and spectral stability. They also showed [TABRdS18,TABRdS20] that
PQSs and solitons of the classical second-order NLS equation, for which β4 = 0, are in fact
part of a broader continuous family of soliton solutions to (1.1) for nonpositive dispersion
coefficients β4 and β2.

Extending the work of Tam et al., Bandara et al. [BGBK21] used a dynamical systems
approach to find infinite families of multi-hump soliton solutions to (1.1) for β4 6= 0 and
β2 6= 0. To do so, they identified solitons of (1.1) as orbits of the stationary state equation
satisfied by the wave profile that are homoclinic to the origin. As a consequence of the
stationary state equation being Hamiltonian, fourth-order and having two reversible sym-
metries, they explain that infinitely many homoclinic solutions are created when the origin
transitions from a real saddle (having only purely real eigenvalues) to a saddle focus (hav-
ing complex conjugate eigenvalues) as a parameter is changed. This holds provided there
exists a symmetric homoclinic oribt at the point of transition (see also [CT93]). In pa-
rameter regimes where this spectral behaviour occurs, they use continuation techniques to
numerically compute these homoclinic orbits, which are characterised as heteroclinic cycles
between the origin and periodic orbits in the zero energy level (zero set of the Hamiltonian).
Depending on the symmetry properties of the periodic orbits and the types of connections
from the origin to them, the orbits are organised into infinite families accordingly. They
then use numerical simulations to investigate the stability of the waves computed. They
found that while many of the multi-pulse solutions were unstable, some were only weakly
unstable, and therefore possibly observable in experiments over a number of dispersion
lengths.

A more rigorous stability analysis was undertaken by Natali and Pastor [NP15]. They
proved the orbital stability of an exact solution to the nondimensionalised equivalent of (1.1)
(see (1.2)). This solution represents the family of exact solutions to (1.1) found by Karlsson
and Höök in [KH94]. As observed in [NP15] (also [TABRdS20, §II]), this solution exists
only for a fixed value of the frequency parameter, and is not part of a continuous family
of solutions in that parameter. The failure of the existence of such a family renders the
classical results of Grillakis, Shatah and Strauss [GSS87,GSS90] inadmissible since [GSS87,
Assumption 2] does not hold in this instance.

Under certain assumptions, Parker and Aceves [PA21] proved the existence and orbital
stability of a single-hump solitary wave (not the exact analytical soution of Karlsson and
Höök). For any such solitary wave, they determined the existence of an associated family of
multi-hump solitons, which they proved to be unstable by showing the associated linearised
operator has a positive real eigenvalue. The main results of [PA21] are formulated under a
number of hypotheses which will not be required in our analysis.

In this paper, we further develop the spectral stability theory for arbitrary single and
multi-hump soliton solutions to (1.1). Our results may be applied to the infinite families
of multipulse solitons numerically computed in [BGBK21]. Our goal is to determine the
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existence of positive real eigenvalues for the linearised operator associated with any soli-
ton solution to (1.1). We do not require Hypothesis 2, the first part of Hypothesis 3 or
Hypothesis 4 of [PA21]. The main tool of our analysis is a topological invariant from sym-
plectic geometry known as the Maslov index. It is a signed count of the intersections of a
path in the manifold of Lagrangian subspaces of a symplectic vector space with a certain
codimension-one set, the train of a fixed reference plane.

Our main results are as follows. In Theorem 1.2, we provide a lower bound for the num-
ber of positive real eigenvalues associated with soliton solutions to the nondimensionalised
equivalent of (1.1). The bound is given in terms of the Morse indices (here, the number
of positive eigenvalues) of two related selfadjoint operators, as well as a certain correction
term which represents a contribution to the Maslov index from a non-regular crossing.
This includes, as a corollary, the Jones-Grillakis instability theorem, which gives sufficient
conditions on the aforementioned terms for the existence of a positive, real eigenvalue. We
also provide a complete proof of the Vakhitov-Kolokolov (VK) stability criterion (see The-
orem 1.5), where spectral (in)stability is determined by the sign of a certain integral. This
includes, as a special case, the stability result of [PA21]. An advantage of our analysis is in
the interpretation of P and Q, afforded by the Maslov index, as the number of conjugate
points for each of the operators L+ and L−. All of the required data is therefore encoded
at λ = 0. As highlighted in [BJ22], numerically this is a desirable feature that a calculation
with the Evans function [AGJ90] does not possess. In light of this, an alternate form of
(1.17), which may be more useful for numerical computations, is given in Remark 5.5. Our
results are formulated under two genericity conditions (Hypotheses 4.2 and 4.3) the removal
of which will be the subject of future work.

The key feature of the eigenvalue problem herein that allows us to make use of the Maslov
index is the infinitesimally symplectic structure of the eigenvalue equations which preserve
Lagrangian planes. The stable and unstable subspaces of the asymptotic system give rise to
two-parameter families of Lagrangian planes, the stable and unstable bundles. Their non-
trivial intersection at a common x ∈ R encodes (real) eigenvalues. By exploiting homotopy
invariance of the Maslov index, we will detect positive real eigenvalues by instead analysing
the intersections of the unstable bundle at λ = 0 with the train of the stable subspace of
the asymptotic system.

The Maslov index has been used to study the spectrum of homoclinic orbits in a number of
works [Jon88,BJ95,Cor19,CH14,HLS18,BCJ+18,How23,How21]. In these cases, the Maslov
index is used to detect purely real unstable eigenvalues. If monotonicity in the spectral
parameter holds, as is often the case in selfadjoint problems [HLS18,BCJ+18,How23], then
it is possible to give an exact count of these eigenvalues in terms of a related Lagrangian
path for which the spectral parameter is zero. Howard, Latushkin and Sukhtayev [HLS18]
proved the equality of the Morse and Maslov indices for Schrödinger operators on the
line, where the symmetric matrix-valued potential approaches constant endstates. They
apply their results to analyse the stability of nonlinear waves in various reaction-diffusion
systems. Jones [Jon88] and Bose and Jones [BJ95] used the Maslov index to study the
stability of homoclinic orbits in the NLS equation and a gradient reaction-diffusion system
respectively. Chen and Hu [CH14] proved a stability result for standing pulses in a doubly-
diffusive FitzHugh-Nagumo equation. Beck et al. [BCJ+18] proved the instability of pulses
in gradient reaction-diffusion systems, generalising the instability result for pulses in scalar
reaction-diffusion equations (see [KP13, §2.3.3]). Cornwell and Jones [Cor19,CJ18] used the
Maslov index to analyse the stability of travelling waves in skew-gradient systems. Despite
the eigenvalue equations not having a Hamiltonian structure, for a nonstandard symplectic
form they preserve Lagrangian planes. They proved the stability of a particular travelling



4 M. CURRAN, R. MARANGELL

pulse in a doubly diffusive FitzHugh-Nagumo system by showing the Maslov index to be
zero in the travelling wave co-ordinate z at λ = 0, despite lacking monotonicity in z.

A notable feature of the current problem is the occurrence of non-regular crossings, i.e.
nontransversal intersections of the Lagrangian path with the train. We find instances where
the crossing form is either identically zero, or degenerate with nonzero rank. In particular,
the crossing form associated with the zero eigenvalue of the linearised operator (i.e. the
conjugate point at the top left corner of the Maslov box ) is identically zero crossing in the
λ direction. This is a feature of eigenvalue problems of the form (1.12); see, for example,
[CCLM23]. In addition, crossings in the x direction (when λ = 0) have a degenerate
crossing form which is not identically zero. This phenomenon appears to be the result of
the eigenvalue equations being fourth order, and has been encountered in [How21,How23].
In those papers, Howard and co-authors use a formulation of the Maslov index based on the
spectral flow of a family of unitary matrices. Nonetheless, a degenerate crossing form can
be still be observed in the spatial variable (see, for example, [How23, §6] and [How21, §5.2]).
The issue is circumvented due to the crossing form being semidefinite in a neighbourhood
of the crossing. By contrast, this semidefiniteness property does not hold in our case. In
addition, it is unclear how to apply Hörmander’s index (see [How21]), as was done for
the fourth-order problem on the line in [How23]. The complication is the requirement of
a basis of vectors for the unstable bundle (along λ = 0) at x = +∞. At this point, the
bundle intersects the stable subspace in a one-dimensional subspace because λ = 0 is a
simple eigenvalue. It is unclear how to determine this subspace. In this paper, we use
the approach of [GPP04b, GPP04a] to locally compute the Maslov index via the partial
signatures of an associated family of symmetric bilinear forms. This allows us to handle
non-regular crossings without perturbative arguments, as in [RS93]. This will involve the
use of higher-order crossing forms, which generalise the (first-order) crossing form defined
in [RS93].

Recently in [CCLM23], a similar lower bound to that in Theorem 1.2 was derived for an
eigenvalue problem of the form of (1.12) on a compact interval, where L± are Schrödinger
operators. There, the “correction term” c was computed via an analysis of the eigenvalue
curves, offering a geometric interpretation of the corresponding term in the lower bound
of [KP13, Theorem 7.1.16]. The fact that the spatial domain is the entire real line renders
a similar calculation in the present setting intractable.

1.1. Statement of main results. We will work with the following nondimensionalised
version of (1.1) corresponding to the case of nonzero quartic dispersion (β4 6= 0) and
positive Kerr nonlinearity (γ > 0):

iψt = −σ4ψxxxx + σ2ψxx − |ψ|2ψ, (1.2)

where ψ : R × R → C, σ4 = signβ4 and σ2 = signβ2. (For the transformations used to
obtain (1.2) from (1.1) for β4 6= 0, β2 6= 0, we refer the reader to [BGBK21, Table 1].) We
will treat the case when the quartic dispersion coefficient is negative, i.e. σ4 = −1, and we
assume that β2 6= 0, hence σ2 ∈ {±1}. Our focus will be to determine the spectral stability
of standing wave solutions

ψ(x, t) = eiβtφ(x), φ(x) ∈ R, (1.3)

to (1.2), subject to perturbations in L2(R;C). Note that the wave profile φ satisfies the
standing wave equation

φ′′′′ + σ2φ
′′ + βφ− φ3 = 0, (1.4)

as seen upon substituting (1.3) into (1.2). Using the change of variables

φ1 = φ′′ + σ2φ, φ2 = φ, φ3 = φ′, φ4 = φ′′′, (1.5)
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we may write (1.4) as the first order Hamiltonian system
φ′1
φ′2
φ′3
φ′4

 =


φ4 + σ2φ3

φ3
φ1 − σ2φ2

−σ2φ1 + φ2 − βφ2 + φ32

 . (1.6)

Motivated by the families of homoclinic orbits discovered in [BGBK21], we consider orbits
of (1.6) that are homoclinic to the origin, which correspond to soliton solutions of (1.2).
We will assume that the origin in (1.6) is hyperbolic. Noting that the eigenvalues of the
linearisation about the origin are given by

µ2 =
1

2

(
−σ2 ±

√
1− 4β

)
(1.7)

(where we used that σ22 = 1), hyperbolicity holds provided{
β > 0 if σ2 = −1

β > 1
4 if σ2 = 1.

(1.8)

In the first part of (1.8), we additionally require

β 6= 1

4
if σ2 = −1. (1.9)

Linearising (1.2) by substituting the complex-valued perturbation

ψ(x, t) =
[
φ(x) + ε (u(x) + iv(x)) eλt

]
eiβx (1.10)

for u, v ∈ L2(R;R) into (1.2), collecting O(ε) terms and separating into real and imaginary
parts leads to the following linearised dynamics in u and v:

−u′′′′ − σ2u′′ − βu+ 3φ2u = λv

−v′′′′ − σ2v′′ − βv + φ2v = −λu.
(1.11)

We can write (1.11) as the spectral problem

N

(
u
v

)
= λ

(
u
v

)
, (1.12)

where N is the linear operator

N =

(
0 −L−
L+ 0

)
,

{
L− = −∂4x − σ2∂2x − β + φ2,

L+ = −∂4x − σ2∂2x − β + 3φ2,
(1.13)

with

dom(N) = H4(R)×H4(R), dom(L±) = H4(R). (1.14)

Our goal is to determine whether the spectrum of the unbounded and densely defined linear
operator N intersects the open right half plane. Because N is Hamiltonian, its spectrum has
four-fold symmetry in C, and instability follows from any part of the spectrum lying off the
imaginary axis. We will show in Section 2 that the essential spectrum of N is confined to
the imaginary axis. Regarding the point spectrum, it is a requirement of the Maslov index
that the eigenvalue parameter be real (the detection of complex eigenvalues via the Maslov
index remains an open problem). Our task therefore is to detect positive real eigenvalues
λ ∈ Spec(N) ∩ R+. We will give a lower bound for the count of these eigenvalues in terms
of the Morse indices of the operators L±, which are selfadjoint with the domain in (1.14)
(see, for example, [Wei87]). The Morse indices of L± are only well-defined if their essential
spectra are confined to the negative half line, and we show in Section 2 that this is indeed
the case under the assumptions (1.8)–(1.9).
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We point out here that the equation L−φ = 0 is just (1.4), and, differentiating (1.4) with
respect to x, we have L+φx = 0. Thus

0 ∈ Spec(L−) ∩ Spec(L+), (1.15)

where φ ∈ ker(L−) and φx ∈ ker(L+). We will assume these are the only functions lying in
the kernel.

Hypothesis 1.1. dim ker(L+) = dim ker(L−) = 1, where ker(L−) = span{φ} and ker(L+) =
span{φx}.

Notice that when λ = 0, the eigenvalue equations (1.12) decouple into the two independent
equations L−v = 0 and L+u = 0, so that ker(N) = ker(L+) ⊕ ker(L−). Hypothesis 1.1
therefore implies that ker(N) = span{(φx, 0)>, (0, φ)>}.

Let us denote

P := #{positive eigenvalues of L+},
Q := #{positive eigenvalues of L−},

n+(N) := #{positive real eigenvalues of N},
and define the quantities

I1 :=

∫ ∞
−∞

φx v̂ dx, I2 :=

∫ ∞
−∞

φ û dx, (1.16)

where v̂ is any solution in H4(R) to −L−v = φx and û is any solution in H4(R) to L+u = φ.
Under Hypothesis 1.1 and the conditions (1.8)–(1.9), as well as two genericity conditions
Hypotheses 4.2 and 4.3 which will be given in Section 4, our main result is the following:

Theorem 1.2. Suppose I1, I2 6= 0. The number of positive, real eigenvalues of the operator
N satisfies

n+(N) ≥ |P −Q− c|, (1.17)

where c is computed via

c =


1 I1 > 0, I2 < 0,

0 I1I2 > 0,

−1 I1 < 0, I2 > 0.

(1.18)

Remark 1.3. The equations −L−v = φ′ and L+u = φ each satisfy a solvability condition
that guarantees the existence of solutions û and v̂. In the case that either I1 or I2 vanishes,
an extra calculation is needed to compute the correction term c (the definition of which is
given in (3.56)); for details, see Remark 5.7). Finally, our theorem will also hold in the case
of any integer power-law nonlinearity in (1.2), i.e. in the case of standing wave solutions to

iψt = −σ4ψxxxx + σ2ψxx − f(|ψ|2)ψ, f(|ψ|2) = |ψ|2p, p ∈ Z+. (1.19)

(See Remark 4.9.) However, with the standing wave solutions of [BGBK21] in mind, we
have stated our results for the cubic case.

The following Jones-Grillakis instability theorem [Jon88, Gri88, KP13] is an immediate
consequence of Theorem 1.2.

Corollary 1.4. Standing waves for which P −Q 6= −1, 0, 1 are unstable.

In this work we do not require existence of standing waves; rather, we prove that if a
standing wave exists with the spectral properties of L+ and L− stated, then its linearised
operator N satisfies Theorem 1.2.
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We also have the following Vakhitov-Kolokolov type criterion [VK73,Pel11].

Theorem 1.5. Suppose P = 1 and Q = 0. The standing wave ψ̂ is spectrally unstable if
I2 > 0 and is spectrally stable if I2 < 0.

Remark 1.6. If there exists a C1 family of solutions β → ∂βφ(x;β) ∈ H4(R) to the
standing wave equation, then û = ∂βφ(x;β) and the integral I2 is precisely that appearing
in the classical Vakhitov-Kolokolov criterion for standing waves in the usual (second-order)
NLS equation (see [Pel11, §4.2]), i.e.

I2 =
1

2

∂

∂β

∫ ∞
−∞

φ2dx. (1.20)

The paper is organised as follows. In Section 2 we write down the first order system
associated with (1.12), compute the essential spectra of the operators L,L+ and N , and
define the stable and unstable bundles, the main objects of our analysis. In Section 3 we
provide some background material on the Maslov index before setting up the homotopy
argument that will lead to the proof of the lower bound in Theorem 1.2. In Section 4 we
use the Maslov index to prove that the Morse index of each of the operators L− and L+ is
equal to the associated number of conjugate points. In Section 5 we prove Theorems 1.2
and 1.5.

2. Set-up

We first compute the essential spectra of the operators L±, N . Using the change of variables

u1 = u′′ + σ2u, u2 = u, u3 = u′, u4 = u′′′,

v1 = v′′ + σ2v, v2 = −v, v3 = −v′, v4 = v′′′,
(2.1)

we convert (1.11) to the (infinitesimally symplectic) first order system

u1
v1
u2
v2
u3
v3
u4
v4



′

=



0

σ2 0 1 0
0 −σ2 0 1
1 0 0 0
0 1 0 0

1 0 −σ2 0
0 −1 0 −σ2
−σ2 0 α(x) λ

0 −σ2 λ η(x)

0





u1
v1
u2
v2
u3
v3
u4
v4


, (2.2)

where

α(x) := 3φ(x)2 − β + 1, η(x) := −φ(x)2 + β − 1.

Setting

B =


σ2 0 1 0
0 −σ2 0 1
1 0 0 0
0 1 0 0

 , C(x;λ) =


1 0 −σ2 0
0 −1 0 −σ2
−σ2 0 α(x) λ

0 −σ2 λ η(x)

 ,

we can write (2.2) as

wx = A(x;λ)w, (2.3)

where

w = (u1, v1, u2, v2, u3, v3, u4, v4)
>, A(x;λ) =

(
0 B

C(x;λ) 0

)
. (2.4)
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The asymptotic system for (2.2) is given by

wx = A∞(λ)w, (2.5)

where
A∞(λ) := lim

x→±∞
A(x, λ).

(The endstates as x → ±∞ are the same because φ is homoclinic to the origin.) It now
follows from [KP13, Theorem 3.1.11] that the essential spectrum of N is given by the set of
λ ∈ C for which the matrix A∞(λ) has a purely imaginary eigenvalue. A short calculation
shows that

Specess(N) = {λ ∈ C : λ2 = −
(
−k4 + σ2k

2 − β
)2

for some k ∈ R} ⊆ iR. (2.6)

Notice we require β 6= 0 in order to have 0 /∈ Specess(N).

The essential spectra of the operators L± is computed similarly. The first order systems
associated with the eigenvalue equations for each of the operators L+ and L− will be given
in Section 4 (see (4.3) and (4.6)). It follows from a similar calculation on the asymptotic
matrices associated with those systems that

Specess(L±) = {λ ∈ R : λ = −k4 + σ2k
2 − β for some k ∈ R}. (2.7)

Given its biquadratic structure, if the equation in (2.7) has no real roots for k then the
essential spectra of L+ and L− will be confined to the negative half line. The equation in
(2.7) has no real roots for k if and only if the associated discriminant is positive, i.e.

16β3 − 8β2 + β = β(4β − 1)2 > 0, (2.8)

and, in addition, we have either

− 8σ2 > 0 or 4β − 1 > 0. (2.9)

(See [Ree22], and note we have used that σ22 = 1). Both (2.8) and (2.9) are satisfied for the
values of β given in (1.8), (1.9). For these values of β we therefore have

Specess(L±) =

{
(−∞,−β) σ2 = −1,

(−∞,−β − 1
4 ] σ2 = 1,

(2.10)

so that Specess(L±) ⊂ R−. In addition to hyperbolicity of the asymptotic matrices for the
L+ and L− eigenvalue problems, the values of β given in (1.8), (1.9) will actually guarantee
that those asymptotic matrices have an equal number of eigenvalues with positive and
negative real part.

Note that the assumptions (1.8) actually guarantee that the matrix A∞(λ) is hyperbolic,
with an equal number of eigenvalues with positive and negative real part. Precisely, the
eight eigenvalues are

±
√
−σ2 ±

√
1− 4β ± 4λi√

2
. (2.11)

We denote the corresponding stable and unstable subspaces (i.e. the eigenspaces associated
with eigenvalues with negative and positive real part) by S(λ) and U(λ) respectively.

Next, since Specess(N) ⊂ iR\{0}, the operator N − λI of (1.12)–(1.14) is Fredholm for
λ ∈ R, and it follows from [San02, §3.3] that the densely-defined closed linear operator

T (λ) : H1(R) −→ L2(R), T (λ)u :=
du

dx
−A(·;λ)u,

associated with (2.3) is also Fredholm. By [San02, Theorem 3.2, Remark 3.3], (2.2) has
exponential dichotomies on R+ and R−. That is, for each fixed λ ∈ R, on each of the
intervals R+ and R− the set of solutions to (2.2) is the direct sum of two subspaces, where
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one subspace consists solely of solutions that decay (exponentially) backwards in x, and the
other of solutions that decay forwards in x. By flowing these subspaces under (2.2), each
of these families can be extended to all of R. This leads us to consider the spaces

Eu(x, λ) := {ξ ∈ R8 : ξ = w(x;λ), w solves (2.2) and w(x;λ)→ 0 as x→ −∞},
Es(x, λ) := {ξ ∈ R8 : ξ = w(x;λ), w solves (2.2) and w(x;λ)→ 0 as x→ +∞},

(2.12)

corresponding to the evaluation at x ∈ R of the spaces of solutions to (2.2) that decay
(exponentially) as x → +∞ and as x → −∞, respectively. Following [AGJ90, Cor19], we
call these sets the unstable and stable bundles respectively. For each x ∈ R and λ ∈ R, if
we consider U(λ),S(λ),Eu(x, λ),Es(x, λ) as points in the Grassmannian of four-dimensional
subspaces of R8,

Gr4(R8) = {V ⊂ R8 : dimV = 4},
which (following [Fur04,HLS17]) we equip with the metric d(V,U) = ‖PV −PU‖, where PV
is the orthogonal projection onto V and ‖ · ‖ is any matrix norm, then we have that

lim
x→−∞

Eu(x, λ) = U(λ), lim
x→+∞

Es(x, λ) = S(λ). (2.13)

That is, the orthogonal projections onto Eu(x, λ) and Es(x, λ) converge to those on U(λ)
and S(λ) as x→ −∞ and x→∞, respectively. This is given in [PSS97, Corollary 2].

The important feature of the system (2.2) that makes it amenable to the Maslov index is
that the coefficient matrix A(x;λ) is infinitesimally symplectic, i.e.

A(x;λ)TJ + JA(x;λ) = 0, (2.14)

which follows from the symmetry of B and C(x;λ). This is the motivation for the choice
of substitutions (2.1). Consequently, (2.2) induces a flow on the manifold of Lagrangian
planes. In particular, the stable and unstable bundles of (2.2) are Lagrangian planes of R8

for all x and all λ. In addition we have that λ0 is an eigenvalue of N if and only if for any
(and hence all) x ∈ R we have

Eu(x, λ0) ∩ Es(x, λ0) 6= {0}.
In this case we in fact have

dimEu(x, λ0) ∩ Es(x, λ0) = dim ker(N − λ0I). (2.15)

By exploiting homotopy invariance of the Maslov index, we can determine the existence of
such intersections by instead analysing the evolution of the unstable bundle Eu(x, λ0) when
λ0 = 0. This is explained in Section 3.

3. A symplectic approach to the eigenvalue problem

In this section, we give some background material on the Maslov index before describing
the homotopy argument that leads to the lower bound of Theorem 1.2. Our definition of
the Maslov index follows [GPP04a, GPP04b], which involves computing the spectral flow
(the net change in the number of nonnegative eigenvalues) of a smooth curve of symmetric
matrices. We begin by discussing a general framework for such a computation.

3.1. Preliminaries: spectral flow and the partial signatures. We follow the dis-
cussion in [GPP04b, §2.1-2.2]. In what follows, V is a subspace of R2n and S(V ) is the
vector space of symmetric linear operators (matrices) T : V → V . Consider a smooth
curve t 7→ L(t) ∈ S(V ), which has an isolated singularity at t = t0, i.e. detL(t0) = 0 and
detL(t) 6= 0 for 0 < |t − t0| < ε. The following is a method to compute the jump in the
number of nonnegative eigenvalues of L as t passes through t0.
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A root function for L(t) at t = t0 is a smooth map q : [t0 − ε, t0 + ε] → V , ε > 0, such
that q(t0) ∈ ker(L(t0)). The order of q, ord(q), is the order of zero at t = t0 of the map

t 7→ L(t)q(t), i.e. the smallest positive integer k such that dk

dtk
(L(t)q(t))

∣∣
t=t0
6= 0. With

these notions we can define a sequence of spaces Wk and bilinear forms Bk : Wk ×Wk → R
for k ≥ 1 as follows:

Wk := {q0 ∈ V : there exists a root function q with ord(q) ≥ k and q(t0) = q0}, (3.1)

Bk(q0, r0) :=
1

k!

〈 dk
dtk

(L(t)q(t))
∣∣
t=t0

, r0

〉
R2n

, q0, r0 ∈Wk, (3.2)

where q in (3.2) is any root function with ord(q) ≥ k and q(t0) = q0. It follows from
the definition that W1 ⊆ ker(L(t0)). It is proven in [GPP04b, Proposition 2.4] that Bk
is symmetric and independent of the choice of q, and therefore well-defined. Moreover,
from [GPP04b, Proposition 2.4, Corollary 2.10] we have

Wk+1 ⊆Wk for all k ≥ 1, and Wk+1 = kerBk. (3.3)

Notice that if Bk is nondegenerate for some k, then Wj = {0} for all j > k.

The spaces Wk can be characterised as follows. Define Lk := 1
k!
dk

dtk
L(t)|t=t0 . A generalised

Jordan chain of length k+1 starting at q0 for L(t) at t = t0 is a sequence of nonzero vectors
{q0, q1, ..., qk}, qi ∈ V satisfying the system of k + 1 equations

L0q0 = 0,

L1q0 + L0q1 = 0,

L2q0 + L1q1 + L0q2 = 0,

...

k∑
j=0

Lk−jqj = 0.

(3.4)

Such a chain is called maximal if it cannot be extended to a chain of length k+ 2, i.e. there
is no solution qk+1 to

Lk+1q0 + Lkq1 + · · ·+ L1qk + L0qk+1 = 0. (3.5)

For any generalised Jordan chain {q0, . . . , qk} (not necessarily maximal), the function q(t) :=∑k
j=0(t− t0)jqj is a root function with ord(q) ≥ k + 1 and q(t0) = q0, since

di

dti
(L(t)q(t)) |t=t0 =

i∑
j=0

(
i

j

)
L(i−j)(t0)q

(j)(t0) = i!
i∑

j=0

Li−jqj = 0 for all i = 0, 1, . . . , k.

Here we used that q(j)(t0) = j!qj and L(i−j)(t0) = (i − j)!Li−j in the second equality, and
(3.4) in the third equality. Conversely, any root function q with ord(q) ≥ k + 1 gives a

generalised Jordan chain of length (at least) k + 1 via qi := 1
i!q

(i)(t0). This shows that:

Wk+1 = {q0 ∈ V : ∃ a generalised Jordan chain of length k + 1,

starting at q0, for L(t) at t = t0}.
(3.6)

Moreover, the root function q associated with any q0 ∈Wk+1 has ord(q) = k+ 1 if and only
if the associated Jordan chain {q0, ..., qk} is maximal. Maximality of the chain holds if and
only if

Lk+1q0 + Lkq1 + · · ·+ L1qk /∈ Ran(L0) = ker(L0)
⊥. (3.7)

Notice that (3.6) shows that kerL0 ⊆ W1, since any q0 ∈ kerL0 is a generalised Jordan
chain of length one for L(t). From our ealier observation this implies

W1 = kerL(t0). (3.8)
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For any generalised Jordan chain {q0, . . . , qk}, the bilinear form Bk+1 is given by

Bk+1(q0, r0) =
k∑
j=0

〈Lk+1−jqj , r0〉R2n , q0, r0 ∈Wk+1, (3.9)

as can be seen from substituting the root function q(t) =
∑k

j=0(t− t0)jqj into (3.2).

If the chain {q0, . . . , qk} is not maximal (i.e. it can be extended to {q0, . . . , qk+1} where
qk+1 solves (3.5)), then for all i = 0, . . . , k and any r0 ∈Wi+1, we have

Bi+1(q0, r0) =

i∑
j=0

〈Li+1−jqj , r0〉R2n = −〈L0qi+1, r0〉R2n = −〈qi+1, L0r0〉R2n = 0.

Here, the second equality follows for i = 0, . . . , k−1 from (3.4) and for i = k from (3.5), and
we used that r0 ∈Wi+1 ⊆ kerL(t0). On the other hand, if the Jordan chains associated with
q0, r0 ∈ Wk+1 are both of length k + 1 and maximal, then Bk+1(q0, r0) is nondegenerate.
This follows from the symmetry of Bk+1 and (3.7).

The family of bilinear forms {Bk}k can be used to compute the jump in the number of
nonnegative eigenvalues of L(t) as t increases through t0. The following is taken from
[GPP04b, Proposition 2.9]. We denote by n+(S), n−(S), n0+(S), n0−(S) respectively the
number of positive, negative, nonnegative and nonpositive eigenvalues (squares) of the
symmetric matrix (symmetric bilinear form) S. For the bilinear forms defined in (3.2), the
integers

n−(Bk), n+(Bk), n+(Bk)− n−(Bk), (3.10)

for k ≥ 1 are called, respectively, the kth partial negative index, the kth partial positive
index and the kth partial signature of L(t) at t = t0. The integers in (3.10) are collectively
referred to as the partial signatures of the curve of symmetric matrices L(t) at t = t0.

Proposition 3.1. Suppose [t0 − ε, t0 + ε] 7→ L(t) ∈ S(V ) is a smooth curve of symmetric
matrices with an isolated singularity at t = t0, {λi(t)} are the smooth curves of eigenvalues
of L(t), and the associated spaces Wk and bilinear forms Bk are as in (3.1),(3.2). For all
nonconstant λi(t) vanishing at t = t0, assume the zero of λi(t) at t = t0 is of finite order,
and that for each eigenvalue λi(t), there exists a smooth family of unit eigenvectors ui(t),
where the ui are pairwise orthogonal for each t. Then the following hold:

(i) Wk = span{ui(t0) : i ∈ {1, . . . , n} is such that λ
(j)
i (t0) = 0 for all j < k};

(ii) if q ∈ Wk is an eigenvector of λi(t0), where λ
(j)
i (t0) = 0 for all j < k, then

Bk(q, r) = 1
k!λ

(k)
i (t0)〈q, r〉 for all r ∈Wk;

(iii) n0+(L(t0 + ε))− n0+(L(t0)) = −
∑
k≥1

n−(Bk),

n0+(L(t0))− n0+(L(t0 − ε)) =
∑
k≥1

(n−(B2k) + n+(B2k−1)) ,

n0+(L(t0 + ε))− n0+(L(t0 − ε)) =
∑
k≥1

(n+(B2k−1)− n−(B2k−1)) ,

where each of the sums on the right hand side of the previous three equations have
a finite number of nonzero terms.

Note that the negative index n−(Bk) (resp. the positive index n+(Bk)) is the number of
i’s in {1, . . . , n} such that λi(t) has a zero of order k at t = t0 and whose kth derivative is
negative (resp. positive) at t = t0. Note as well that to obtain the formulas in (ii), we have



12 M. CURRAN, R. MARANGELL

manipulated the corresponding formulas in [GPP04b, Proposition 2.9] using the following
formula from [GPP04b, Corollary 2.11]:∑

k≥1
(n+(Bk) + n−(Bk)) = dim ker(L(t0)). (3.11)

For some illustrative examples involving computation of the spaces Wk, the forms Bk and
the behaviour the eigenvalues λi(t) in some simple cases when V = R2 and L(t) ∈ R2×2,
see [GPP04b, Examples 2.8, 2.12].

3.2. The Maslov index. In this section we follow the discussions in [Arn67,RS93,GPP04b].
Consider R2n equipped with the symplectic form

ω(u, v) = 〈Ju, v〉R2n , J =

(
0n −In
In 0n

)
. (3.12)

A Lagrangian subspace of R2n is one that is n dimensional and upon which the symplectic
form vanishes. We denote the Grassmannian of all Lagrangian subspaces of R2n by

L(n) := {Λ ⊂ R2n : dim Λ = n, ω(u, v) = 0 ∀ u, v ∈ Λ}. (3.13)

A frame for a Lagrangian subspace Λ of R2n is a 2n × n matrix whose columns span Λ.
Such a frame has the form(

X
Y

)
, where X>Y = Y >X, X, Y ∈ Rn×n. (3.14)

The symmetry of X>Y follows from the vanishing of (3.12). Such a frame is not unique;
right multiplication by an invertible matrix will yield a different frame for the same space.
In particular, if X is invertible then an equivalent frame is(

I
Y X−1

)
, where

(
Y X−1

)>
= Y X−1. (3.15)

Arnol’d [Arn67] defined a Maslov index for non-closed curves as follows. Any fixed V ∈
L(n) gives rise to a decomposition of L(n) via L(n) =

⋃n
k=0 Tk(V ), where each stratum

Tk(V ) := {W ∈ L(n) : dim(W ∩V ) = k} has codimension k(k+ 1)/2. The train T (V ) of V
is the set of all Lagrangian planes that intersect V nontrivially, i.e. T (V ) :=

⋃n
k=1 Tk(V ).

From the fundamental lemma of [Arn67], T1(V ) is two-sidedly imbedded in L(n), that is,
there exists a continuous vector field on L(n) that is everywhere transverse to T1(V ). Such
a vector field therefore defines a ‘positive’ and a ‘negative’ side of T1(V ). For any continuous
curve Λ : [a, b] → Λ(n) with endpoints lying off the train and which intersects T (V ) only
in T1(V ), its Maslov index is given by ν+ − ν−, where ν+ (ν−) is the number of points
of passage of Λ from the negative to the positive side (from the positive to the negative
side) of T1(V ). Robbin and Salamon [RS93] gave a definition in terms of crossing forms,
which is based on an identification of the tangent space of L(n) with the space of quadratic
forms. Their definition required neither transversality at the endpoints nor of intersections
only with T1(V ). However, nondegeneracy of the quadratic crossing form is required; this
is equivalent to the path having only transversal intersections with T (V ). They extended
the definition to all continuous Lagrangian paths (i.e. those for which the crossing form is
degenerate) via homotopy invariance (see Proposition 3.3).

Giambò, Piccione and Portaluri [GPP04b, GPP04a] gave a formula for the Maslov index
of an analytic Lagrangian path having isolated possibly nontransversal intersections with
T (V ). This is given below. In doing so, they did away with the nondegeneracy assumption
of [RS93] (at least for analytic paths). To the analytic Lagrangian path they associate
a locally-defined smooth curve of symmetric bilinear forms, the spectral flow of which is
shown to locally compute the Maslov index.
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Suppose Λ : [a, b] → L(n) is an analytic path of Lagrangian subspaces, and let V ∈ L(n)
be fixed. Suppose further that t = t0 is an isolated crossing, that is, Λ(t0) ∩ V 6= {0},
and choose any W ∈ L(n) which is transverse to both Λ(t0) and V . By continuity, W is
transversal to Λ(t) for all t ∈ [t0− ε, t0 + ε], ε > 0 small enough, and there exists a smooth,
unique family of matrices R(t), viewed as operators from V into W , such that Λ(t) is the
graph of R(t) for each t, i.e. Λ(t) = graph(R(t)) = {q +R(t)q : q ∈ V }. This allows one to
define a smooth curve of bilinear forms

[t0 − ε, t0 + ε] 3 t 7→ ω(R(t)·, ·)|V×V (3.16)

on V , which are symmetric for each t on account of Λ(t) being Lagrangian. Indeed, for all
u, v ∈ V we have

ω(R(t)u, v) = ω(u+R(t)u, v)

= ω(u+R(t)u, v +R(t)v)− ω(u+R(t)u,R(t)v)

= −ω(u,R(t)v) = ω(R(t)v, u).

(3.17)

Moreover, we have

(kerR(t)) ∩ V = ker (ω(R(t)·, ·)|V×V ) = Λ(t) ∩ V, (3.18)

and from our assumptions the right hand side is nontrivial precisely when t = t0. In this
way we see that any crossing of the path Λ with the train T (V ) corresponds to an isolated
singularity of the locally-defined form (3.16).

Denote by π1(L(n)) the fundamental groupoid of L(n), i.e. the set of (fixed-endpoint)
homotopy classes [Λ] of paths Λ : [a, b]→ L(n), equipped with the partial operation [Λ]·[ξ] =
[Λ ∗ ξ], where ∗ is the concatenation of two paths Λ, ξ : [a, b]→ L(n), which is only defined
if Λ(b) = ξ(a). For all V ∈ L(n), it is proven in [GPP04b, Corollary 3.5] that there is a
unique integer-valued homomorphism µ(·;V ) on π1(L(n))1 such that the following holds.
With our earlier choice of W , i.e. such that W ∈ T0(V ) ∩ T (Λ(t0)), if Λ : [a, b] → T0(W )
then µ([Λ];V ) is given by the spectral flow of the family of forms (3.16) defined over [a, b].
Note (3.16) is well-defined over the entire interval in this case because Λ : [a, b] → T0(W ).
The Maslov index of any continuous path Λ is then defined to be µ([Λ];V ), and the authors
prove in [GPP04b, Proposition 3.11], using Proposition 3.1, that it is computable via the
partial signatures of (3.16) at each isolated crossing with T (V ). For our purposes, it will
suffice to use the latter computational tool as our definition of the Maslov index.

In the same fashion as (3.2), we define the kth-order crossing form by

m
(k)
t0

(Λ, V )(q0, r0) =
dk

dtk
ω
(
R(t)q(t), r0

)∣∣∣
t=t0

, q0, r0 ∈Wk, (3.19)

where q is a root function for (3.16) at t = t0 with ord(q) ≥ k, i.e. a smooth map q :

[t0 − ε, t0 + ε] → V such that q(t0) ∈ ker JR(t0) = kerR(t0) and
di

dti
JR(t)q(t)|t=t0 = 0 for

i = 1, . . . , k − 1, and

Wk = {q0 ∈ V : ∃ a generalised Jordan chain of length k,

starting at q0, for the curve of bilinear forms in (3.16) at t = t0}.
(3.20)

(For more details on these terms, see Section 3.1.) We will mostly work with the associated
quadratic form

m
(k)
t0

(Λ, V )(q0) := m
(k)
t0

(Λ, V )(q0, q0) q0 ∈Wk. (3.21)

For notational convenience we will sometimes drop the subscript zero for the functions in
Wk; it will be clear from the context whether q denotes a root function or a fixed vector in V .
In the case that k = 1, we will drop the superscript and write mt0(Λ, V ). Following [RS93],

1i.e. a map µ : π1(L(n))→ Z such that µ([Λ]∗ [ξ]) = µ([Λ])+µ([ξ]) for all [Λ], [ξ] ∈ π(L(n)) with Λ(b) = ξ(a)
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a crossing t = t0 will be called regular if mt0 is nondegenerate; otherwise, t = t0 will be
called non-regular. Denoting by n+(B) and n−(B) the number of positive, respectively
negative, squares of the quadratic form B, we define the sequence of partial signatures of
(3.19) (as in (3.10)):

n−(m
(k)
t0

), n+(m
(k)
t0

), sign(m
(k)
t0

) = n+(m
(k)
t0

)− n−(m
(k)
t0

).

It is proven in [GPP04b, Lemma 3.10] that these integers are independent of the choice of
W and are therefore well-defined. The Maslov index of the Lagrangian path Λ is then given
as follows, as in [GPP04b, Proposition 3.11].

Definition 3.2. Suppose Λ : [a, b] → L(n) is an analytic path of Lagrangian subspaces,
whose intersections with T (V ) are isolated. Its Maslov index is given by

Mas(Λ, V ; [a, b]) = −
∑
k≥1

n−

(
m(k)
a

)
+

∑
t0∈(a,b)

∑
k≥1

sign
(
m

(2k−1)
t0

)
+
∑
k≥1

(
n+

(
m

(2k−1)
b

)
+ n−

(
m

(2k)
b

))
, (3.22)

where the right hand side has a finite number of nonzero terms.

Notice that at all interior crossings t0 ∈ (a, b), only the signatures of the crossing forms of
odd order contribute; at the initial point the negative indices of crossing forms of all order
contribute; while at the final point, the negative indices of the forms of even order and the
positive indices of the forms of odd order contribute. From (3.11), we have that∑

k≥1

(
n+(m

(k)
t0

) + n−(m
(k)
t0

)
)

= dim Λ(t0) ∩ V, (3.23)

so that by taking sufficiently many higher order crossing forms, a crossing t0 will always
contribute dim Λ(t0)∩V summands (the signs of which may offset each other) to the Maslov
index.

We point out that Definition 3.2 includes, as a special case, the definition given by Robbin
and Salamon [RS93] in the case that all crossings are regular. To see this, we compute mt0

from (3.19):

mt0(Λ, V )(q0) =
d

dt
ω (R(t)q0, q0)

∣∣
t=t0

, q0 ∈ Λ(t0) ∩ V, (3.24)

where we used the symmetry of JR(t0), and (3.8), (3.18) to obtain W1 = Λ(t0)∩ V . If mt0

is nondegenerate, it follows from (3.3) that W2 = {0} and therefore Wk = {0} for k ≥ 3.

Thus the forms m
(k)
t0

are trivial for k ≥ 2, and from (3.23) we have n+(mt0) + n−(mt0) =
dim Λ(t0) ∩ V . Thus, the Maslov index of a path Λ : [a, b] → L(n) with only regular
crossings is given by

Mas(Λ, V ; [a, b]) = −n− (ma) +
∑

t0∈(a,b)

sign (mt0) + n+ (mb) , (3.25)

just as in [RS93, §2].

Two special cases will be important in our analysis. The first is the instance of a non-regular
crossing t0 = a at the initial point of the path Λ : [a, b] → L(n), for which the first-order
crossing form is identically zero and the second-order crossing form is nondegenerate. Then

n+(m(2)
a ) + n−(m(2)

a ) = dim Λ(t0) ∩ V, (3.26)
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and from Definition 3.2 we see that, for ε > 0 small enough,

Mas(Λ, V ; [a, a+ ε]) = −n−(m(2)
a ), (3.27)

just as in [CCLM23, Proposition 4.15] and [DJ11, Proposition 3.10]. Note that in this case,

we have W2 = (kerR(t0))∩V = ker
(
Ṙ(t0)

)
∩V = Λ(t0)∩V , and the second-order crossing

form (3.19) is given by (where dot denotes d/dt)

m
(2)
t0

(Λ, V )(q0) =
d2

dt2
ω
(
R(t)q(t), q0

)∣∣∣
t=t0

,

= ω
(
R̈(t)q0, q0

)
+ ω

(
Ṙ(t0)q̇(t0), q0

)
+ ω

(
R(t0)q̈(t0), q0

)
,

= ω
(
R̈(t)q0, q0

)
, (3.28)

for q0 ∈ Λ(t0) ∩ V , where we used the symmetry of JR(t0) and JṘ(t0).

The second special case is the instance of a non-regular interior crossing t0 ∈ (a, b) for which
the first-order form is degenerate with nonzero rank, the second-order form is identically
zero, and the third-order form is nondegenerate. Then

n+(m
(1)
t0

) + n−(m
(1)
t0

) + n+(m
(3)
t0

) + n−(m
(3)
t0

) = dim Λ(t0) ∩ V, (3.29)

and if t0 is the only crossing in [t0 − ε, t0 + ε], its contribution to the Maslov index is

Mas(Λ, V ; [t0 − ε, t0 + ε]) = signm
(1)
t0

+ signm
(3)
t0
. (3.30)

We summarise the important properties of the Maslov index for the current analysis in the
following proposition, as in [GPP04b, Lemma 3.8] (see also [RS93, Theorem 2.3]).

Proposition 3.3. The Maslov index enjoys

(1) (Homotopy invariance.) If two paths Λ1,Λ2 : [a, b] −→ L(n) are homotopic with
fixed endpoints, then

Mas(Λ1(t), V ; [a, b]) = Mas(Λ2(t),Λ0; [a, b]). (3.31)

(2) (Additivity under concatenation.) For Λ(t) : [a, c] −→ L(n) and a < b < c,

Mas(Λ(t), V ; [a, c]) = Mas(Λ(t), V ; [a, b]) + Mas(Λ(t), V ; [b, c]). (3.32)

(3) (Symplectic additivity.) Identify the Cartesian product L(n)×L(n) as a submanifold
of L(2n). If Λ = Λ1 ⊕ Λ2 : [a, b] → L(2n) where Λ1,Λ2 : [a, b] → L(n), and
V = V1 ⊕ V2 where V1, V2 ∈ L(n), then

Mas(Λ(t), V ; [a, b]) = Mas(Λ1(t), V1; [a, b]) + Mas(Λ2(t), V2; [a, b]). (3.33)

(4) (Zero property.) If Λ : [a, b] −→ Tk(V ) for any fixed integer k, then

Mas(Λ(t), V ; [a, b]) = 0. (3.34)

Suppose now that we have a pair of Lagrangian paths (Λ1,Λ2) : [a, b]→ L(n)× L(n), or a
Lagrangian pair. Using the symplectic additivity property of Proposition 3.3, it is possible
to define the Maslov index of such an object (as in [GPP04b,RS93,Fur04]), where crossings
are values t0 ∈ [a, b] such that Λ1(t0)∩Λ2(t0) 6= {0}. Precisely, one realises the Lagrangian
pair as the path Λ1 ⊕ Λ2 in the doubled space R4n equipped with the symplectic form
Ω = ω × (−ω), where

Ω((u1, u2), (v1, v2)) = ω(u1, v1)− ω(u2, v2), u1, u2, v1, v2 ∈ R2n. (3.35)

Crossings of the pair then correspond to intersections of the path Λ1 ⊕ Λ2 : [a, b] → R4n

with the diagonal subspace 4 = {(x, x) : x ∈ R2n} ⊂ R4n. The resultant Maslov index,

Mas(Λ1,Λ2; [a, b]) := Mas(Λ1 ⊕ Λ2,4; [a, b]), (3.36)
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is thus a signed count of the intersections of Λ1 and Λ2 which, loosely speaking, measures
the winding of Λ1 relative to Λ2.

The right hand side of (3.36) is computed with Definition 3.2. To that end, using Ω as the
symplectic form in (3.19) for the path Λ1 ⊕ Λ2, we define the kth-order relative crossing
form of the Lagrangian pair (Λ1,Λ2) to be the quadratic form

m
(k)
t0

(Λ1,Λ2)(q) := m
(k)
t0

(Λ1,Λ2(t0))(q)−m
(k)
t0

(Λ2,Λ1(t0))(q), q ∈W k, (3.37)

where Wk ⊆ Λ1(t0)∩Λ2(t0). Using these forms in Definition 3.2 thus allows us to compute
the Maslov index of the pair (Λ1,Λ2) : [a, b] → L(n) × L(n). In the case that Λ2 = V is
constant, the Maslov index of the pair reduces to the Maslov index of the single path Λ1,
with respect to the reference plane V .

The Maslov index is invariant for Lagrangian pairs that are stratum homotopic. This
result will be needed in our analysis, and we give a proof below. The result for single
paths can be found in [RS93, Theorem 2.4]. Suppose the pairs (Λ1,Λ2) : [a, b] → L(n)

and (Λ̃1, Λ̃2) : [a, b] → L(n) are stratum homotpic, i.e. there exist continuous mappings
H1, H2 : [0, 1]× [a, b]→ L(n) such that

H1(0, ·) = Λ1(·), H2(0, ·) = Λ2(·)

H1(1, ·) = Λ̃1(·), H2(1, ·) = Λ̃2(·),

for which dim(H1(s, a) ∩ H2(s, a)) and dim(H1(s, b) ∩ H2(s, b)) are constant with respect
to s ∈ [0, 1]. (The name “stratum homotopy” derives from the fact that

H1(s, a)⊕H2(s, a) ∈ Tk1(4), H1(s, b)⊕H2(s, b) ∈ Tk2(4),

for all s ∈ [0, 1] and fixed integers k1, k2.) Then we have:

Lemma 3.4.

Mas(Λ1,Λ2; [a, b]) = Mas(Λ̃1, Λ̃2; [a, b]). (3.38)

Proof. Consider the continuous mapping H = H1 ⊕H2 : [0, 1] × [a, b] → L(n) × L(n). By
continuity of H and homotopy invariance (i.e. property (3) of Proposition 3.3), we have

Mas(H(0, ·),4; [a, b]) + Mas(H(·, b),4; [0, 1])

−Mas(H(1, ·),4; [a, b])−Mas(H(·, a),4; [0, 1]) = 0. (3.39)

Using (3.36) we have

Mas(H(0, ·),4; [a, b]) = Mas(Λ1,Λ2; [a, b]), Mas(H(1, ·),4; [a, b]) = Mas(Λ̃1, Λ̃2; [a, b]).

By assumption dim (H(·, a) ∩4) = dim (H1(·, a) ∩H2(·, a)) and dim (H(·, b) ∩4) =
dim (H1(·, b) ∩H2(·, b)) are constant, so by property (4) of Proposition 3.3 the Maslov
indices of the second and fourth terms in (3.39) are zero. Equation (3.38) follows. �

For a Lagrangian pair, when the first-order form mt0(Λ1,Λ2) of (3.37) at t = a is identically

zero, and the second order form m
(2)
a (Λ1,Λ2) is nondegenerate, equation (3.27) becomes

Mas(Λ1,Λ2; [a, a+ ε]) = −n−(m(2)
a (Λ1,Λ2)). (3.40)

This formula will be needed in our application to the eigenvalue problem (1.12). In partic-
ular, the crossing corresponding to the zero eigenvalue of the operator N is not regular in
the λ direction, and the conditions for (3.40) are met under the assumption that I1, I2 6= 0.
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We will call a crossing t = t0 positive if∑
k≥1

(
n+(m

(2k−1)
t0

)
)

= dim Λ(t0) ∩ V, (3.41)

and negative if ∑
k≥1

(
n−(m

(2k−1)
t0

)
)

= dim Λ(t0) ∩ V. (3.42)

In light of Definition 3.2, if t0 is a positive interior crossing, or a positive crossing at the
final point t0 = b, then it contributes dim Λ(t0) ∩ V to the Maslov index. Similarly, if t0
is a negative interior crossing, or a negative crossing at the initial point t0 = a, then its
contribution is −dim Λ(t0)∩V . Note, however, that with this convention, the final crossing
t0 = b may still contribute dim Λ(b) ∩ V if it is not positive, and the initial point t0 = a
may still contribute −dim Λ(a) ∩ V if it is not negative.

3.3. Lagrangian pairs and the Maslov box. We first discuss the regularity and La-
grangian property of the stable and unstable bundles. Recall Es(x, λ) and Eu(x, λ) defined
in (2.12) for x ∈ R and λ ∈ R. We extend Es to x = +∞ and Eu to x = −∞ by setting

Es(+∞, λ) := S(λ), Eu(−∞, λ) := U(λ). (3.43)

Thus by (2.13), Es and Eu are continuous on (−∞,∞]×R and [−∞,∞)×R respectively.
Furthermore, since the right hand side of (2.2) is analytic in λ and x, it follows that the
solution spaces Es and Eu are analytic on (x, λ) ∈ R× R (note that x = ±∞ is excluded).
We remark here that the mapping

λ 7→ lim
x→∞

Eu(x;λ) (3.44)

is discontinuous at eigenvalues λ ∈ Spec(N). Indeed, if λ /∈ Spec(N), then limx→∞ Eu(x;λ) =
U(λ) (again as points on the Grassmannian Gr4(R8)), while if λ ∈ Spec(N) is an eigenvalue
then limx→∞ Eu(x;λ)∩S(λ) 6= {0}. Now since U(λ)∩S(λ) = {0} i.e. U(λ) ∈ T0(S(λ)), and
T0(S(λ)) is an open subset of L(n) with boundary T (S(λ)), it follows that U(λ) is bounded
away from T (S(λ)). For more details see the Appendix in [HLS18].

Remark 3.5. The Maslov index is defined for Lagrangian paths over compact intervals.
Following [HLS18] we will sometimes compactify R via the change of variables

x = ln

(
1 + τ

1− τ

)
, τ ∈ [−1, 1]. (3.45)

(Similar transformations are used in [BCJ+18, AGJ90].) Notationally we will use a hat to
indicate such a change has been made, for example,

Ês,u(τ, ·) := Es,u
(

ln

(
1 + τ

1− τ

)
, ·
)
, τ ∈ [−1, 1]. (3.46)

In this case, (3.43) implies that Êu(−1, λ) = U(λ) and Ês(1, λ) = S(λ).

Lemma 3.6. The spaces Eu(x;λ) and Es(x;λ) are Lagrangian subspaces of R8 for all
x ∈ [−∞,∞] and λ ∈ R.

Proof. First, recall that dimU(λ) = dimS(λ) = 4 (we showed in (3.43) that A∞(λ) is
hyperbolic with four eigenvalues of positive real part and four of negative real part.) It
follows from the continuity of Eu on [−∞,∞) × R that dimEu(x, λ) = 4 for all (x, λ) ∈
[−∞,∞)× R. A similar argument shows dimEs(x, λ) = 4 for (x, λ) ∈ (−∞,∞]× R.

Next, for x ∈ R, let w1(x;λ),w2(x;λ) ∈ Eu(x;λ). We have:

ω(w1(x;λ),w2(x;λ)) = 〈Jw1(x;λ),w2(x;λ)〉,
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=

∫ x

−∞

d

ds
〈Jw1(s;λ),w2(s;λ)〉ds,

=

∫ x

−∞
〈JA(s;λ)w1(s;λ),w2(s;λ)〉+ 〈Jw1(s;λ), A(s;λ)w2(s;λ)〉ds,

=

∫ x

−∞

〈(
A(s;λ)>J + JA(s;λ)

)
w1(s;λ),w2(s;λ)

〉
ds,

= 0,

where we used (2.14), i.e. that A(x;λ) is infinitesimally symplectic. The proof for Es(x;λ) is
similar, but the integral is taken over [x,∞). We have shown that Eu and Es are Lagrangian
on R × R. That this property extends to x = ±∞ follows the closedness of L(n) as a
submanifold of the Grassmannian of n-dimensional subspaces of R2n. (Note this latter
property follows from the continuity of the symplectic form ω.) �

We are now ready to give the homotopy argument that leads to the lower bound of Theo-
rem 1.2. Consider the following path of Lagrangian pairs

Γ 3 (x, λ) 7→ (Eu(x, λ),Es(`, λ)) ∈ L(4)× L(4), (3.47)

where `� 1 needs to be chosen large enough so that

U(λ) ∩ Es(x, λ) = {0} for all x ≥ ` (3.48)

(see Remark 3.7). Here Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where the Γi are the contours

Γ1 : x ∈ [−∞, `], λ = 0, Γ3 : x ∈ [−∞, `], λ = λ∞,

Γ2 : x = `, λ ∈ [0, λ∞], Γ4 : x = −∞, λ = λ ∈ [0, λ∞],
(3.49)

in the λx-plane (see Fig. 1). The set Γ has been referred to by some as the Maslov box
[HLS18,Cor19], although the associated homotopy argument (outlined below) can be seen in
as far back as the works of Bott [Bot56], Edwards [Edw64], Arnol’d [Arn67] and Duistermaat
[Dui76]. Notice that along Γ1 and Γ3, the second entry Es(`, λ) of (3.47) is fixed. The
Maslov index of (3.47) along these pieces thus reduces to the Maslov index for a single
path with respect to a fixed reference plane. Along Γ2 and Γ4, however, we have a genuine
Lagrangian pair.

Crossings of (3.47) are thus points (x, λ) ∈ Γ such that

Eu(x, λ) ∩ Es(`, λ) 6= {0}.

Recalling that λ is an eigenvalue of N if and only if Eu(x, λ) ∩ Es(x, λ) 6= {0} for all
x ∈ R, it follows that the λ-values of the crossings along Γ2 are exactly the eigenvalues of
N . In particular, because 0 ∈ Spec(N) there will be a crossing at (x, λ) = (0, `). From
Hypothesis 1.1 we have ker(L−) = span{φ} and ker(L+) = span{φ}. The corresponding
solutions of (2.2),

φφφ(x) :=



0
φ′′(x) + σ2φ(x)

0
−φ(x)

0
−φ′(x)

0
φ′′′(x)


, ϕϕϕ(x) :=



φ′′′(x) + σ2φ
′(x)

0
φ′(x)

0
φ′′(x)

0
φ′′′′(x)

0


, (3.50)

(obtained from (2.1) with v = φ and u = φ′ respectively) will therefore satisfy φφφ(x),ϕϕϕ(x) ∈
Eu(x; 0) ∩ Es(x; 0) for all x ∈ R.
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Figure 1. Maslov box in the λx-plane, with edges oriented in a clockwise fashion. The
crossing at the top left corner (0, `) corresponds to the zero eigenvalue of N . Noting that
λ ∈ R is a spectral parameter, and therefore lives on the real axis in C, it is natural to
place λ on the horizontal axis.

Remark 3.7. That the path (3.44) is discontinuous in λ prohibits taking Γ2 to be at
x = +∞. Taking Γ2 to be at x = ` for ` large enough avoids this issue. Chen and
Hu [CH07] showed that by taking ` large enough so that (3.48) holds, the Maslov index of
(3.47) along Γ1 is independent of the choice of `. For more details, see [CH07,Cor19].

Crossings along Γ1, i.e. points (x, λ) = (x0, 0) such that

Eu(x0, 0) ∩ Es(`, 0) 6= {0}, (3.51)

are called conjugate points. Recall that when λ = 0 the eigenvalue equations (1.12) decouple
into two independent equations for the operators L+ and L−. Similarly, when λ = 0 the
first order system (2.2) decouples into two independent systems for the u and v variables. In
Section 4 the eigenvalue problems for the operators L+ and L− will be written as first order
systems; the stable and unstable bundles for the L+ system will be denoted by Es+(x, λ)
and Eu+(x, λ), respectively, while the stable and unstable bundles for the L− system will be
denoted by Es,u− (x, λ). For the system (2.2), as a result of the decoupling at λ = 0 we have

Eu(x, 0) = Eu+(x, 0)⊕ Eu−(x, 0) and Es(x, 0) = Es+(x, 0)⊕ Es−(x, 0), (3.52)

so that

{x ∈ R : Eu(x, 0) ∩ Es(`, 0) 6= {0}} =

{x ∈ R : Eu+(x, 0) ∩ Es+(`, 0) 6= {0}} ∪ {x ∈ R : Eu−(x, 0) ∩ Es−(`, 0) 6= {0}}. (3.53)

The precise notion of the direct sums in (3.52) will be given in Section 5. When dealing with
conjugate points, we will show in Section 4 that it suffices to use the stable subspace S(0)
(instead of Es(`, 0)) as the reference plane to do computations. That S(0) = S+(0)⊕S−(0),
where S±(0) is the stable subspace of the asymptotic first order system for the eigenvalue
problem for L±, leads to the following classification of conjugate points.

Definition 3.8. An L+ conjugate point is a point (x, λ) = (x0, 0) such that Eu+(x0, 0) ∩
S+(0) 6= {0}. An L− conjugate point is similarly defined via Eu−(x0, 0) ∩ S−(0) 6= {0}.

Since the solid rectangle [−∞, `]× [0, λ∞] is contractible and the map (3.47) is continuous,
the image of the boundary of the rectangle in L(4) × L(4) is homotopic to a fixed point.
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From homotopy invariance (Proposition 3.3), it follows that

Mas(Eu(·, ·),Es(·, ·); Γ) = 0. (3.54)

By additivity under concatenation, we can decompose the left hand side into the contribu-
tions coming from the constituent sides of the Maslov box, i.e.

Mas(Eu(·, 0),Es(`, 0); [−∞, `]) + Mas(Eu(`, ·),Es(`, ·); [0, λ∞])

−Mas(Eu(·, λ∞),Es(`, λ∞); [−∞, `])−Mas(Eu(−∞, ·),Es(`, ·); [0, λ∞]) = 0. (3.55)

Note we have included minus signs for the last two terms in order to be consistent with the
clockwise orientation of the Maslov box (see Fig. 1). We will show in Section 5 that in fact
these last two Maslov indices are zero. A distinguished quantity will be the contribution to
the Maslov index of the conjugate point (x, λ) = (`, 0) at the top left corner of the Maslov
box,

c := Mas(Eu(·, 0),Es(`, 0); [`− ε, `]) + Mas(Eu(`, ·),Es(`, ·); [0, ε]), (3.56)

where ε > 0 is small. This is because the crossing (`, 0) is non-regular in λ, and hence
higher order crossing forms are needed to compute the second term in (3.56). It follows
once more from additivity under concatenation that

Mas(Eu(·, 0),Es(`, 0); [−∞, `− ε]) + c + Mas(Eu(`, ·),Es(`, ·); [ε, λ∞]) = 0. (3.57)

We will compute the first term of (3.57) by counting L+ and L− conjugate points. By
bounding the third term, computing c and rearranging, we will arrive at the statement
of Theorem 1.2. Before doing so, we turn our attention to the computation of the Morse
indices of L+ and L− via the Maslov index.

4. Spectral counts for the operators L+ and L−

In this section we focus on the spectral problems for the operators L+ and L−. Specifically,
for each operator we prove that the Morse index is equal to the number of conjugate points
on R. Proposition 4.1 is proven under two genericity conditions which will be formulated
later on.

Proposition 4.1. Assume Hypotheses 4.2 and 4.3. The number of positive eigenvalues of
L+ is equal to the number of L+-conjugate points on R (up to multiplicity),

P =
∑
x∈R

dim
(
Eu+(x, 0) ∩ S+(0)

)
. (4.1)

A similar assertion holds for L−.

We will prove the proposition in a series of lemmas, focusing on the L+ operator; the
spectral count for L− follows similarly with minor adjustments. Many of the ideas here
have already been discussed in §3, and so in the interest of expediency we present only
the main arguments. In what follows, we use a subscript + or − to indicate that objects
pertain to the eigenvalue problem for L+ or L−.

The eigenvalue equation for L+,

− u′′′′ − σ2u′′ − βu+ 3φ2u = λu, u ∈ H4(R), (4.2)

can be reduced to the following first order system via the u substitutions in (2.1),
u1
u2
u3
u4


′

=


0 0 σ2 1
0 0 1 0
1 −σ2 0 0
−σ2 α(x)− λ 0 0



u1
u2
u3
u4

 . (4.3)



DETECTING EIGENVALUES WITH A NON-REGULAR MASLOV BOX 21

where α(x) = 3φ(x)2 − β + 1. Similar to (2.2), we write this system as

ux = A+(x, λ)u, (4.4)

where u = (u1, u2, u3, u4)
> and

A+(x, λ) =

(
0 B+

C+(x, λ) 0

)
, B+ =

(
σ2 1
1 0

)
, C+(x, λ) =

(
1 −σ2
−σ2 α(x)− λ

)
.

Likewise, the eigenvalue equation for L−,

− v′′′′ − σ2v′′ − βv + φ2v = λv, v ∈ H4(R), (4.5)

can be reduced to the following first order system via the v substitutions in (2.1),
v1
v2
v3
v4


′

=


0 0 −σ2 1
0 0 1 0
−1 −σ2 0 0
−σ2 η(x) + λ 0 0



v1
v2
v3
v4

 . (4.6)

where η(x) = −φ(x)2 + β − 1. We write this as

vx = A−(x, λ)v, (4.7)

where v = (v1, v2, v3, v4)
> and

A−(x, λ) =

(
0 B−

C−(x, λ) 0

)
, B− =

(
−σ2 1

1 0

)
, C−(x, λ) =

(
−1 −σ2
−σ2 η(x) + λ

)
.

The coefficient matrices A±(x, λ) are infinitesimally symplectic, satisfying equation (2.14).
In order to be consistent with (2.2) at λ = 0, we have used the same substitutions (2.1) to
reduce (4.2) and (4.5) to (4.3) and (4.6) respectively. Notice that λ appears with a different
sign in (4.3) and (4.6), due to the subsitutions for u2 and u3 in (2.1) having different signs
to the corresponding substitutions for v2 and v3. This will be the reason for the difference
in sign of the Maslov indices in Lemma 4.4.

The asymptotic matrices A+(λ) := limx→±∞A+(x, λ) and A−(λ) := limx→±∞A−(x, λ)
each have two eigenvalues with negative real part and two with positive real part. We
denote the associated stable and unstable subspaces by S±(λ) and U±(λ). Reasoning as
in Section 3.3, associated with each of the systems (4.3) and (4.6) are stable and unstable
bundles,

Eu+(x, λ) := {ξ ∈ R4 : ξ = u(x;λ), u solves (4.3) and u(x;λ)→ 0 as x→ −∞},
Es+(x, λ) := {ξ ∈ R4 : ξ = u(x;λ), u solves (4.3) and u(x;λ)→ 0 as x→ +∞},
Eu−(x, λ) := {ξ ∈ R4 : ξ = v(x;λ), v solves (4.6) and v(x;λ)→ 0 as x→ −∞},
Es−(x, λ) := {ξ ∈ R4 : ξ = v(x;λ), v solves (4.6) and v(x;λ)→ 0 as x→ +∞},

(4.8)

which, when considered as points on the Grassmannian Gr2(R4), converge to the stable and
unstable subspaces at ±∞ as follows,

lim
x→−∞

Eu+(x, λ) = U+(λ), lim
x→+∞

Es+(x, λ) = S+(λ),

lim
x→−∞

Eu−(x, λ) = U−(λ), lim
x→+∞

Es−(x, λ) = S−(λ).

That Eu+(x, λ),Eu−(x, λ),Es+(x, λ),Es−(x, λ) are Lagrangian subspaces of R4, with the map-
pings (x, λ) 7→ Eu±(x, λ) being continuous on [−∞,∞)×R and (x, λ) 7→ Eu,s± (x, λ) analytic
on R× R, follows from the same arguments as in Section 3.3. We omit the proofs.
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In order to show Proposition 4.1, we need to write down frames for S±(0) that we can
do computations with. To that end, first note that the asymptotic matrices A±(0) satisfy
Spec(A+(0)) = Spec(A−(0)) = {±µ1,±µ2}, where

µ1 =

√
−σ2 −

√
1− 4β√

2
, µ2 =

√
−σ2 +

√
1− 4β√

2
. (4.9)

Under the assumption (1.8), we have µ2 = µ̄1 whenever β ≥ 1/4 (for both σ2 = 1 and
σ2 = −1), and µ1, µ2 ∈ R when σ2 = −1 and 0 < |β| ≤ 1/4. The corresponding eigenvectors
are given by

u1 =


µ22
−1
µ1
µ31

 , u2 =


µ21
−1
µ2
µ32

 , and v1 =


µ22
1
−µ1
µ31

 , v2 =


µ21
1
−µ2
µ32

 , (4.10)

where ker (A+(0) + µi) = span{ui} and ker (A−(0) + µi) = span{vi}, i = 1, 2. Notice that
the vectors ui,vi for i = 1, 2 are complex-valued if β ≥ 1/4. We collect these vectors into
the columns of two frames, which we denote with 2× 2 blocks Pi,Mi, i = 1, 2 via

(
P1

P2

)
:=


µ22 µ21
−1 −1
µ1 µ2
µ31 µ32

 ,

(
M1

M2

)
:=


µ22 µ21
1 1
−µ1 −µ2
µ31 µ32

 . (4.11)

All of the matrices Pi,Mi are invertible under (1.8) and (1.9). Right multiplying each frame
in (4.11) by the inverse of its upper 2× 2 block yields the following real frame for S±(0),

S± =

(
I
S±

)
, S± =

1√
2
√
β − σ

(
∓1 σ −

√
β

σ −
√
β ±(

√
βσ + β − 1)

)
, (4.12)

where S+ = P2P
−1
1 and S− = M2M

−1
1 .

An important relation exists between S± and the blocks of the asymptotic matrix A±(0)
that will be needed in our analysis. Define C±(x) := C±(x, 0) and

Ĉ+(x) :=

(
0 0
0 3φ(x)2

)
, Ĉ−(x) :=

(
0 0
0 −φ(x)2

)
, C̃± :=

(
±1 −σ2
−σ2 ∓(β − 1)

)
, (4.13)

so that C±(x) = Ĉ±(x) + C̃±. Because the columns of the frames in (4.11) are eigenvectors
of A±(0), we have(

0 B+

C̃+ 0

)(
P1

P2

)
=

(
P1

P2

)
D+, D+ = diag{−µ1,−µ2}, (4.14)

with a similar equation holding for A−(0) and the frame (M1,M2). That is, B+P2 = P1D+

and C̃+P1 = P2D+. It follows that

C̃+ = P2D+P
−1
1 =

(
P2P

−1
1

) (
P1D+P

−1
2

) (
P2P

−1
1

)
= S+B+S+. (4.15)

It can be similarly shown that

C̃− = S−B−S−. (4.16)

The first intermediate result that will be used in the proof of Proposition 4.1 is Lemma 4.4,
which proves sign-definiteness of the L+ and L− conjugate points on Γ1. For it, we will
require two genericity conditions. For details on how the first may be removed, see Re-
mark 4.8.

Hypothesis 4.2. For any x0 ∈ R where Eu±(x0, 0) ∩ S±(0) 6= {0}, we assume φ(x0) 6= 0.
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Denote a frame for the unstable bundle Eu+(x, 0) by

U±(x) =

(
X±(x)
Y±(x)

)
, X±(x), Y±(x) ∈ R2×2. (4.17)

We will assume that in the event of a one dimensional crossing on Γ1, the intersection of
the unstable bundle with the stable subspace does not perfectly align with the span of the
first column of the frame S±.

Hypothesis 4.3. Suppose dimEu±(x0, 0)∩S±(0) = 1. Then there exist vectors k = (a, b) ∈
R2 and h = (c, d) ∈ R2 so that U±(x0)h = S±k. We assume that a 6= 0.

Lemma 4.4. Assume Hypotheses 4.2 and 4.3. Each crossing x = x0 ∈ R of the Lagrangian
path x 7→ (Eu+(x, 0), S+(0)) is negative. Thus

Mas(Eu+(·, 0),S+(0); [−∞,∞)) = −
∑
x∈R

dim
(
Eu+(x, 0) ∩ S+(0)

)
. (4.18)

Similarly, each crossing x = x0 ∈ R of x 7→
(
Eu−(x, 0), S−(0)

)
is positive, and we have

Mas(Eu−(·, 0), S−(0); [−∞,∞)) =
∑
x∈R

dim
(
Eu−(x, 0) ∩ S−(0)

)
. (4.19)

Remark 4.5. In the above lemma (and throughout), by having the domain of the La-
grangian paths x 7→ (Eu±(x, 0), S±(0)) as x ∈ [−∞,∞), we mean that τ ∈ [−1, 1 − ε]

for the compactified path τ 7→ Êu+(τ, 0) for some small ε > 0 (see Remark 3.5). Note
however that the initial point τ = −1 (x = −∞) is never a conjugate point because
U+(0)∩ S+(0) = {0}. On the other hand, τ = +1 (x =∞) is always a conjugate point, be-
cause Eu±(+∞, 0) ∈ T1(S±(0)) on account of Hypothesis 1.1; nonetheless, because crossings
are isolated (c.f. Lemma 4.10), we can make ε > 0 as small as we like.

The proof of Lemma 4.4 will focus on the L+ problem, with the modifications needed for the
L− problem listed at the end. In order to compute the partial signatures of Definition 3.2,
we will explicitly construct the matrix family R(x) defining the curve of symmetric bilinear
forms ω(R(x)·, ·)

∣∣
S+(0)×S+(0)

in (3.16). This is given in Lemma 4.6. Recall that for each x

near x0, R(x) is the unique matrix, when viewed as an operator from S+(0) into S+(0)⊥,
whose graph is the Lagrangian plane Eu+(x, 0). For ease of presentation we will drop the
subscript + on the frame U+(x) for the unstable bundle, which we denote by

U(x) =

(
X(x)
Y (x)

)
. (4.20)

Lemma 4.6. Suppose x = x0 ∈ R is a conjugate point. For all x near x0, the curve of
matrices x 7→ R(x) ∈ R4×4,

R(x) = U(x)
(
S>+U(x)

)−1
S>+ − S+

(
S>+S+

)−1
S>+, (4.21)

is analytic and satisfies Eu+(x, 0) = graph(R(x)) = {q +R(x)q : q ∈ S+(0)}.

Proof. First, note that by continuity, Eu+(x, 0) and S+(0)⊥ are transverse for all x near

x0. It follows that S>+U(x) = X(x) + S+Y (x) is invertible for all x near x0. Indeed,

transversality of Eu+(x, 0) and S+(0)⊥ implies that the 4× 4 matrix whose columns consist

of bases for these spaces is invertible. A frame for S+(0)⊥ is given by J(I, S+) = (−S+, I).
Using Schur’s formula, we therefore have

0 6= det

(
X(x) −S+
Y (x) I

)
= det (X(x) + S+Y (x)) .
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Analyticity of x 7→ R(x) now follows from the analyticity of x 7→ U(x), the entries of which
are solutions to (4.3).

Now for any q ∈ S+(0) we have q = S+k0 for some k0 ∈ R2. Then

q +R(x)q = S+k + U(x)
(
S>+U(x)

)−1
S>+S+k − S+

(
S>+S+

)−1
S>+S+k,

= U(x)
(
S>+U(x)

)−1
S>+S+k ∈ Eu+(x, 0).

For the opposite inclusion, for any v ∈ Eu+(x, 0) we may write v = U(x)h for some h ∈ R2.

Now set k =
((

S>+U(x)
)−1

S>+S+

)−1
h. Then

v = U(x)h = S+k + U(x)
(
S>+U(x)

)−1
S>+S+k − S+

(
S>+S+

)−1
S>+S+k,

and setting q = S+k we have v = q +R(x)q ∈ graph(R(x)). �

Proof of Lemma 4.4. We will prove that crossings of the path x 7→ (Eu+(x, 0),S+(0)) are
negative in two cases: (1) dimEu+(x, 0) ∩ S+(0) = 1 and Hypothesis 4.3 holds, and (2)
dimEu+(x, 0) ∩ S+(0) = 2.

For the first case, we need to show that the first order form mx0 is negative definite. From
(3.24) we have

mx0(Eu+(·, 0), S+(0))(q) =
d

dx
ω (R(x)q, q)

∣∣
x=x0

, (4.22)

where q ∈ Eu+(·, 0)∩ S+(0) is fixed, and R(x) is given in Lemma 4.6. Note that for any q ∈
Eu+(·, 0)∩S+(0) we may write q = U(x0)h = S+k for some h = (c, d) ∈ R2, k = (a, b) ∈ R2.

We will require the first derivatives of the matrices X(x), Y (x) and R(x). Since the columns
of the frame U(x) = (X(x), Y (x)) satisfy (4.3), we have

X ′(x) = B+Y (x), Y ′(x) = C+(x)X(x). (4.23)

(Recall C+(x) = C+(x, 0).) We also have

R′(x) = U′(x)
(
S>+U(x)

)−1
S>+ −U(x)

(
S>+U(x)

)−1
S>+U′(x)

(
S>+U(x)

)−1
S>+. (4.24)

Denoting

R0 =
(
S>+U(x0)

)−1
S>+U′(x0)

(
S>+U(x0)

)−1
S>+, (4.25)

we now compute:

mx0(Eu+(·, 0),S+(0))(q) = ω(R′(x0)q, q) =
〈
JR′(x0)S+k,S+k

〉
R4 ,

=
〈
JU′(x0)

(
S>+U(x0)

)−1
S>+S+k,S+k

〉
R4

+
〈
JU(x0)R0 S+k,S+k

〉
R4 ,

=
〈
JU′(x0)

(
S>+U(x0)

)−1
S>+U(x0)h,U(x0)h

〉
R4

+
〈
U(x0)

>JU(x0)R0 U(x0)h, h
〉
R4 ,

=
〈
JU′(x0)h,U(x0)h

〉
R4 ,

= −
〈
C+(x0)X(x0)h,X(x0)h

〉
R2 +

〈
B+Y (x0)h, Y (x0)h

〉
R2 ,

=
〈

(−C+(x0) + S+B+S+) k, k
〉
R2 ,



DETECTING EIGENVALUES WITH A NON-REGULAR MASLOV BOX 25

where U(x0)
>JU(x0) = −X(x0)

>Y (x0) + Y (x0)
>X(x0) = 0 because U(x0) is the frame

for a Lagrangian plane, and we used (4.13) and the symmetry of S+. (Recall that q =
U(x0)h = S+k.) Recalling (4.13) and (4.15), we have

C+(x)− S+B+S+ = Ĉ+(x0) + C̃+ − S+B+S+ = Ĉ+(x0), (4.26)

and therefore, under Hypotheses 4.2 and 4.3,

mx0(Eu+(·, 0), S+(0))(q) = −
〈
Ĉ+(x0)k, k

〉
R2 = −3φ(x0)

2b2 < 0. (4.27)

Hence n−(mx0) = 1, and crossings are negative in this case. By (3.30) their contribution to
the Maslov index is −dim(Eu+(·, 0) ∩ S+(0)) = −1.

Next, we treat the case dimEu+(x, 0) ∩ S+(0) = 2. We have already seen that mx0 is
degenerate (but not identically zero), and thus we cannot possibly have n−(mx0) = 2.
Therefore, recalling that a crossing is negative if (3.42) satisfied, our goal will be to show

that n−(mx0) = 1, m
(2)
x0 is identically zero, and n−(m

(3)
x0 ) = 1.

By definition, we have

m(k)
x0 (Eu+(·, 0),S+(0))(q0) =

dk

dxk
ω
(
R(x)q(x), q0

)∣∣∣
x=x0

, q0 ∈Wk, (4.28)

where

Wk = {q0 ∈ S+(0) : ∃ a generalised Jordan chain of length k,

starting at q0, for the curve of matrices JR(x) at x = x0}.
(4.29)

To compute the forms for k = 1, 2, 3, we will work instead with the smooth curve of
symmetric matrices

[x0 − ε, x0 + ε] 3 x 7→ L(x) := S>+JR(x)S+ ∈ R2×2. (4.30)

If there exists a generalised Jordan chain {ki}i for the curve L(x) at x =0, then {qi}i =
{S+ki}i is a generalised Jordan chain for the family x 7→ JR(x) : S+(0)→ S+(0) at x = x0.
We can thus write the crossing forms as

mx0(Eu+(·, 0),S+(0))(q0) = 〈L′(x0)k0, k0〉, (4.31a)

m(2)
x0 (Eu+(·, 0),S+(0))(q0) = 〈L′′(x0)k1, k0〉+ 〈L′(x0)k0, k0〉, (4.31b)

m(3)
x0 (Eu+(·, 0),S+(0))(q0) = 〈L′′′(x0)k2, k0〉+ 〈L′′(x0)k1, k0〉+ 〈L′(x0)k0, k0〉. (4.31c)

Let us first compute the derivatives L′(x0), L
′′(x0), L

′′′(x0). Differentiating (4.23),

X ′′(x) = B+C+(x)X(x), Y ′′(x) = C ′+(x)X(x) + C+(x)B+Y (x),

and

X ′′′(x) = B+C
′
+(x)X(x) +B+C+(x)B+Y (x),

Y ′′′(x) = C ′′+(x)X(x) + 2C ′+(x)B+Y (x) + C+(x)B+C+(x)X(x).

Since dimEu+(x0, 0) ∩ S+(0) = 2, we have Eu+(x0, 0) = S+(0), and from (3.18),

kerω(R(x)·, ·) = Eu+(x, 0) ∩ S+(0) = S+(0). (4.32)

Moreover, S+ = (I, S+) and U(x0) = (X(x0), Y (x0)) are frames for the same Lagrangian
plane, meaning there exists an invertible 2 × 2 matrix F so that U(x0) = S+F . Looking
at the upper 2 × 2 block of this equation, this means that X(x0) = F is invertible, and
therefore X(x) is invertible for nearby x. Right multiplying by X(x)−1, we can thus take

U(x) =

(
I

U(x)

)
, U(x) := Y (x)X(x)−1, (4.33)
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to be a frame for Eu+(x, 0), where now U(x0) = S+ and U(x0) = Y (x0)X(x0)
−1 = S+. The

first derivative of U(x) is given by

U ′(x) = Y ′(x)X(x)−1 − Y (x)X(x)−1X ′(x)X(x)−1 = C+(x)− U(x)B+U(x),

hence

U ′(x0) = C+(x)− S+B+S+ = Ĉ+(x0), (4.34)

recalling (4.26). Using (4.34) and (4.15), the second and third derivatives are shown to be

U ′′(x0) = C ′+(x0)− Ĉ+(x0)B+S+ − S+B+Ĉ+(x0), (4.35)

U ′′′(x0) = C ′′+(x0)− 2Ĉ+(x0)B+Ĉ+(x0) + 2S+B+Ĉ+(x0)B+S+

− C ′+(x0)B+S+ − S+B+C
′
+(x0) + Ĉ+(x0)B+C̃+ + C̃+B+Ĉ+(x0).

(4.36)

We are ready to compute derivatives of L(x). Using (4.24) and (4.25), and that U(x0) = S+,
S>+JS+ = 0 and U′(x) = (0, U ′(x)), we have

L′(x0) = S>+JR
′(x0)S+ = S>+JU′(x0)

(
S>+U(x0)

)−1
S>+S+ − S>+JU(x0)R0S+ = −Ĉ+(x0).

Differentiating (4.24),

R′′(x) = U′′(x)
(
S>+U(x)

)−1
S>+ − 2U′(x)

(
S>+U(x)

)−1
S>+U′(x)

(
S>+U(x)

)−1
S>+

+ U(x)
d2

dx2

(
S>+U(x)

)−1
S>+,

thus

L′′(x0) = S>+JR
′′(x0)S+ = S>+JU′′(x0)

(
S>+U(x0)

)−1
S>+S+

− 2S>+JU′(x0)
(
S>+U(x0)

)−1
S>+U′(x0)

(
S>+U(x0)

)−1
S>+S+

− S>+JU(x0)
d2

dx2

(
S>+U(x0)

)−1
S>+S,

= S>+JU′′(x0)− 2S>+JU′(x0)
(
S>+S+

)−1
S>+U′(x0),

= −U ′′(x0) + 2U ′(x0)(I + S2
+)−1S+U

′(x0). (4.37)

Differentiating again,

R′′′(x) = U′′′(x)
(
S>+U(x)

)−1
S>+ − 3U′′(x)

(
S>+U(x)

)−1
S>+U′(x)

(
S>+U(x)

)−1
S>+,

+ 3U′(x)
d2

dx2

(
S>+U(x)

)−1
S>+ + U(x)

d3

dx3

(
S>+U(x)

)−1
S>+,

hence

L′′′(x0) = S>+JR
′′′(x0)S+ = S>+JU′′′(x0)− 3S>+JU′′(x0)

(
S>+S+

)−1
S>+U′(x0),

+ 3S>JU′(x0)
d2

dx2

(
S>+U(x)

)−1
S>+S+

∣∣
x=x0

= −U ′′′(x0) + 3U ′′(x0)
(
S>+S+

)−1
S>+U′(x0)

− 3U ′(x0)
d2

dx2

(
S>+U(x)

)−1
S>+S+

∣∣
x=x0

.
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Some algebra shows that

L′′′(x0) = −U ′′′(x0) + 3U ′′(x0)
(
I + S2

+

)−1
S+U

′(x0) + 3U ′(x0)(I + S+U(x0))
−1S+U

′′(x0)

− 6U ′(x0)(I + S+U(x0))
−1S+U

′(x0)(I + S+U(x0))
−1S+U

′(x0).
(4.38)

Let us examine the above expressions more closely. For L′′(x0) we have

U ′′(x0) = C ′+(x0)− Ĉ+(x0)B+S+ − S+B+Ĉ+(x0) =

 0 3φ(x)2√
2
√
β−σ2

3φ(x)2√
2
√
β−σ2

∗

 . (4.39)

Noting that U ′(x0) = Ĉ(x0) and

Ĉ+(x0)MĈ+(x0) =

(
0 0
0 ∗

)
(4.40)

for any 2× 2 matrix M , the second term of (4.37) is of the form of (4.40). For L′′′(x0), the
first two terms of U ′′′(x0) in (4.36) and the last term of L′′′(x0) in (4.38) all have the form
of (4.40). The third term of U ′′′(x0) has the form

2S+B+Ĉ+(x0)B+S+ =

(
6φ(x)2

2
√
β−σ2

∗
∗ ∗

)
. (4.41)

The remaining terms in U ′′′(x0), i.e.

− C ′+(x0)B+S+ − S+B+C
′
+(x0) + Ĉ+(x0)B+C̃+ + C̃+B+Ĉ+(x0), (4.42)

as well as the second and third terms of L′′(x0) in (4.38), can all be shown to have the form(
0 ∗
∗ ∗

)
. (4.43)

In summary, we have

L′(x0) =

(
0 0
0 −3φ(x0)

2

)
, L′′(x0) =

 0 −3φ(x)2√
2
√
β−σ2

−3φ(x)2√
2
√
β−σ2

∗

 , L′′′(x0) =

(
−6φ(x)2
2
√
β−σ2

∗
∗ ∗

)
.

(4.44)
The expressions (4.44) are sufficient to determine the partial signatures of (4.31). To
do so, we need to compute any generalised Jordan chains for the curve L(x). Define
ki = (ai, bi)

> ∈ R2 for i = 0, 1, 2, 3. That dim(Eu+(x, 0) ∩ S+(0)) = 2 means that

kerL(x0) = R2, (4.45)

and therefore {k0} is a chain of length one for any k0 ∈ kerL(x0). Next, there exists
solutions k1 = (a1, b1)

> to

L(x0)k1 + L′(x0)k0 =

(
0

3 b0 φ(x0)
2

)
= 0 (4.46)

if and only if b0 = 0. Hence, {k0, k1} is a chain of length two if and only if b0 = 0. Now
taking k0 = (a0, 0)>, there exists solutions k2 to

L′′(x0)k0 + L′(x0)k1 + L(x0)k2 =

(
0

3 b1 φ(x0)
2 + 3 a0φ(x)2√

2
√
β−σ2

)
= 0 (4.47)

if and only if b1 = − a0√
2
√
β−σ2

. Thus {k0, k1, k2} is a chain of length three if and only if

b0 = 0 and b1 = − a0√
2
√
β−σ2

. Finally, note that for nontrivial k0 = (a0, 0)> there are no
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solutions k3 to

L′′′(x0)k0 + L′′(x0)k1 + L′(x0)k2 + L(x0)k3 =

(
3a0φ(x0)2

2
√
β−σ2
∗

)
= 0. (4.48)

In other words, the chain {k0, k1, k2} is maximal. We are ready to compute the partial
signatures. For k0 = (a0, b0)

> ∈ kerL(x0), we have

mx0(Eu+(·, 0), S+(0))(q0) =
〈
L′(x0)k0, k0

〉
= −3b20φ(x0)

2 < 0, (4.49)

while for k0 = (a0, 0)> and k1 = (a1,− a0√
2
√
β−σ2

)>, we have

m(2)
x0 (Eu+(·, 0), S+(0))(q0) =

〈
L′′(x0)k0 + L′(x0)k1, k0

〉
= 0, (4.50)

m(3)
x0 (Eu+(·, 0),S+(0))(q0) =

〈
L′′′(x0)k0 + L′′(x0)k1 + L′(x0)k2, k0

〉
= −3a20φ(x0)

2

2
√
β − σ2

< 0.

(4.51)

The right hand sides of (4.49) and (4.51) are negative due to our assumptions (1.8) (which
implies that 2

√
β − σ2 > 0 ) and Hypothesis 4.2. We have just shown that n−(mx0) =

n−(m
(3)
x0 ) = 1 and n+(mx0) = n+(m

(3)
x0 ) = n±(m

(2)
x0 ) = 0. Therefore each crossing x0 ∈ R

where dim(Eu+(·, 0) ∩ S+(0)) = 2 is negative, because in such cases

dim(Eu+(·, 0) ∩ S+(0)) = n−(mx0) + n−(m(3)
x0 ). (4.52)

By (3.30) the contribution of each crossing x0 ∈ R is therefore −dim(Eu+(·, 0) ∩ S+(0)).
This completes the proof for the L+ problem.

The proof for the L− problem is similar. The case of one-dimensional crossings under
Hypothesis 4.3 is almost identical, while for the case of two-dimensional crossings we’ll
have

L′(x0) =

(
0 0
0 φ(x0)

2

)
, L′′(x0) =

 0 φ(x)2√
2
√
β−σ2

φ(x)2√
2
√
β−σ2

∗

 , L′′′(x0) =

(
2φ(x)2

2
√
β−σ2

∗
∗ ∗

)
.

Computing the generalised Jordan chains as above leads to

mx0(Eu+(·, 0), S+(0))(q0) = b20φ(x0)
2 > 0,

m(2)
x0 (Eu+(·, 0), S+(0))(q0) = 0,

m(3)
x0 (Eu+(·, 0), S+(0))(q0) =

a20φ(x0)
2

2
√
β − σ2

> 0,

for some a0, b0 ∈ R, with positivity under Hypothesis 4.2. Each crossing x ∈ R of the path
x 7→ Eu−(x, 0) ∩ S−(0) thus contributes dimEu−(x, 0) ∩ S−(0) to its Maslov index. �

Remark 4.7. That the matrix L′(x0) is degenerate, i.e. that crossings x0 ∈ R are non-
regular, is the reason for using the partial signatures approach of [GPP04b] to compute the
Maslov index.

Remark 4.8. If Hypothesis 4.2 fails, i.e. for any crossing x0 ∈ R such that φ(x0) = 0, the

forms mx0 and m
(3)
x0 are degenerate, and higher order crossing forms are needed.

Remark 4.9. Proposition 4.1 will also hold for any power-law fourth-order NLS equation,

i.e. (1.19) for any p ∈ N. In these cases the crossing forms m
(k)
x0 (q0) will be the same as

those above, but scaled by a positive constant, and with φ(x0)
2 replaced by φ(x0)

2p. The
signs are therefore preserved.

The following lemma shows that crossings along Γ1 are isolated.
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Lemma 4.10. There are finitely-many isolated intersections of the path [−1, 1] 3 τ 7→
Êu±(τ, 0) with the trains T (S±(0)) and T (Es±(`, 0)).

Proof. First, note that because U(0)± ∩ S±(0) = {0} and limτ→−1+ Êu±(τ, 0) = U±(0), by

continuity there exists a τ̂ close to −1 such that Êu±(τ, 0) ∩ S±(0) = {0} for all τ ∈ [−1, τ̂ ].

Now consider the compactly-defined path τ 7→ Êu±(τ, 0), τ ∈ [−τ̂ , τ`] ⊂ (−1, 1). Since

the elements of Êu±(·, 0) are solutions to a differential equation and therefore analytic on

(−1, 1), we can form an analytic path of frames τ 7→ Û±(τ) on [−τ̂ , τ`]. Now collecting the
columns of U±(τ) and the columns of a frame for Es±(`, 0) into a 4 × 4 matrix F (τ), the
function τ 7→ detD(τ) is real-valued and analytic on [−τ̂ , τ`]. It therefore has finitely-many

isolated zeroes, which correspond to intersections of τ 7→ Êu±(τ, 0) with T (Es±(`, 0)). It will
follow from the perturbative arguments in the proof of Lemma 4.11 that the crossings of

τ 7→ Êu±(τ, 0) with T (Es±(`, 0)) over τ ∈ [−1, τ`] and the crossings of τ 7→ Êu±(τ, 0) with
T (S±(0)) over τ ∈ [−1, 1] are in one-to-one correspondance. This completes the proof. �

Lemma 4.11. For the Lagrangian path x 7→
(
Eu+(x, 0),Es+(`, 0)

)
we have

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `− ε]) = Mas(Eu+(·, 0), S+(0); [−∞,∞)) (4.53)

for ε > 0 small enough. A similar statement holds for the path x 7→ (Eu−(x, 0),Es−(`, 0)).

Proof. First, we show that

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `]) = Mas(Eu+(·, 0), S+(0); [−∞,∞]). (4.54)

In order to do so, it will be convenient to compactify R via the change of variables in
Remark 3.5. Thus, defining

Ês,u± (τ, 0) := Es,u±
(

ln

(
1 + τ

1− τ

)
, 0

)
, (4.55)

(4.54) is equivalent to

Mas(Êu+(·, 0), Ês+(τ`, 0); [−1, τ`]) = Mas(Êu+(·, 0), Ês+(1, 0); [−1, 1]), (4.56)

where ` = ln((1 + τ`)/(1− τ`)), i.e. τ` = (e`− 1)/(e`+ 1), and we have used that Ês+(1, 0) =
Es+(+∞, 0) := S+(0). Rescaling further, we can map [−1, 1] to [−1, τ`] via the function

g(τ) =

(
1 + τ`

2

)
τ +

(
τ` − 1

2

)
,

where g(−1) = −1 and g(1) = τ`. This allows us to write both Lagrangian paths in (4.56)
over [−1, 1], i.e.

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [−1, 1]) = Mas(Êu+(·, 0), Ês+(1, 0); [−1, 1]). (4.57)

To prove (4.57), we set

Λ1(s, τ) := Êu+(τ + (g(τ)− τ)s, 0), Λ2(s, τ) := Ês+(1 + (τ` − 1)s, 0). (4.58)

(Λ2 is independent of τ .) Both maps (s, τ) → Λ1,2(s, τ) are continuous on [0, 1] × [−1, 1].
In addition,

Λ1(s,−1) = Êu+(−1, 0) = U+(0), Λ2(s,−1) = Ês+(1 + (τ` − 1)s, 0),

where we used that g(−1) = −1. Since U+(0) ∩ Es+(x, 0) = {0} for all x ≥ ` (see (3.48))

and U+(0) ∩ S+(0) = {0}, we have U+(0) ∩ Ês+(τ, 0) = {0} for all τ ∈ [τ`, 1], and hence

Λ1(s,−1) ∩ Λ2(s,−1) = {0}
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for all s ∈ [0, 1]. Furthermore,

Λ1(s, 1) = Êu+(1 + (τ` − 1)s, 0), Λ2(s, 1) = Ês+(1 + (τ` − 1)s, 0),

and therefore
dim Λ1(s, 1) ∩ Λ2(s, 1) = 1

for all s ∈ [0, 1] by Hypothesis 1.1. Equation (4.57) (and thus (4.54)) now follows from
Lemma 3.4.

By additivity under concatenation (see Proposition 3.3), we can write (4.57) as

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [−1, 1− ε]) + Mas(Êu+(g(·), 0), Ês+(τ`, 0); [1− ε, 1])

= Mas(Êu+(·, 0), Ês+(1, 0); [−1, 1− ε0]) + Mas(Êu+(·, 0), Ês+(1, 0); [1− ε0, 1]) (4.59)

for ε, ε0 > 0 small. Because crossings of the path x 7→ Eu+(x, 0) with T (S+(0)) and
T (Es+(`, 0)) are isolated (see Lemma 4.10), we can choose ε, ε0 > 0 small enough so that
τ = 1 is the only crossing in the intervals [1 − ε, 1] and [1 − ε0, 1] for the paths in (4.59).
To prove Lemma 4.11, it thus suffices to show that

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [1− ε, 1]) = Mas(Êu+(·, 0), Ês+(1, 0); [1− ε0, 1]), (4.60)

i.e. that the conjugate points occuring at the final points of each of the paths

τ 7→
(
Êu+(g(τ), 0), Ês(τ`, 0)

)
, τ 7→

(
Êu+(τ, 0),S+(0)

)
, τ ∈ [−1, 1], (4.61)

have the same contribution to their respective Maslov indices. To this end, notice that the
arguments of the unstable bundles appearing in (4.61) are arbitrarily close: by choosing `
large enough, so that τ` = 1− δ for δ > 0 small enough, we have

|g(τ)− τ | =
(

1− τ`
2

)
(τ + 1) ≤ δ

uniformly for τ ∈ [−1, 1]. Thus, the paths in (4.61) are arbitrarily small perturbations of
one another. In addition, since Es(τ, 0) can be taken as close to S+(0) (as points in L(2))
as we like, the trains T (Es(τ, 0)) and T (S+(0)) are also arbitrarily small perturbations of
one another. From these two facts, it follows that the paths in (4.61) approach the trains
T (Es(τ, 0)) and T (S+(0)) from the same direction as τ → 1−. The contributions of the
associated conjugate points to their respective Maslov indices are therefore the same, i.e.
(4.60) holds, and by (4.59) we have

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [−1, 1− ε]) = Mas(Êu+(·, 0), Ês+(1, 0); [−1, 1− ε0]).
Recalling Remark 4.5, this is exactly (4.53) (for a different but still arbitrarily small ε).
The proof for the L− problem is similar. �

We remark here that Lemma 4.4 does not apply to the conjugate point at τ = 1 (x = +∞).
This is because the functions in the unstable bundle used in the crossing form calculations
either blow up to infinity or decay to zero there. Nonetheless, recalling the definition given
by Arnol’d (see Section 3.2), we can still compute the Maslov indices in (4.60). Undoing
the scaling by g, the paths in (4.61) are given by

τ 7→
(
Êu+(τ, 0), Ês+(τ`, 0)

)
, τ ∈ [−1, τ`], τ 7→

(
Êu+(τ, 0),S+(0)

)
, τ ∈ [−1, 1]. (4.62)

We know from Hypothesis 1.1 that the final crossing of each path in (4.62) is one-dimensional.

In particular, we have Êu+(τ`, 0) ∈ T1(Ês+(τ`, 0)). From the arguments in the proof of

Lemma 4.11, Êu+(τ`, 0) is therefore arbitrarily close to T1(S+(0)). Lemma 4.4 implies that

at all interior one-dimensional crossings τ ∈ (−1, 1), the path τ 7→ Êu+(τ, 0) passes through
T1(S+(0)) in the negative direction (i.e. from the positive to the negative side of T1(S+(0))).
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It follows that at τ` ∈ (−1, 1), the path τ 7→ Êu+(τ, 0) must arrive at T (Ês+(τ`, 0)) in the neg-

ative direction as τ → τ−` . The final crossings of the paths in (4.61) are thus both negative.
By our convention the final crossings may only contribute positively, and therefore

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [1− ε, 1]) = Mas(Eu+(·, 0),Es+(`, 0); [`− ε, `]) = 0. (4.63)

Lemma 4.12. Each crossing λ = λ0 of the path of Lagrangian pairs λ 7→ (Eu+(`, λ),Es+(`, λ))
is positive. Thus,

Mas(Eu+(`, ·),Es+(`, ·); [ε, λ∞]) = P. (4.64)

for ε > 0 small enough. Similarly, each crossing λ = λ0 of the path λ 7→ (Eu−(`, λ),Es−(`, λ))
is negative, and we have

Mas(Eu−(`, ·),Es−(`, ·); [ε, λ∞]) = −Q. (4.65)

Proof. We begin with the first two statements. We proceed by computing the relative
crossing form of Robbin and Salamon [RS93] at each crossing λ = λ0, given by

mλ0(Eu+(`, ·),Es+(`, ·))(q) = mλ0(Eu+(`, ·),Es+(`, λ0))(q)−mλ0(Es+(`, ·),Eu+(`, λ0))(q), (4.66)

where q ∈ Eu+(`, λ0) ∩ Es+(`, λ0) is fixed. We compute each of the crossing forms on the
right hand side separately.

For the first, we consider the path λ 7→ Eu+(`, λ) over λ ∈ [λ0 − ε, λ0 + ε] for ε > 0 small
with reference plane Es+(`, λ0). We have

mλ0(Eu+(`, ·),Es+(`, λ0))(q) =
d

dλ
ω(Ru+(λ)q, q)

∣∣
λ=λ0

, q ∈ Eu+(`, λ0) ∩ Es+(`, λ0), (4.67)

where Ru+(λ) : Es+(`, λ0)→ Es+(`, λ0)
⊥ is the unique family of matrices such that Eu+(`, λ) =

graph(Ru+(λ)) = {q + Ru+(λ)q : q ∈ Es+(`, λ0)} for all λ ∈ [λ0 − ε, λ0 + ε]. Fixing q ∈
Es+(`, λ0) ∩ Eu+(`, λ0), let h(λ) = q + Ru+(λ)q ∈ Eu+(`, λ). From the definition of Eu+(`, λ),
there exists a one-parameter family of solutions λ 7→ u(·;λ) to (4.3) satisfying u(x;λ)→ 0
as x → −∞, such that h(λ) = u(`;λ). Moreover, h(λ0) = q = u(`;λ0) because q ∈
Eu+(`, λ0) ∩ Es+(`, λ0) =

(
kerRu+(λ0)

)
∩ Es+(`, λ0). This allows us to write

mλ0(Eu+(`, ·),Es+(`, λ0))(q) =
d

dλ
ω(Ru+(λ)q, q)

∣∣
λ=λ0

=
d

dλ
ω(q +Ru+(λ)q, q)

∣∣
λ=λ0

,

= ω
( d
dλ

u(`, λ),u(`, λ0)
)∣∣
λ=λ0

.
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Now

ω
( d
dλ

u(`;λ),u(`;λ)
)

=

∫ `

−∞
∂x ω(∂λu(x;λ),u(x;λ)) dx,

=

∫ `

−∞
ω
(
∂λ
[
A+(x;λ)u(x;λ)

]
,u(x;λ)

)
+ ω(∂λu(x;λ), A+(x;λ)u(x;λ)) dx,

=

∫ `

−∞
ω(∂λ (A+(x;λ)) u(x;λ),u(x;λ))

+ ω(A+(x;λ)∂λu(x;λ),u(x;λ))

+ ω(∂λu(x;λ), A+(x;λ)u(x;λ)) dx,

=

∫ `

−∞
ω(∂λ (A+(x;λ)) u(x;λ),u(x;λ))

+
〈
[A+(x;λ)>J + JA+(x;λ)]∂λu(x;λ),u(x;λ)

〉
dx,

=

∫ `

−∞
ω(∂λ (A+(x;λ)) u(x;λ),u(x;λ)) dx,

(4.68)

where we used that limx→−∞ u(x;λ) = 0 in the first line and (2.14) in the last line. Since

∂λA+(x;λ) =


0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0

 , (4.69)

and u = (u1, u2, u3, u4)
>, evaluating the last line of (4.68) at λ = λ0 we have

mλ0(Eu+(`, ·),Es+(`, λ0))(q) =

∫ `

−∞
u2(x;λ0)

2 dx. (4.70)

For the second term of the relative crossing form we use a similar argument. We have

mλ0(Es+(`, ·),Eu+(`, λ0))(q) =
d

dλ
ω(Rs+(λ)q, q)

∣∣
λ=λ0

, q ∈ Eu+(`, λ0) ∩ Es+(`, λ0), (4.71)

where Rs+(λ) : Eu+(`, λ0)→ Eu+(`, λ0)
⊥ is the unique family of matrices such that Es+(`, λ) =

graph(Rs+(λ)) = {q+Rs+(λ)q : q ∈ Es+(`, λ0)}. For the same fixed q ∈ Eu+(`, λ0)∩Es+(`, λ0)
as in the paragraph following (4.67), we can construct a curve g(λ) = q+Rs+(λ)q ∈ Es+(`, λ)
for which there exists a one-parameter family of solutions λ 7→ ũ(·;λ) to (4.3) such that
g(λ) = ũ(`;λ) and g(λ0) = q = ũ(`;λ0). Arguing as previously, but noting that now
ũ(x;λ)→ 0 as x→ +∞, we have

mλ0(Es(`, ·),Eu(`, λ0))(q) = ω
( d
dλ

w̃(`;λ), w̃(`;λ)
)∣∣
λ=λ0

= −
∫ ∞
`

ũ2(x;λ0)
2 dx (4.72)

(where ũ = (ũ1, ũ2, ũ3, ũ4)
>). Importantly, by uniqueness of solutions we have ũ(·;λ0) =

u(·;λ0), so that the integrands in (4.72) and (4.70) are the same. Therefore, (4.66) becomes

mλ0(Eu+(`, ·),Es+(`, ·))(q) =

∫ ∞
−∞

u2(x;λ0)
2 dx > 0. (4.73)

As the form is positive definite, each crossing contributes dimEu+(`, λ0) ∩ Es+(`, λ0). It
follows that the Maslov index counts the number of crossings (up to dimension) of the path
of Lagrangian pairs λ 7→ (Eu+(`, λ),Es+(`, λ)), λ ∈ [ε, λ∞], for ε > 0 small enough. But this
is precisely a count (with negative sign) of the number of positive eigenvalues of L+ up to
multiplicity, i.e. equation (4.64) holds.
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For the path λ 7→ (Eu−(`, λ),Es−(`, λ)), λ ∈ [0, λ∞] the argument is similar, where now the
Maslov index counts, with negative sign, the number of crossings along Γ2. The sign change
results from the fact that λ now appears with positive sign in the first order system (4.6),
so that

∂λA−(x;λ) =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 . (4.74)

The associated crossing form will then be negative, and by the same reasoning as before
equation (4.65) follows. �

The following lemma shows that there are no crossings along Γ3 and Γ4.

Lemma 4.13. We have Eu+(x, λ∞)∩Es+(`, λ∞) = {0} for all x ∈ R, provided both λ∞ > 0
and ` > 0 are large enough. In addition, U+(λ) ∩ Es+(`, λ) = {0} for all λ ≥ 0 provided
` > 0 is large enough. Therefore

Mas(Eu+(·, λ∞),Es+(`, λ∞); [−∞, `]) = Mas(U+(·),Es+(`, ·); [0, λ∞]) = 0. (4.75)

Similar statements hold for the paths x 7→
(
Eu−(x, λ∞),Es−(`, λ∞)

)
and λ 7→

(
U+(λ),Es+(`, λ

)
.

Proof. The strategy of the following proof mirrors the one given in [Cor19, §4] (see also
[AGJ90, §3 and §5.B]).

For the first statement, we begin by noting that Spec(L+) is bounded from above. To see
this, note that we can write

L+ = D + V, D = −∂xxxx − σ2∂xx, V = −β + 3φ(x)2, (4.76)

where dom(D) = dom(V ) = dom(L+)) = H4(R), so that D = D∗ is selfadjoint and V is
bounded and symmetric on L2(R). It can be shown that D has no point spectrum, and
moreover, Spec(D) = Specess(D) = (−∞, 1/4] if σ2 = 1, and Spec(D) = (−∞, 0] if σ = −1.
It then follows from [Kat80, Theorem V.4.10, p.291] that

dist (Spec(L+),Spec(D)) ≤ ‖V ‖, (4.77)

so that Spec(L+) ⊆ (−∞, ‖V ‖]. Consequently, we have Eu+(`, λ) ∩ Es+(`, λ) = {0} for all
λ > ‖V ‖.

Next, we claim that there exists a λ∞ > ‖V ‖ such that

Eu+(x, λ) ∩ S+(λ) = {0} (4.78)

for all x ∈ R and all λ ≥ λ∞. Once this is shown, it follows that there exists an `∞ � 1
such that

Eu+(x, λ∞) ∩ Es+(`, λ∞) = {0} (4.79)

for all x ∈ R and all ` ≥ `∞, because limx→∞ Es+(x, λ) = S+(λ). It remains to prove the
claim. We mimic the proof of [Cor19, Lemma 4.1]. Consider then the change of variables:

y = λ1/4x, ũ1 = u1, ũ2 = λ1/2u2, ũ3 = λ1/4u3, ũ4 = λ−1/4u4, (4.80)

under which the system (4.3) becomes

d

dy


ũ1
ũ2
ũ3
ũ4

 =


0 0 σ2√

λ
1

0 0 1 0
1 − σ2√

λ
0 0

− σ2√
λ

α

(
y
4√
λ

)
λ − 1 0 0



ũ1
ũ2
ũ3
ũ4

 (4.81)
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(recall that α
(

y
4√
λ

)
= 3φ( y

4√
λ

)2−β+1). Taking y → ±∞, the asymptotic system for (4.81)

is given by

d

dy


ũ1
ũ2
ũ3
ũ4

 =


0 0 σ2√

λ
1

0 0 1 0
1 − σ2√

λ
0 0

− σ2√
λ

−β+1
λ − 1 0 0



ũ1
ũ2
ũ3
ũ4

 . (4.82)

Denote the stable and unstable subspaces for (4.82) by S̃+(λ) and Ũ+(λ) respectively, and

denote the unstable bundle of (4.81) by Ẽu+(y, λ). Then, we have

Eu+(x, λ) ∩ S+(λ) = {0} ⇐⇒ Ẽu+(λ1/4x, λ) ∩ S̃+(λ) = {0}, (4.83)

since Ẽu+(λ1/4x, λ) = M ·Eu(x, λ) and S̃+(λ) = M ·S+(λ), where M = diag{1, λ1/2, λ1/4,
λ−1/4} is the (nonsingular) linear transformation of the dependent variables in (4.80), and
“ · ” represents the induced action of M on a subspace of R4.

Both the nonautonomous system (4.81) and the autonomous system (4.82) induce flows
on Gr2(R4), the Grassmannian of two dimensional subspaces of R4. For the flow associ-

ated with (4.82), it is known [AGJ90] that Ũ+(λ), the invariant subspace associated with
eigenvalues of positive real part, is an attracting fixed point. Thus, since L(2) ⊂ Gr2(R4),

there exists a trapping region R ⊂ Λ(2) containing Ũ+(λ). By taking λ large enough, we
can ensure that the flow induced by (4.81) is as close as we like to that induced by (4.82),

because φ
(

y
4√
λ

)2
/λ – the nonautonomous part of (4.81) – is close to zero. It follows that

R ⊂ L(2) is also a trapping region for (4.81). Furthermore, we can choose R small enough

such that V ∩ S̃+(λ) = {0} for all V ∈ R, uniformly for λ large enough. To see this, note

that clearly S̃+(λ) ∩ Ũ+(λ) = {0}, while taking λ→ +∞ in (4.82) yields

d

dy


ũ1
ũ2
ũ3
ũ4

 =


0 0 0 1
0 0 1 0
1 0 0 0
0 −1 0 0



ũ1
ũ2
ũ3
ũ4

 , (4.84)

which has stable and unstable subspaces S̃+∞ and Ũ+∞ with respective frames (I,−W )
and (I,W ), where

W =
1√
2

(
1 1
1 −1

)
.

Thus, in the limit we also have S̃+∞ ∩ Ũ+∞ = {0}, so we can choose R as stated. Finally,
we note that if λ > ‖V ‖ so that λ /∈ Spec(L+), then by [AGJ90, Lemma 3.7] we have

limy→∞ Ẽu+(y, λ) = Ũ+(λ). All in all, we conclude that for any λ = λ∞ > ‖V ‖ large

enough, the trajectory Ẽu+(·, λ∞) : [−∞,∞] → L(2), which starts and finishes at Ũ+(λ∞),

will remain inside R and thus always be disjoint from S̃+(λ∞). This proves the claim.

For the second statement of the lemma, the facts that U+(λ) ∩ S+(λ) = {0} and
limx→∞ Es+(x, λ) = S+(λ) imply that there exists an `0 � 1 such that U+(λ) ∩ Es+(x, λ) =
{0} for all x ≥ `0. Taking ` > `0 gives the result. �

We are now ready to prove Proposition 4.1. In what follows, we choose ` > 0 and λ∞ > 0
large enough so that the statements of Lemma 4.13 hold.

Proof of Proposition 4.1. By homotopy invariance and additivity under concatenation, we
have
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Mas(Eu+(·, 0),Es+(`, 0); [−∞, `]) + Mas(Eu+(`, ·),Es+(`, ·); [0, λ∞])

−Mas(Eu+(·, λ∞),Es+(`, λ∞); [−∞, `])−Mas(Eu+(−∞, ·),Es+(`, ·); [0, λ∞]) = 0. (4.85)

From Lemma 4.13 the third and fourth terms on the left hand side vanish. Again using the
concatenation property, we find that

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `− ε]) + Mas(Eu+(·, 0),Es+(`, 0); [`− ε, `])
+ Mas(Eu+(`, ·),Es+(`, ·); [0, ε]) + Mas(Eu+(`, ·),Es+(`, ·); [ε, λ∞]) = 0 (4.86)

where ε > 0 is small. The second and third terms of (4.86) represent the contributions to
the Maslov index from the conjugate point (x, λ) = (`, 0) at the top left corner of the Maslov
box in the x and λ directions respectively. From (4.63), Lemma 4.12 and Definition 3.2 we
have

Mas(Eu+(·, 0),Es+(`, 0); [`− ε, `]) = Mas(Eu+(`, ·),Es+(`, ·); [0, ε]) = 0. (4.87)

Lemmas 4.4 and 4.11 imply that

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `− ε]) = −
∑
x∈R

dim
(
Eu+(x, 0) ∩ S+(0)

)
. (4.88)

The previous three equations along with Lemma 4.12 now yield (4.1).

The proof for the Morse index of the L− operator is similar. This time, crossings along Γ1

are positive, while crossings along Γ2 are negative. Arguing as we did for (4.63), we can
show that

Mas(Eu+(·, 0),Es+(`, 0); [`− ε, `]) = dim
(
Eu+(`, 0) ∩ Es+(`, 0)

)
= 1, (4.89)

and from Lemma 4.12 and Definition 3.2 we have

Mas(Eu+(`, ·),Es+(`, ·); [0, ε]) = dim
(
Eu+(`, 0) ∩ Es+(`, 0)

)
= −1. (4.90)

The contributions (4.89) and (4.90) to the Maslov index coming from (x, λ) = (`, 0) thus
cancel each other out. Applying the same homotopy argument as above yields the formula
for Q in the proposition. �

5. Proofs of the main results

We now return to the computation of the Maslov indices appearing on the left hand side
of (3.55). After computing each, we provide the proofs of Theorems 1.2 and 1.5. We begin
with Γ1 (excluding its endpoint at x = `).

Lemma 5.1. Mas(Eu(·, 0),Es(`, 0); [−∞, `− ε]) = Q− P , where ε > 0 is small.

Proof. Recall that when λ = 0 the eigenvalue equations (1.11) decouple. Consequently, the
equations for the u and v components in the first order system (2.2) also decouple. Hence,
for each x ∈ R,

Eu(x, 0) = Eu+(x, 0)⊕ Eu−(x, 0), (5.1)
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in the sense that for any w ∈ Eu(x, 0) we have

w =



u1
0
u2
0
u3
0
u4
0


+



0
v1
0
v2
0
v3
0
v4


, (5.2)

where u = (u1, u2, u3, u4)
> ∈ Eu+(x, 0) and v = (v1, v2, v3, v4)

> ∈ Eu−(x, 0). By the same
reasoning, for the reference plane we have

Es(`, 0) = Es+(`, 0)⊕ Es−(`, 0). (5.3)

Now using property (3) of Proposition 3.3, we have

Mas(Eu(·, 0),Es(`, 0); [−∞, `− ε]) = Mas(Eu+(·, 0),Es+(`, 0); [−∞, `− ε])
+ Mas(Eu−(·, 0),Es−(`, 0); [−∞, `− ε]),

(5.4)

and the result follows combining equations (4.88) and (4.1) (and the accompanying state-
ments for L−). �

Next, we show that there are no crossings along Γ3 and Γ4.

Lemma 5.2. There exists `1 � 1 such that Eu(x, λ∞)∩Es(`, λ∞) = {0} for all x ∈ R and
all ` ≥ `1, provided λ∞ > 0 is large enough. Therefore, for all ` ≥ `1,

Mas(Eu(·, λ∞),Es(`, λ∞); [−∞, `]) = 0.

In addition, U(λ)∩Es(`, λ) = {0} for all λ ≥ 0 provided ` > 0 is large enough. Consequently,

Mas(U(·),Es(`, ·); [0, λ∞]) = 0.

Proof. For the first assertion, note that N is a bounded perturbation of a skew-selfadjoint
operator, so that its spectrum lies in a vertical strip around the imaginary axis in the
complex plane. More precisely, we have that

iN = D̃ + Ṽ , D̃ = i

(
0 ∂xxxx + σ2∂xx

−∂xxxx − σ2∂xx 0

)
, Ṽ = i

(
0 β − φ2

−β + 3φ2 0,

)
(5.5)

where, with dom(D̃) = dom(Ṽ ) = dom(N), D̃∗ = D̃ is selfadjoint and Ṽ is bounded. Now
using [Kat80, Remark 3.2, p.208] and [Kat80, eq. (3.16), p.272], we may conclude that

ζ ∈ Spec(D̃ + Ṽ ) =⇒ |Im(ζ)| ≤ ‖Ṽ ‖. (5.6)

By the spectral mapping theorem, Spec(iN) = iSpec(N). It follows that

λ ∈ Spec(N) =⇒ |Re(λ)| ≤ ‖Ṽ ‖. (5.7)

Thus, for all λ > ‖Ṽ ‖ we have Eu(`, λ) ∩ Es(`, λ) = {0}.

The proof now follows from the same arguments used to prove the first assertion in Lemma 4.13.
Namely, via the change of variables (4.80) along with

ṽ1 = v1, ṽ2 = λ1/2v2, ṽ3 = λ1/4v3, ṽ4 = λ−1/4v4 (5.8)
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we can rewrite (2.2) as

d

dy



ũ1
ṽ1
ũ2
ṽ2
ũ3
ṽ3
ũ4
ṽ4


=



0

σ2√
λ

0 1 0

0 − σ2√
λ

0 1

1 0 0 0
0 1 0 0

1 0 − σ2√
λ

0

0 −1 0 − σ2√
λ

− σ2√
λ

0 α(x)
λ 1

0 − σ2√
λ

1 η(x)
λ

0





ũ1
ṽ1
ũ2
ṽ2
ũ3
ṽ3
ũ4
ṽ4


. (5.9)

Again, the flow of the associated asymptotic system is close to that of (5.9) for large λ.
From the transversality of the four dimensional stable and unstable subspaces of the limiting
system of (5.9) as λ→∞, i.e.

d

dy



ũ1
ṽ1
ũ2
ṽ2
ũ3
ṽ3
ũ4
ṽ4


=



0

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

0





ũ1
ṽ1
ũ2
ṽ2
ũ3
ṽ3
ũ4
ṽ4


, (5.10)

one can show that there exists a λ∞ > ‖Ṽ ‖ such that Eu(x, λ) and S(λ) are transverse for
all x ∈ R and all λ ≥ λ∞. Hence Eu(x, λ) and Es(`, λ∞) are transverse for all x ∈ R, ` ≥ `∞
and λ ≥ λ∞. The second assertion follows from the same arguments used to prove the
second assertion in Lemma 4.13. �

For the proof of Theorem 1.2, it remains to compute

c := Mas(Eu(·, 0),Es(`, 0); [`− ε, `]) + Mas(Eu(`, ·),Es(`, ·); [0, ε]), (5.11)

the contribution to the Maslov index from the conjugate point (x, λ) = (`, 0). For the
contribution in the x direction, i.e. the arrival along Γ1, again using property (3) of Propo-
sition 3.3 and equations (4.87) and (4.89), we have

Mas(Eu(·, 0),Es(`, 0); [`− ε, `]) = Mas(Eu+(·, 0),Es+(`, 0); [`− ε, `])
+ Mas(Eu−(·, 0),Es−(`, 0); [`− ε, `]),

= 1.

(5.12)

To determine the contribution in the λ direction given by the departure along Γ2 (the
second term on the right hand side of (5.11)), we will compute crossing forms. To that end,
suppose λ = λ0 is a crossing of the Lagrangian pair λ 7→ (Eu(`, λ),Es(`, λ)), λ ∈ [0, λ∞].
The first-order relative crossing form ((3.37) with k = 1) is given by

mλ0(Eu(`, ·),Es(`, ·))(q) = mλ0(Eu(`, ·),Es(`, λ0))(q)−mλ0(Es(`, ·),Eu(`, λ0))(q), (5.13)

where q ∈ Eu(`, λ0) ∩ Es(`, λ0) is fixed. We compute each of these terms separately.

The first term concerns the path λ 7→ Eu(`, λ) with reference plane Es(`, λ0). The first-order
form (3.24) is given here by

mλ0(Eu(`, ·),Es(`, λ0))(q) =
d

dλ
ω(Ru(λ)q, q)

∣∣
λ=λ0

, q ∈ Eu(`, λ0) ∩ Es(`, λ0), (5.14)
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where Ru(λ) : Es(`, λ0)→ Es(`, λ0)⊥ is the unique family of matrices such that Eu(`, λ) =
graph(Ru(λ)) = {q + Ru(λ)q : q ∈ Es(`, λ0)} for all λ ∈ [λ0 − ε, λ0 + ε]. Fixing some
q ∈ Es(`, λ0) ∩ Eu(`, λ0), let r(λ) = q +Ru(λ)q ∈ Eu(`, λ). From the definition of Eu(`, λ),
there exists a one-parameter family of solutions λ 7→ w(·;λ) to (2.2) satisfying w(x;λ) →
0 as x → −∞ such that r(λ) = w(`;λ). Furthermore, r(λ0) = q = w(`;λ0) because
(kerR(x0))∩Es(`, λ0) = Eu(`, λ0)∩Es(`, λ0) (recall (3.18)). With this family we can write

mλ0(Eu(`, ·),Es(`, λ0))(q) =
d

dλ
ω(Ru(λ)q, q)

∣∣
λ=λ0

=
d

dλ
ω(q +Ru(λ)q, q)

∣∣
λ=λ0

,

= ω
( d
dλ

w(`, λ),w(`, λ0)
)∣∣
λ=λ0

.

A calculation similar to (4.68) with

∂λA(x;λ) =

(
04 04
M 04

)
, M =

(
0 0
0 1

)
⊗
(

0 1
1 0

)
, (5.15)

and w = (u1, v2, u2, v2, u3, v3, u4, v4)
> yields

mλ0(Eu(`, ·),Es(`, λ0))(q0) = −2

∫ `

−∞
u2(x;λ0)v2(x;λ0) dx.

The second term in (5.13) concerns the path λ 7→ Es(`, λ) with reference plane Eu(`, 0).
We have

mλ0(Es(`, ·),Es(`, λ0))(q) =
d

dλ
ω(Rs(λ)q, q)

∣∣
λ=λ0

, q ∈ Es(`, λ0) ∩ Eu(`, λ0), (5.16)

where Rs(λ) : Eu(`, λ0) → Eu(`, λ0)
⊥ uniquely satisfies Es(`, λ) = graph (Rs(λ)). For the

same fixed q ∈ Eu(`, λ0) ∩ Es(`, 0) as before, associated to the curve t(λ) = q + Rs(λ)q ∈
Es(`, λ) is a family of solutions λ 7→ w̃(·;λ) to (2.2), such that t(λ) = w̃(`;λ) and t(λ0) =
q = w̃(`;λ0). Arguing as for the first term of (5.13), but noting that now w̃(x;λ) → 0 as
x→ +∞, we have

mλ0(Es(`, ·),Eu(`, λ0))(q) = ω
( d
dλ

w̃(`;λ), w̃(`;λ)
)∣∣∣
λ=λ0

= 2

∫ ∞
`

ũ2(x;λ0)ṽ2(x;λ0) dx.

Using uniqueness of solutions as in the proof of Lemma 4.12, we conclude

mλ0(Eu(`, ·),Es(`, ·))(q) = −2

∫ ∞
−∞

u2(x;λ0)v2(x;λ0) dx. (5.17)

Remark 5.3. The form (5.17) is not sign definite, and therefore the Maslov index does
not afford an exact count of the crossings of the path λ 7→ (Eu(`, ·),Es(`, ·)) for λ ∈ [0, λ∞].
This will be the reason for the inequality (and not an equality) in (1.17) in Theorem 1.2.

Let us now evaluate the form (5.17) at λ = 0. Note that because dim (Eu(x, 0) ∩ Es(x, 0)) =
2 (c.f. Hypothesis 1.1) where

Eu(x, 0) ∩ Es(x, 0) = span{φφφ(x),ϕϕϕ(x)},

it suffices to evaluate (5.17) on the vectors φφφ(x) and ϕϕϕ(x) from (3.50). Writing w(x; 0) =
φφφ(x)k1 +ϕϕϕ(x)k2 for some k1, k2 ∈ R, so that u2(x; 0) = φ′(x)k1 and v2(x; 0) = −φ(x)k2, we
have

m0(Eu(`, ·),Es(`, ·))(q) = 2

∫ ∞
−∞

φ′φdx k1k2 =

∫ ∞
−∞

d

dx
φ2 dx k1k2 = 0, (5.18)

since φ ∈ H4(R). That is, the two dimensional crossing form (5.13) is identically zero at
λ0 = 0, and the conjugate point (`, 0) is non-regular in the λ direction. We therefore need
to compute higher order crossing forms.
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As discussed in Section 3.2, in the case that the first-order form is identically zero, the
second-order relative crossing form is given by

m
(2)
λ0

(Eu(`, ·),Es(`, ·))(q) = m
(2)
λ0

(Eu(`, ·),Es(`, 0))(q)−m
(2)
λ0

(Es(`, ·),Eu(`, 0))(q), (5.19)

where q ∈ W2 = Eu(`, 0) ∩ Es(`, 0). Each of the crossing forms on the right hand side are
computed separately with (3.28). For the first, using the same one-parameter family λ →
w(·;λ) as we did for the corresponding first-order form (5.14) (i.e. such that w(`;λ) = r(λ);
see the paragraph following (5.14)), we have

m
(2)
λ0

(Eu(`, ·),Es(`, λ0))(q) =
d2

dλ2
ω(Ru(λ)q, q)

∣∣
λ=λ0

= ω
( d2
dλ2

w(`, λ),w(`, λ0)
)∣∣
λ=λ0

.

Now

ω
( d2
dλ2

w(`;λ),w(`;λ)
)

=

∫ `

−∞
∂x ω(∂λλw(x;λ),w(x;λ))dx,

=

∫ `

−∞
ω (∂λλ [A(x;λ)w(x;λ)] ,w(x;λ))

+ ω (∂λλw(x;λ), A(x;λ)w(x;λ)) dx,

=

∫ `

−∞
ω(Aλλ(x;λ)w(x;λ),w(x;λ))

+ 2ω(Aλ(x;λ)∂λw(x;λ),w(x;λ))

+ ω(A(x;λ)∂λλw(x;λ),w(x;λ))

+ ω (∂λλw(x;λ), A(x;λ)w(x;λ)) dx,

=

∫ `

−∞
〈[A(x;λ)>J + JA(x;λ)]∂λλw(x;λ),w(x;λ)〉

+ 2ω(Aλ(x;λ)∂λw(x;λ),w(x;λ)) dx,

= 2

∫ `

−∞
ω(Aλ(x;λ)∂λw(x;λ),w(x;λ))dx,

(5.20)

where we used (2.14) and Aλλ(x;λ) = 0. Using (5.15) and evaluating at λ = 0, we see that

m
(2)
λ0

(Eu(`, ·),Es(`, 0))(q) = −2

∫ `

−∞
u2(x; 0)∂λv2(x; 0) + v2(x; 0)∂λu2(x; 0) dx. (5.21)

For the second form in the right hand side of (5.19), we use the same one-parameter family
λ → w̃(·;λ) defined in the paragraph following (5.16) (i.e. such that w̃(`;λ) = t(λ)) and
the same argument used to arrive at (5.21) to obtain

m
(2)
λ0

(Es(`, ·),Eu(`, 0))(q) = 2

∫ ∞
`

ũ2(x; 0)∂λṽ2(x; 0) + ṽ2(x; 0)∂λũ2(x; 0) dx. (5.22)

By uniqueness of solutions we have w(·; 0) = w̃(·; 0). On the other hand, it is not im-
mediately obvious whether the same is true for the functions û2(x) = ∂λu2(x; 0) and
v̂2(x) = ∂λv2(x; 0). However, observe that with (5.14) and (5.16), we can write the rel-
ative crossing form (5.13) as

mλ0 (Eu(`, ·),Es(`, ·)) (q) = ω(q,
(
Ṙu(0)− Ṙs(0)

)
q), q ∈ Eu(`, 0) ∩ Es(`, 0),

where dot denotes d/dλ. This form is identically zero if and only if J(Ṙu(0) − Ṙs(0))
is the zero operator on Eu(`, 0) ∩ Es(`, 0). From the invertibility of J , it follows that

Ṙu(0)q = Ṙs(0)q for all q ∈ Eu(`, 0) ∩ Es(`, 0). Recalling that w(`;λ) = r(λ) = q +Ru(λ)q
and w̃(`;λ) = t(λ) = q +Rs(λ)q, taking λ derivatives and evaluating at λ = 0 yields

∂λw(`; 0) = ṙ(0) = Ṙu(0)q = Ṙs(0)q = ṫ(0) = ∂λw̃(`; 0). (5.23)
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Now, both ∂λw(·; 0) and ∂λw̃(·; 0) solve the inhomogeneous differential equation

d

dx
(∂λw) = A (∂λw) +Aλ (φφφk1 +ϕϕϕk2) , (5.24)

obtained by differentiating (2.3) with respect to λ and evaluating at λ = 0, and using that
w(·; 0) = φφφk1 + ϕϕϕk2. (Note that k1, k2 ∈ R are determined by the fixed vector q, where
q = w(`; 0) = φφφ(`)k1 +ϕϕϕ(`)k2.) It follows from (5.23) and uniqueness of solutions of (5.24)
that indeed ∂λw(x; 0) = ∂λw̃(x; 0) for all x ∈ R. Collecting (5.21) and (5.22) together,
(5.19) becomes

m
(2)
λ0

(Eu(`, ·),Es(`, ·))(q) = −2

∫ ∞
−∞

u2(x; 0)∂λv2(x; 0) + v2(x; 0)∂λu2(x; 0) dx. (5.25)

We need to understand the function ∂λw(·; 0). Notice that it solves the inhomogeneous
equation (5.24) if and only if its third and fourth entries ∂λu2(·; 0) and ∂λv2(·; 0) solve

N

(
∂λu2(·; 0)
−∂λv2(·; 0)

)
=

(
φx k1
−φk2

)
. (5.26)

This follows from differentiating the eigenvalue equation (1.12) with respect to λ, evaluating
at λ = 0 and making the substitutions

∂λu(·; 0) = ∂λu2(·; 0), ∂λv(·; 0) = −∂λv2(·; 0), u(·; 0) = φx k1, v(·; 0) = −φk2.
Now, both equations

−L−∂λv2(·; 0) = −φx k1,
L+∂λu2(·; 0) = −φk2,

(5.27)

are solvable by virtue of the Fredholm alternative, since 〈φ′, φ〉L2(R) = 0 and hence φx ∈
ker(L−)⊥ and φ ∈ ker(L+)⊥. Denoting by v̂ and û any solutions to

− L−v = φx and L+u = φ (5.28)

in H4(R) respectively (note the sign change in both equations from (5.27)), (5.25) becomes

m
(2)
λ0

(Eu(`, ·),Es(`, ·))(q) = 2

(∫ ∞
−∞

φx v̂ dx

)
k21 − 2

(∫ ∞
−∞

φ û dx

)
k22, (5.29)

recalling that u2 = φxk1 and v2 = −φk2. Having computed the form, we count the number
of negative squares. Using (3.40), and defining I1 and I2 to be the integrals appearing in
the first and second terms of (5.29) respectively (as in (1.16)), we find that

Mas(Eu(`, ·),Es(`, ·); [0, ε]) = −n−(m
(2)
λ0

) =


0 I1 > 0, I2 < 0,

−1 I1I2 > 0,

−2 I1 < 0, I2 > 0.

(5.30)

Recalling the definition of c in (5.11) and using (5.12) yields the following.

Lemma 5.4. The value of c is given by

c =


1 I1 > 0, I2 < 0,

0 I1I2 > 0,

−1 I1 < 0, I2 > 0.

(5.31)

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By homotopy invariance and additivity under concatenation, we
have

Mas(Eu(·, 0),Es(`, 0); [−∞, `]) + Mas(Eu(`, ·),Es(`, ·); [0, λ∞])
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−Mas(Eu(·, λ∞),Es(`, λ∞); [−∞, `])−Mas(Eu(−∞, ·),Es(`, ·); [0, λ∞]) = 0.

By Lemma 5.2 the last two terms on the left hand side vanish. Recalling the definition of
c from (3.56) and using the concatenation property once more,

Mas(Eu(·, 0),Es(`, 0); [−∞, `− ε]) + c + Mas(Eu(`, ·),Es(`, ·); [ε, λ∞]) = 0. (5.32)

Since the Maslov index counts signed crossings, the number of crossings along Γ2 for λ > 0
is bounded from below by the absolute value of the Maslov index of this piece, i.e.

n+(N) ≥ |Mas(Eu(`, ·),Es(`, ·); [ε, λ∞])|. (5.33)

Combining (5.32) and (5.33) with Lemma 5.1, the inequality (1.17) follows. The statement
of the theorem then follows from the computation of c in Lemma 5.4. �

Remark 5.5. It may be more tractable to compute P and Q via Proposition 4.1. Thus,
an alternate form of (1.17), which may be more useful in practice, is given by

n+(N) ≥

∣∣∣∣∣∑
x∈R

dim
(
Eu+(x, 0) ∩ S+(0)

)
−
∑
x∈R

dim
(
Eu−(x, 0) ∩ S−(0)

)
− c

∣∣∣∣∣ . (5.34)

We conclude with the proof of Theorem 1.5, for which we will need the following lemma. The
first assertion gives a sufficient condition for monotonicity of the Maslov index along Γ2, and
is adapted from [CCLM23, Lemma 5.1]. The second assertion is given in [CCLM23, Lemma
5.2].

Lemma 5.6. If L− is a nonpositive operator, then each crossing λ = λ0 > 0 of the path
λ 7→ (Eu(`, λ),Es(`, λ)) is positive. Moreover, in this case Spec(N) ⊂ R ∪ iR.

Proof. If λ = λ0 is a crossing then the eigenvalue equations

− L−v = λ0u, L+u = λ0v (5.35)

are satisfied for some ũ, ṽ ∈ H4(R). Notice that λ0 > 0 necessitates that both ũ and ṽ are
nontrivial.

Solving the first equation in (5.35) yields ṽ = αφ + ṽ⊥ for some α ∈ R, where ker(L−) =
span{φ} and ṽ⊥ ∈ ker(L−)⊥. Therefore

〈L−ṽ, ṽ〉L2(R) = 〈L−(αφ+ ṽ⊥), αφ+ ṽ⊥〉L2(R) = 〈L−ṽ⊥, ṽ⊥〉L2(R) < 0 (5.36)

because L− is nonpositive and v̂⊥ ∈ ker(L−)⊥. Now analysing the crossing form (5.17) for
the path λ 7→ (Eu(`, λ),Es(`, λ)), where v2 = −ṽ and u2 = ũ, we have

mλ0(Eu(`, ·),Es(`, ·))(q) = − 2

λ0

∫ ∞
−∞

(λ0 u2) v2 dx = − 2

λ0
〈L−ṽ, ṽ〉L2(R) > 0,

which was to be proven. The second statement may be proven using similar arguments as
in the proof of [CCLM23, Lemma 5.1]. Namely, we can rewrite (1.12) as the selfadjoint
eigenvalue problem

(−L−|Xc)
1/2 ΠL+Π (−L−|Xc)

1/2w = λ2w, (5.37)

where Xc = ker(L−)⊥, Π is the orthogonal projection in L2(R) onto Xc, (−L−|Xc)
1/2 is

well-defined because −L− is nonnegative, and w = (−L−|Xc)
1/2 Πv. It follows that λ2 ∈ R.

For more details on the equivalence of (1.12) with (5.37), see [CCLM23, Lemma 3.21]. We
omit the details here. �
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Proof of Theorem 1.5. If Q = 0 then it follows from Lemma 5.6 that

Mas(Eu(`, ·),Es(`, ·); [ε, λ∞]) = n+(N) (5.38)

for ε small enough. Using this and Lemma 5.1 in (5.32), we obtain

n+(N) = P −Q− c = 1− c. (5.39)

For the evaluation of c, using (5.28) we can write

I1 =

∫ ∞
−∞

φx v̂ dx = −
∫ ∞
−∞

(L−v̂) v̂ dx, (5.40)

so that if Q = 0 then I1 ≥ 0. An argument similar to (5.36) shows that in fact I1 > 0.
Lemma 5.4 now yields the value of c. In particular, if I2 > 0 then c = 0 and n+(N) = 1, and

the standing wave ψ̂ is unstable. If, on the other hand, I2 < 0, then c = 1 and n+(N) = 0.

By the second assertion of Lemma 5.6, this means Spec(N) ⊂ iR, so that ψ̂ is spectrally
stable. �

Remark 5.7. If either I1 = 0 or I2 = 0, the second order form (5.29) is degenerate. In

this case one would need to determine the signature of crossing forms m
(k)
λ0

(q) with k ≥ 3

in order to compute c. If both I1 = I2 = 0 then (5.29) is identically zero. In this case the
third order form will in fact also be identically zero. One would then need to determine the
number of negative squares of the fourth-order form, provided it is nondegenerate.
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