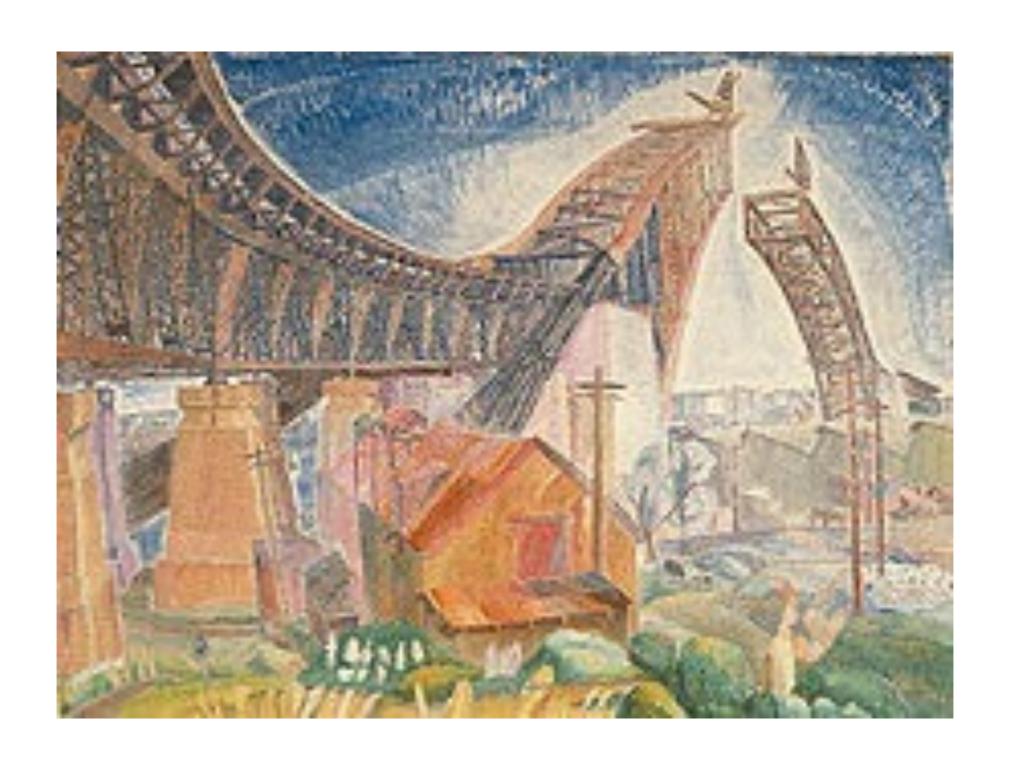
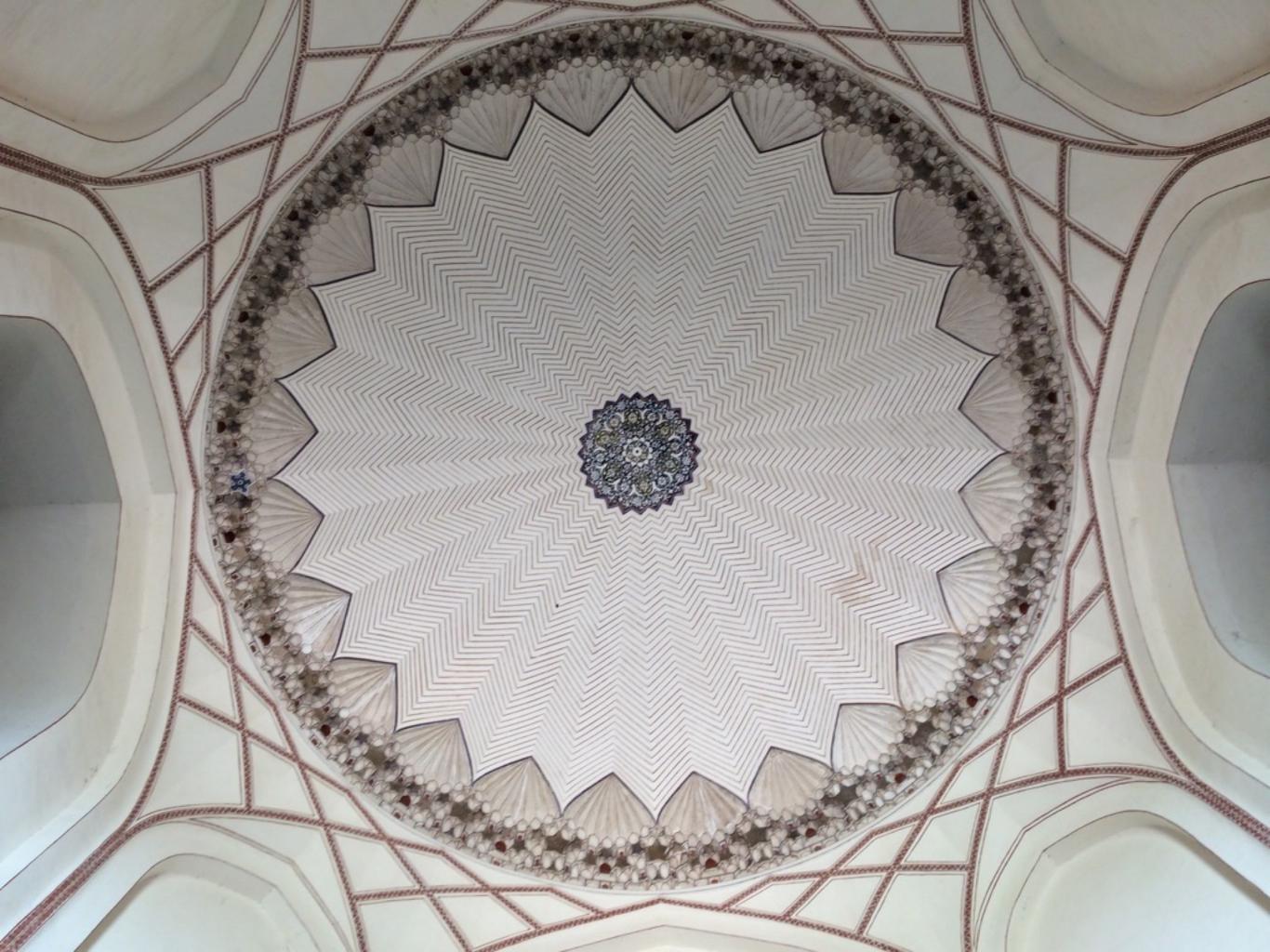
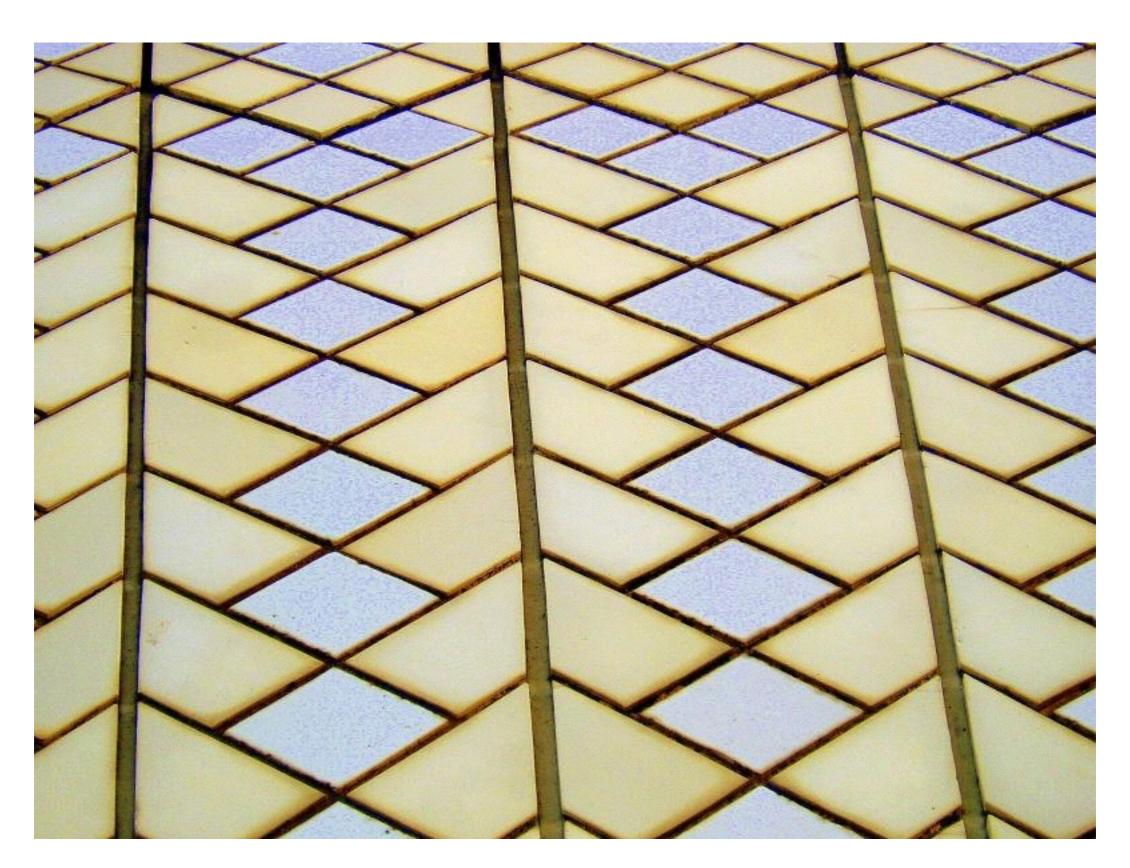
Symmetry through Geometry

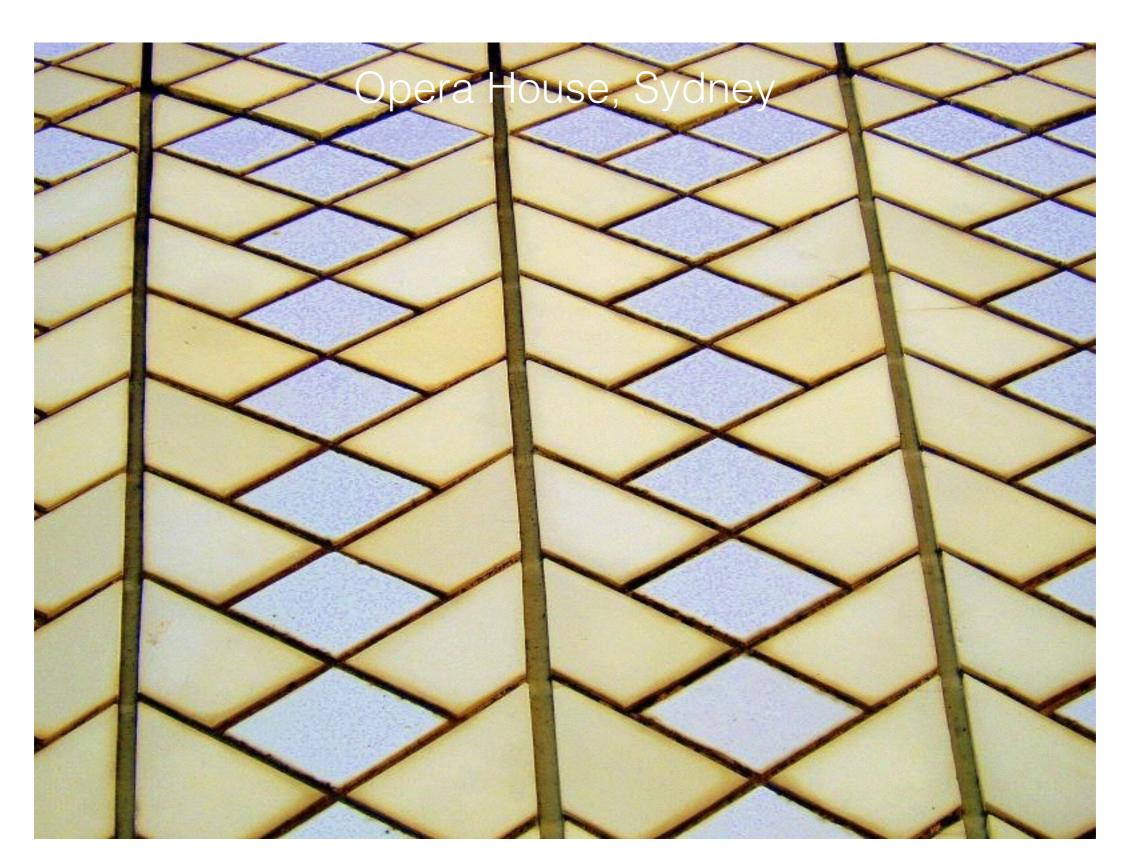
Nalini Joshi



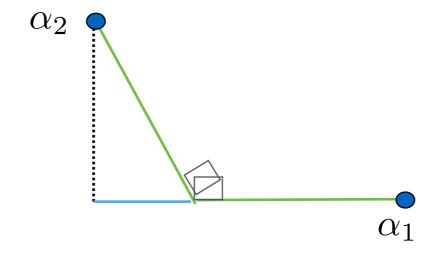


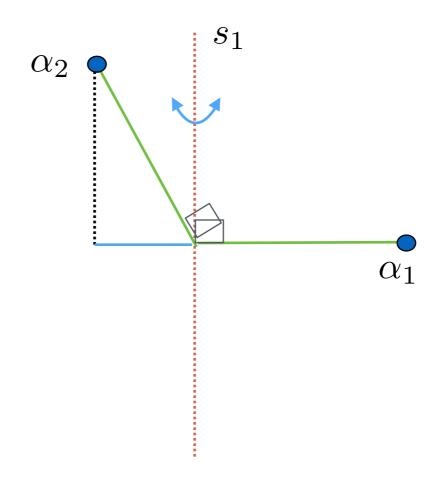


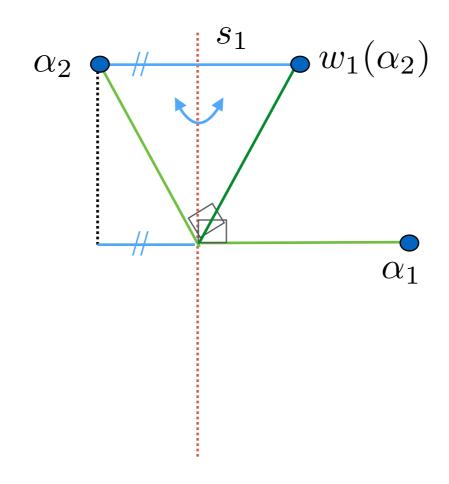
https://commons.wikimedia.org/wiki/File%3ASydney_tiles.jpg

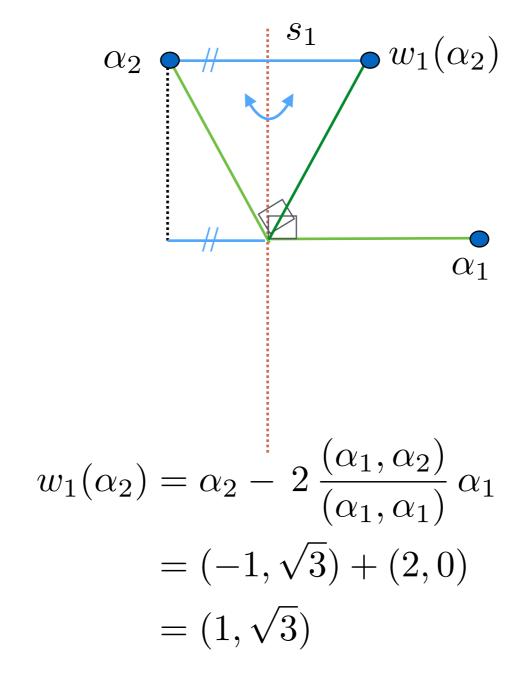


https://commons.wikimedia.org/wiki/File%3ASydney_tiles.jpg







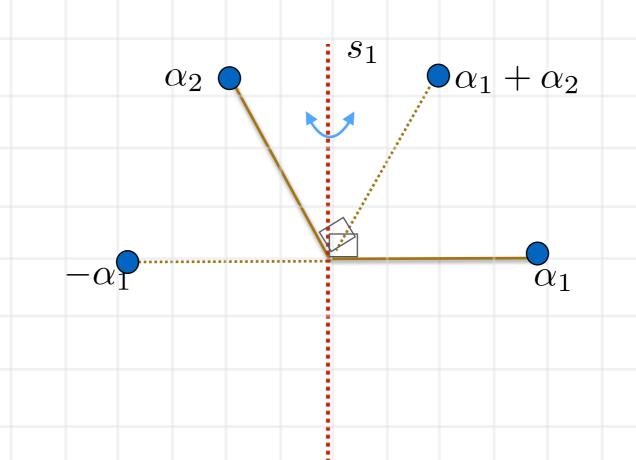


Root System $lpha_2$ α_1 α_1 and α_2 are "simple" roots

Root System s_1 $lpha_2$ α_1 α_1 and α_2 are "simple" roots

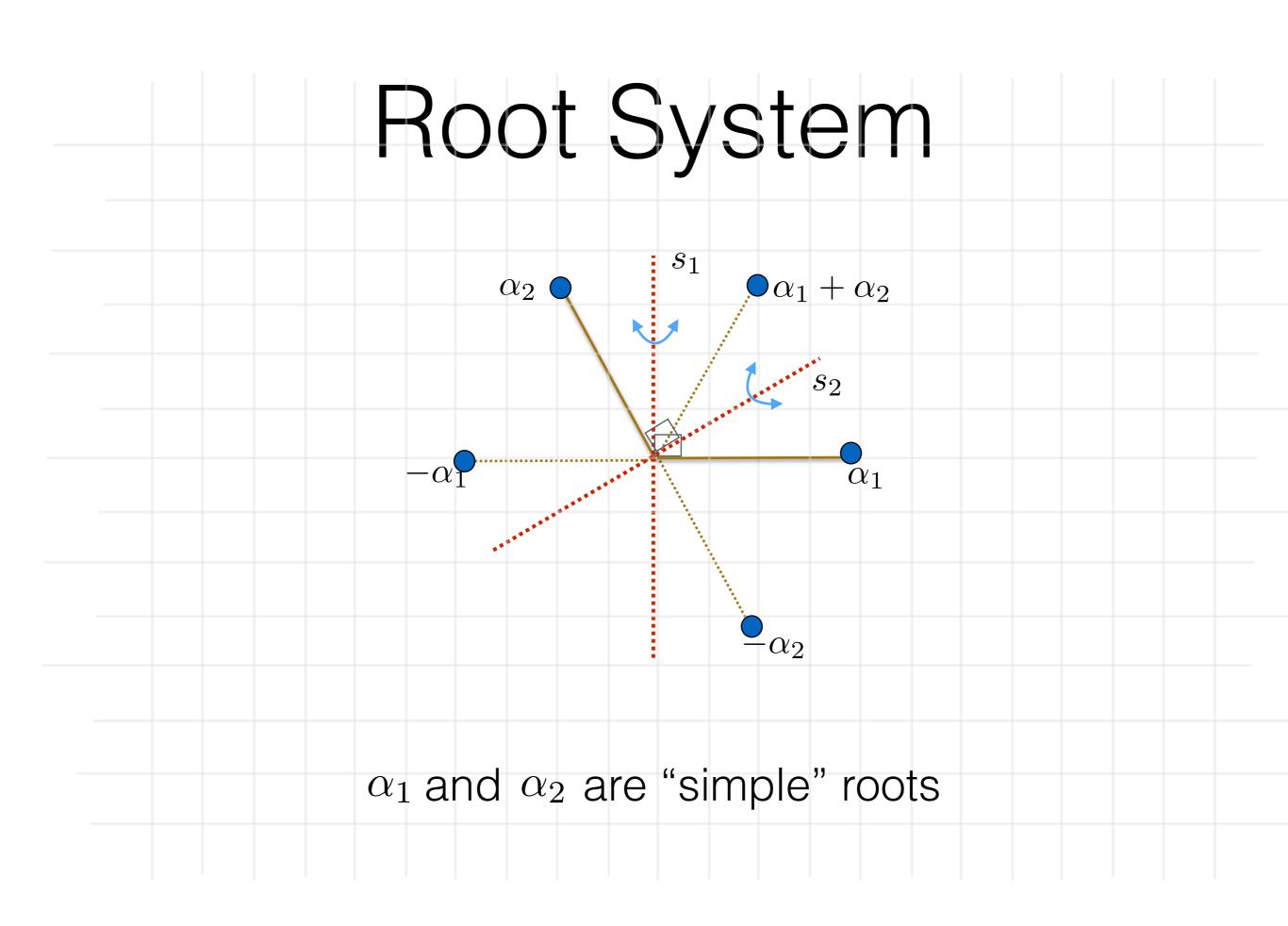
Root System s_1 $\alpha_1 + \alpha_2$ α_1 α_1 and α_2 are "simple" roots

Root System

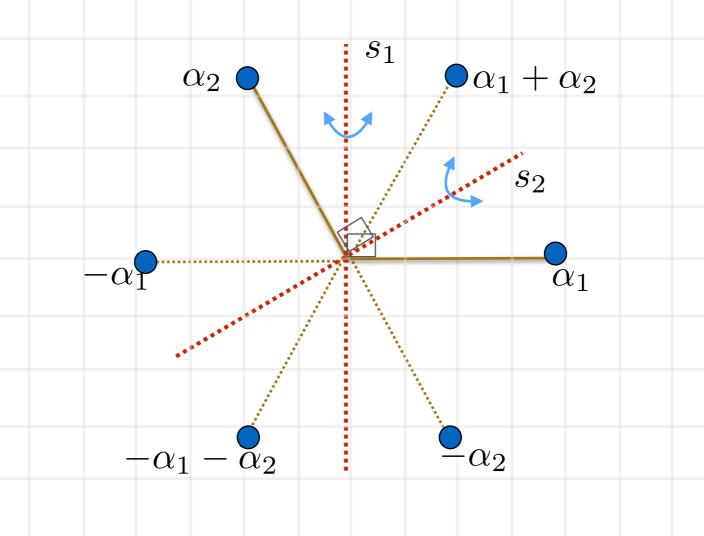


 α_1 and α_2 are "simple" roots

Root System s_1 $\alpha_1 + \alpha_2$ $\check{\alpha}_1$ α_1 and α_2 are "simple" roots

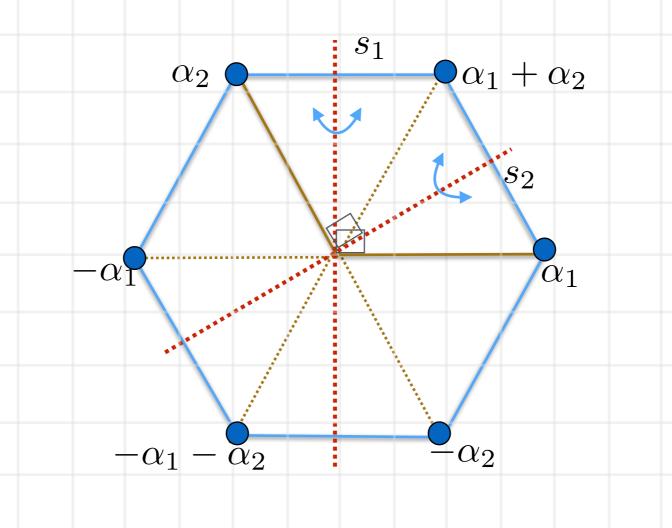


Root System



 α_1 and α_2 are "simple" roots

Root System

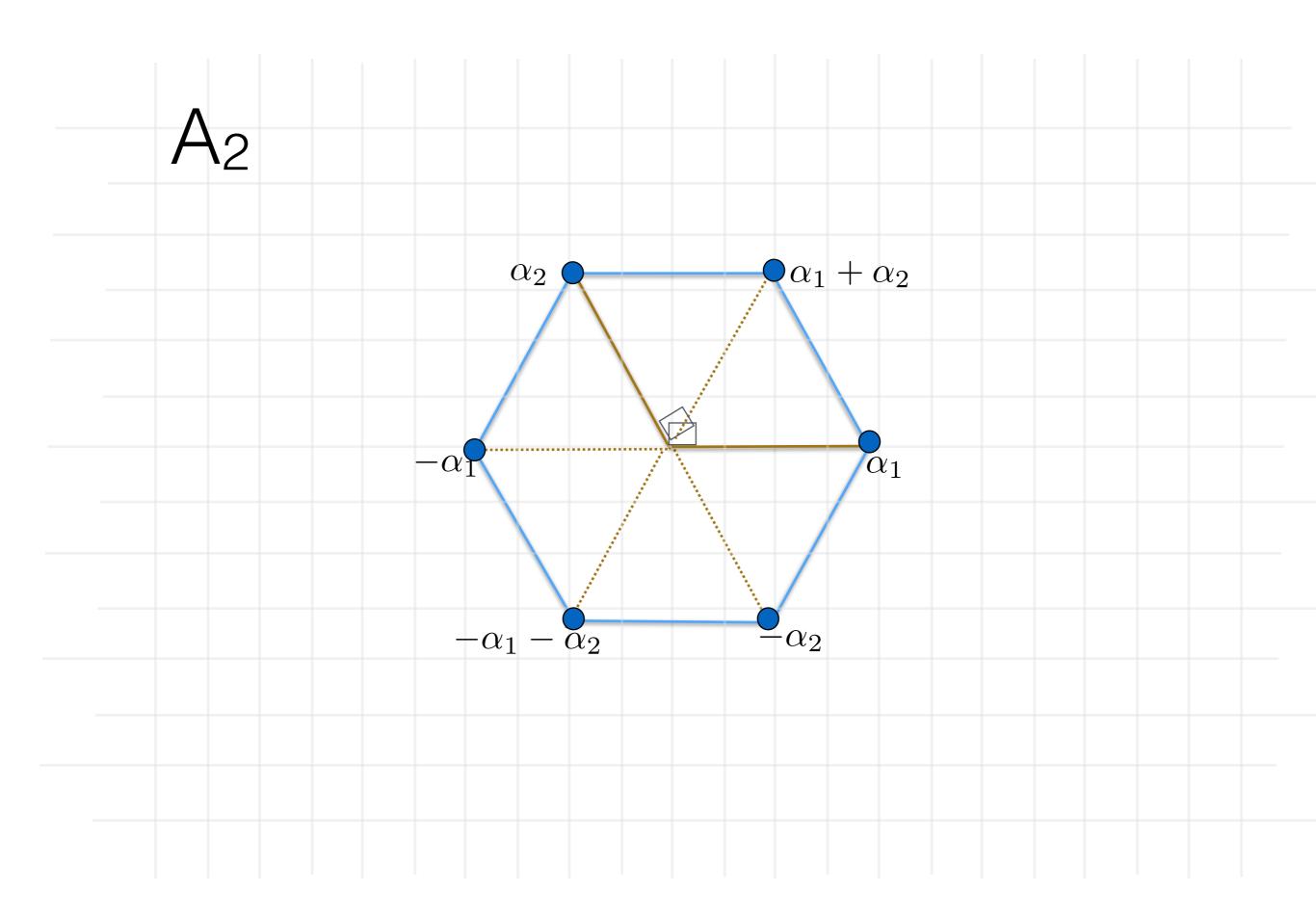


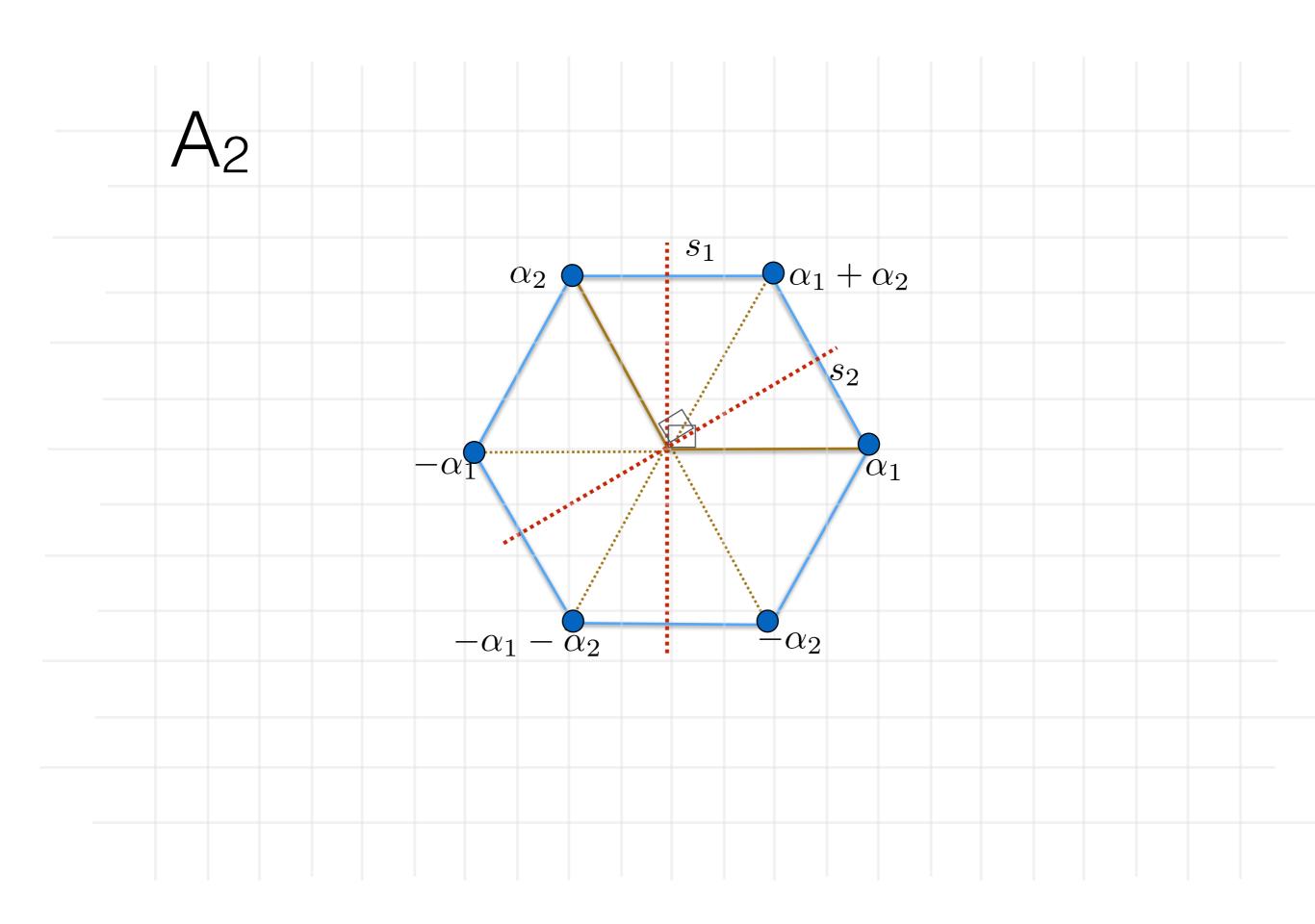
 α_1 and α_2 are "simple" roots

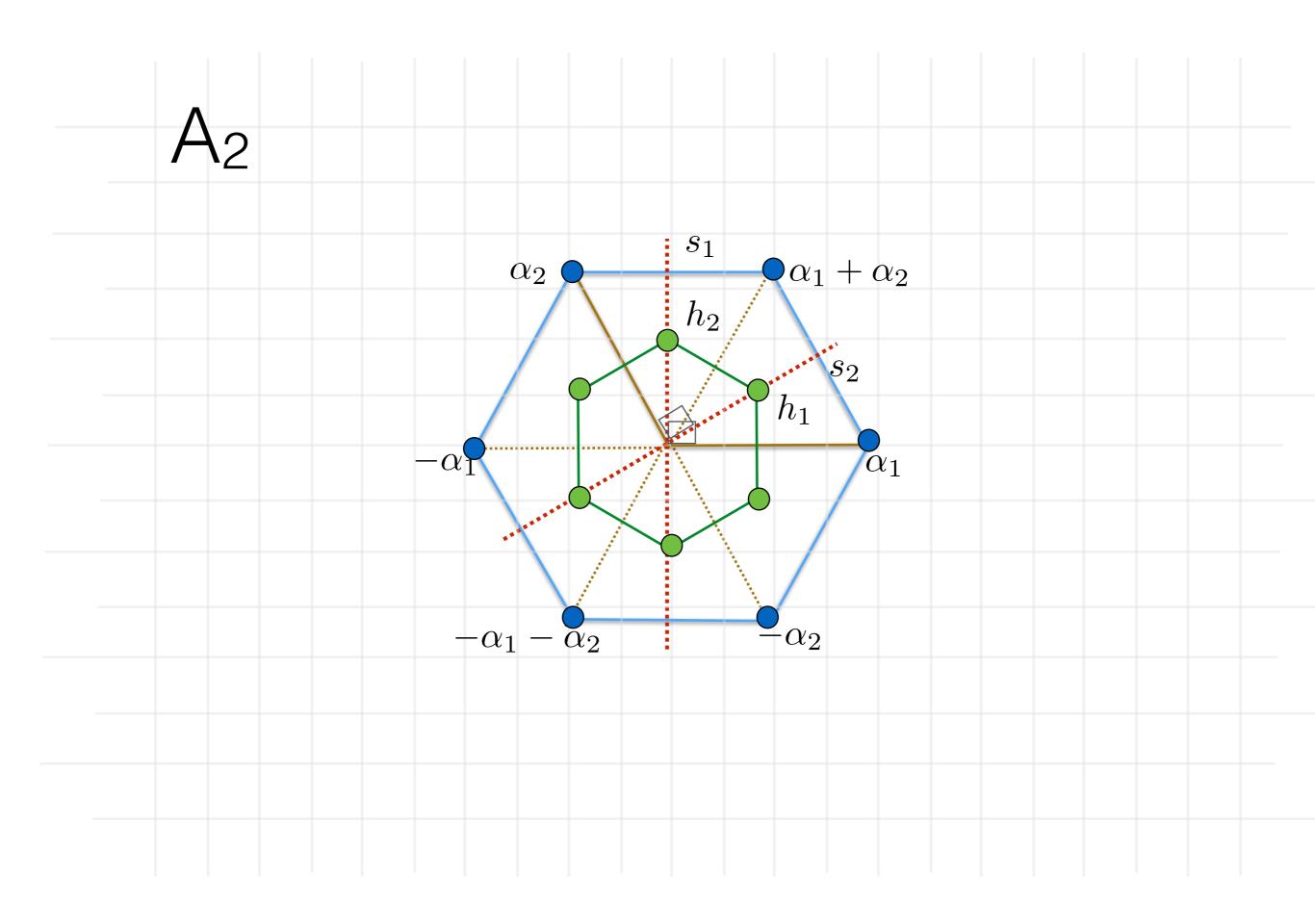
Reflection Groups

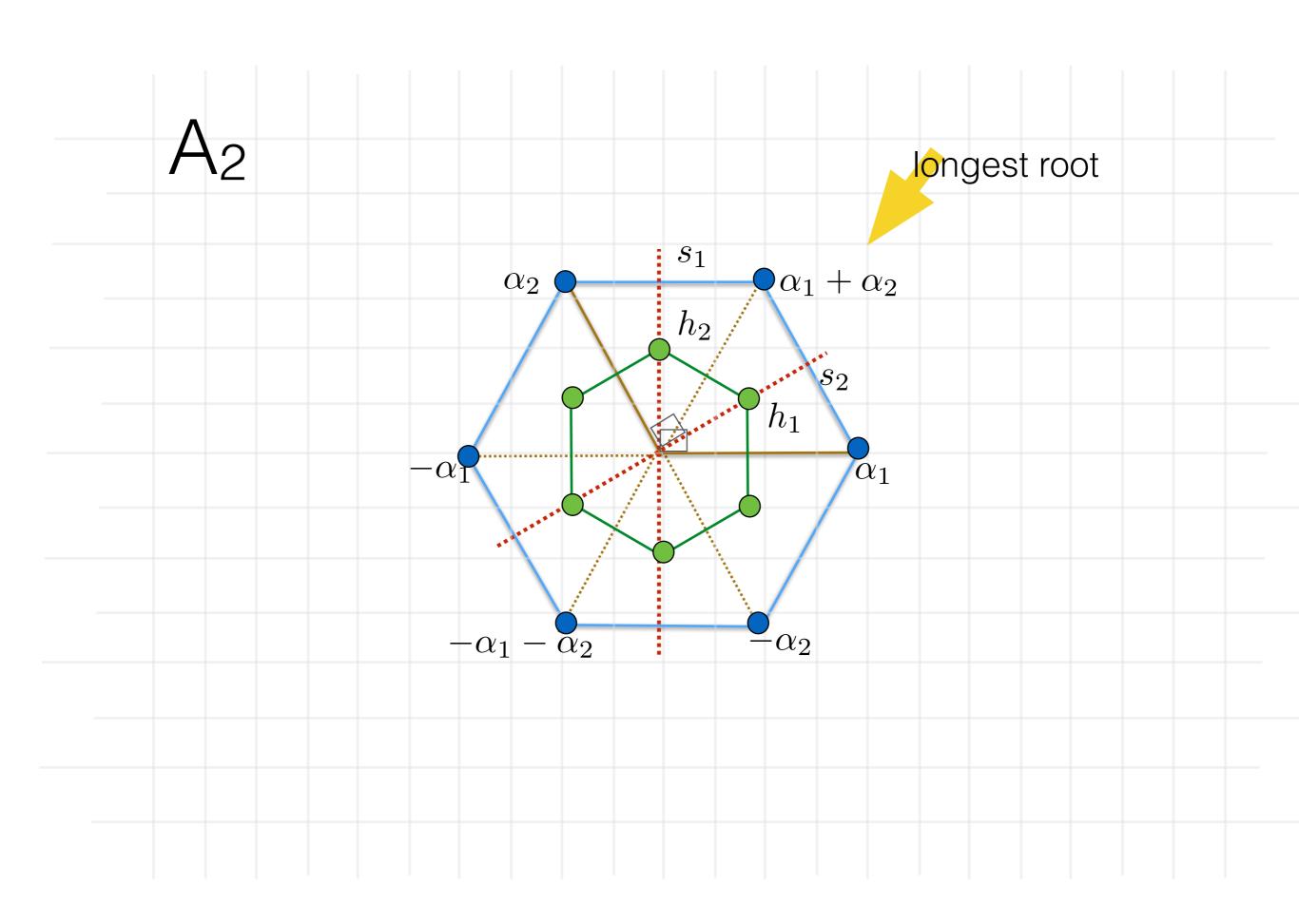
- Roots: $\alpha_1, \alpha_2, \dots, \alpha_n$
- Reflections: $w_i(\alpha_j) = \alpha_j 2 \frac{(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)} \alpha_i$
- Co-roots: $\check{\alpha}_i = 2 \frac{\alpha_i}{(\alpha_i, \alpha_i)}$
- Weights: h_1, h_2, \dots, h_n

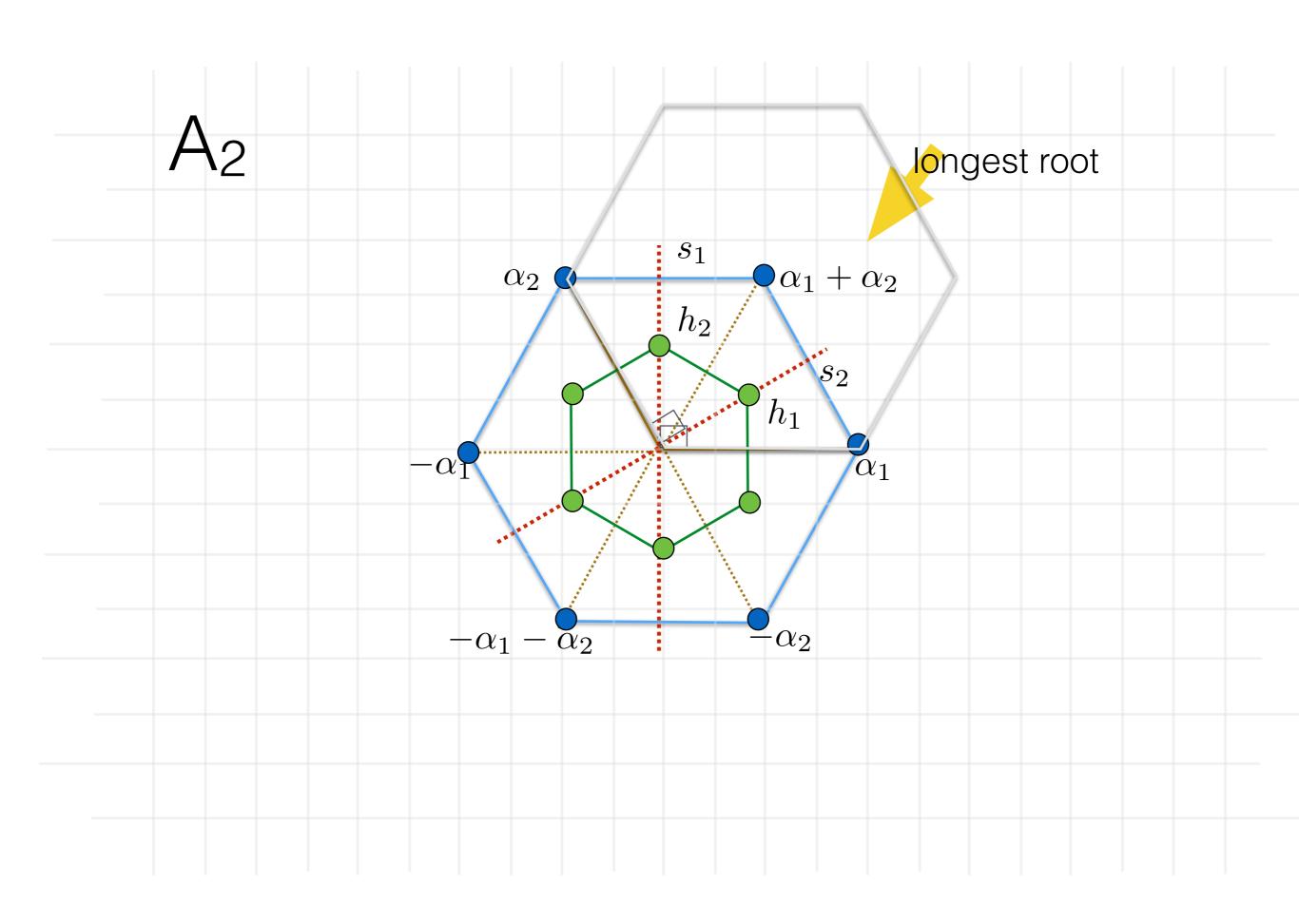
$$(h_i, \check{\alpha}_i) = \delta_{ij}$$





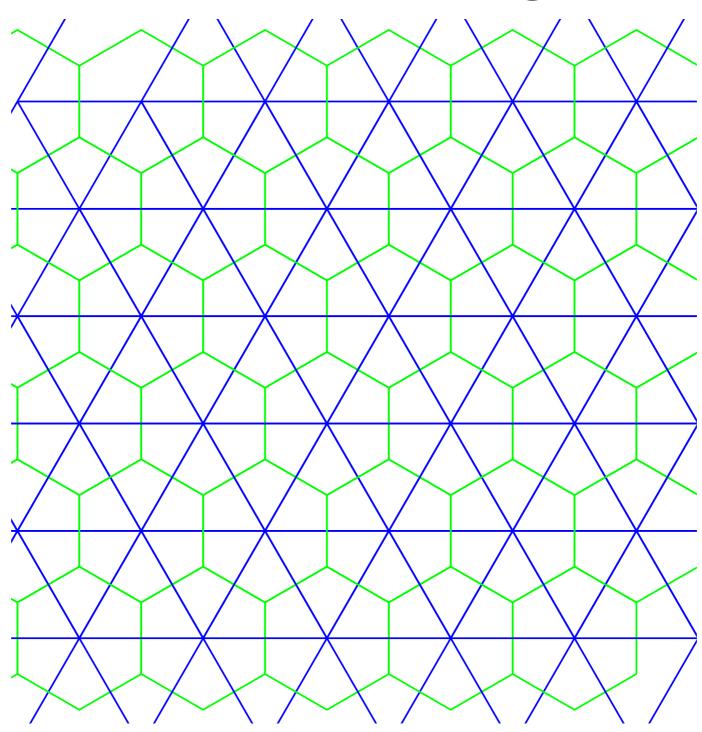


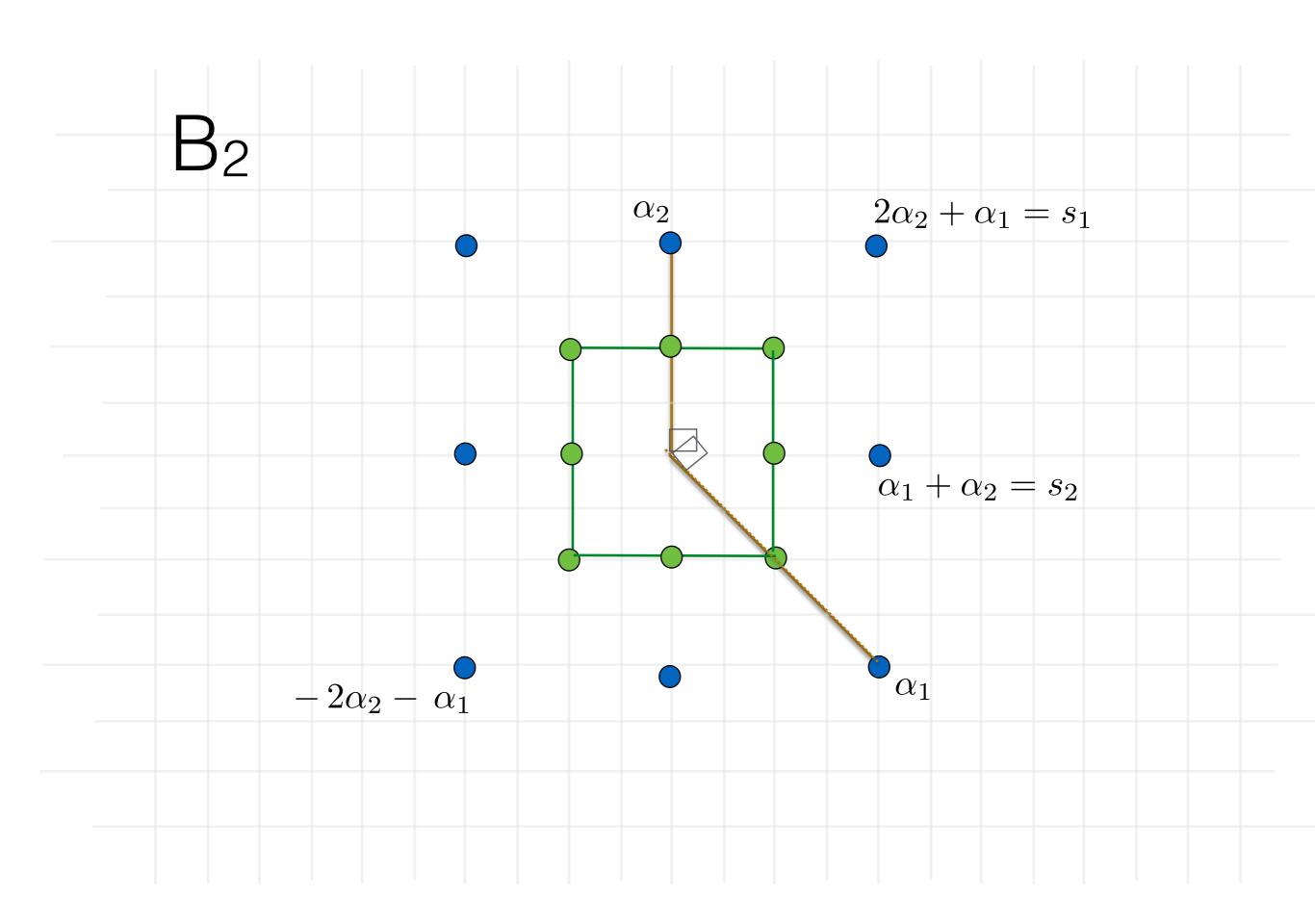


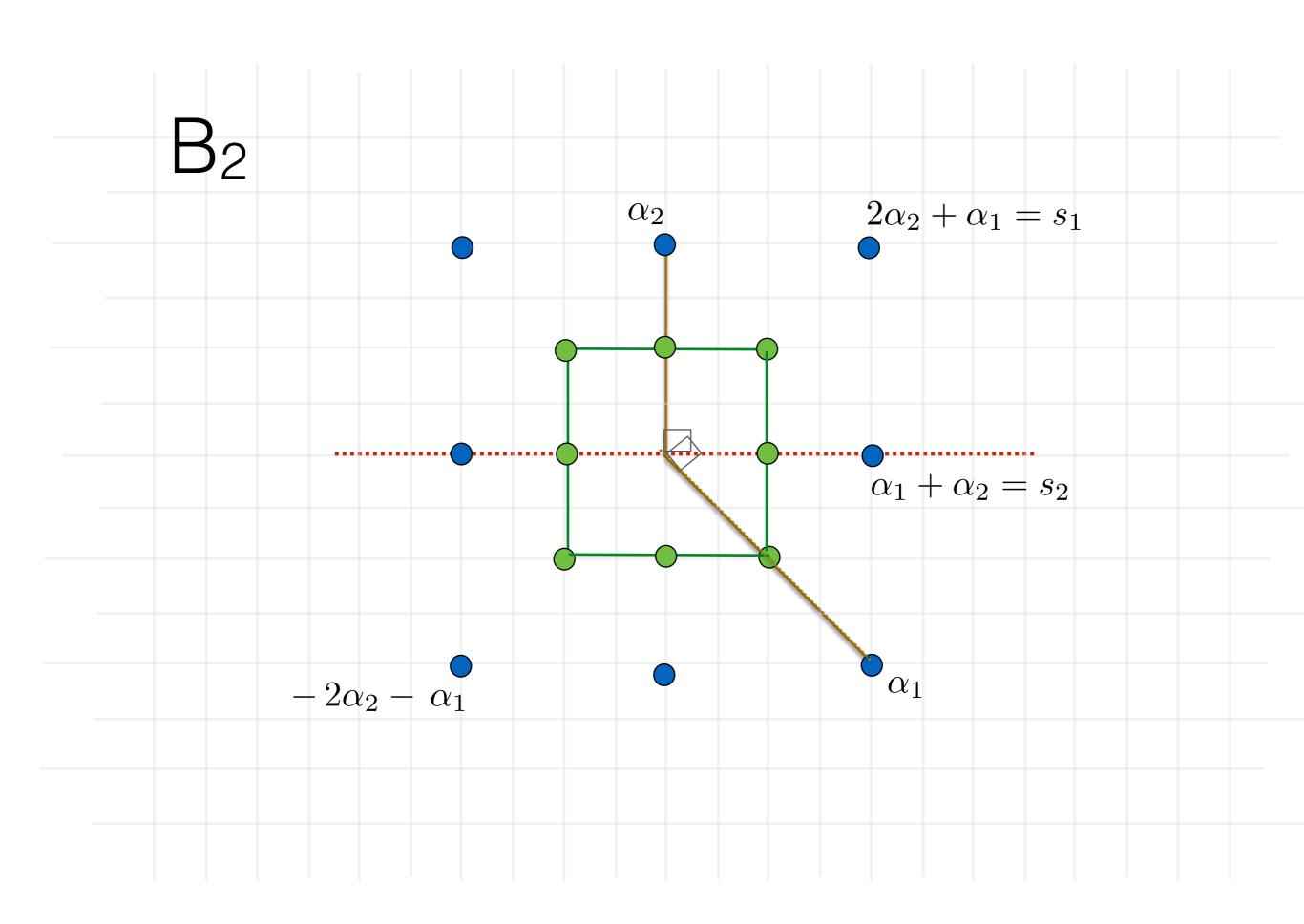


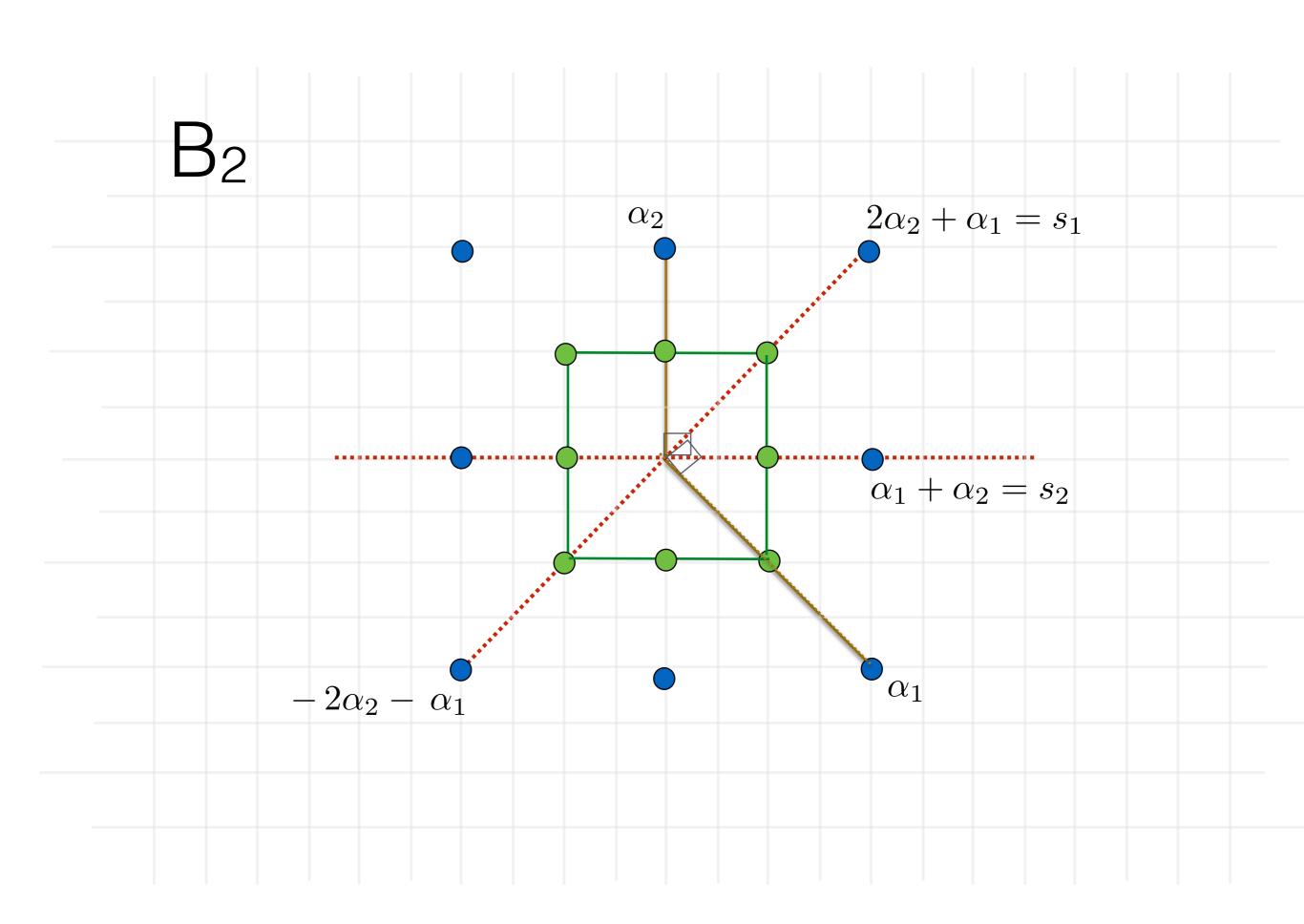
Translation by longest root

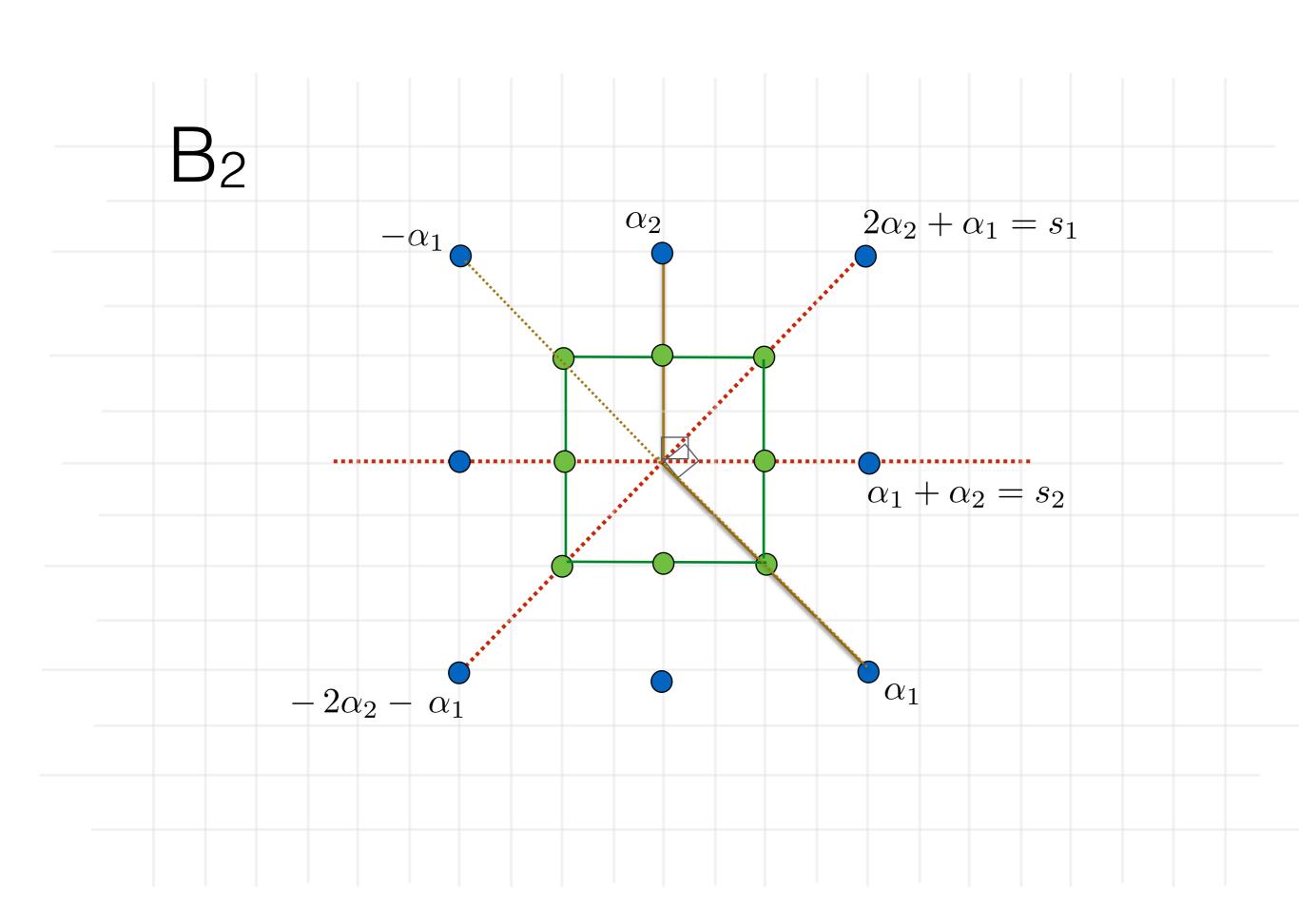
 $A_2(1)$

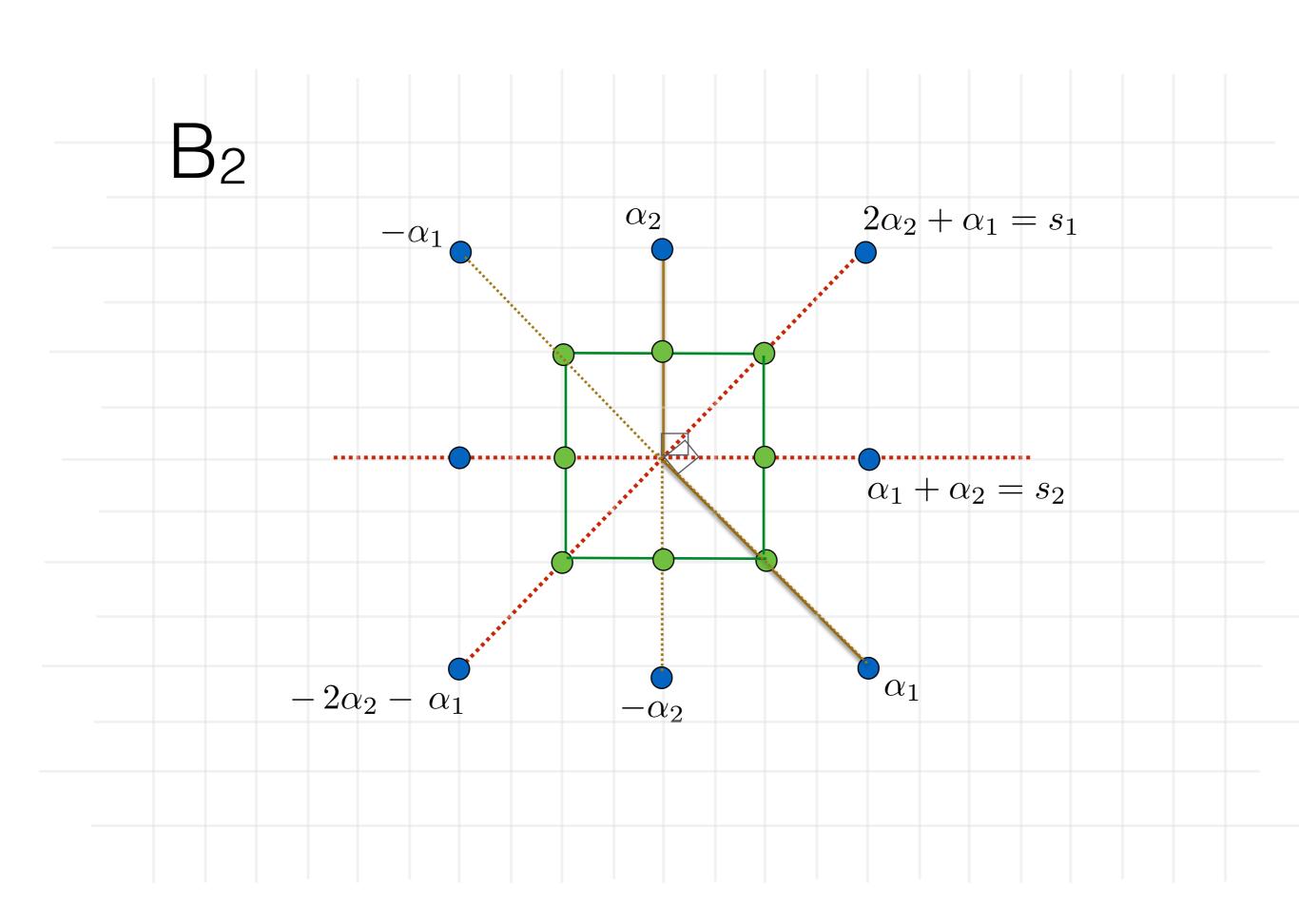


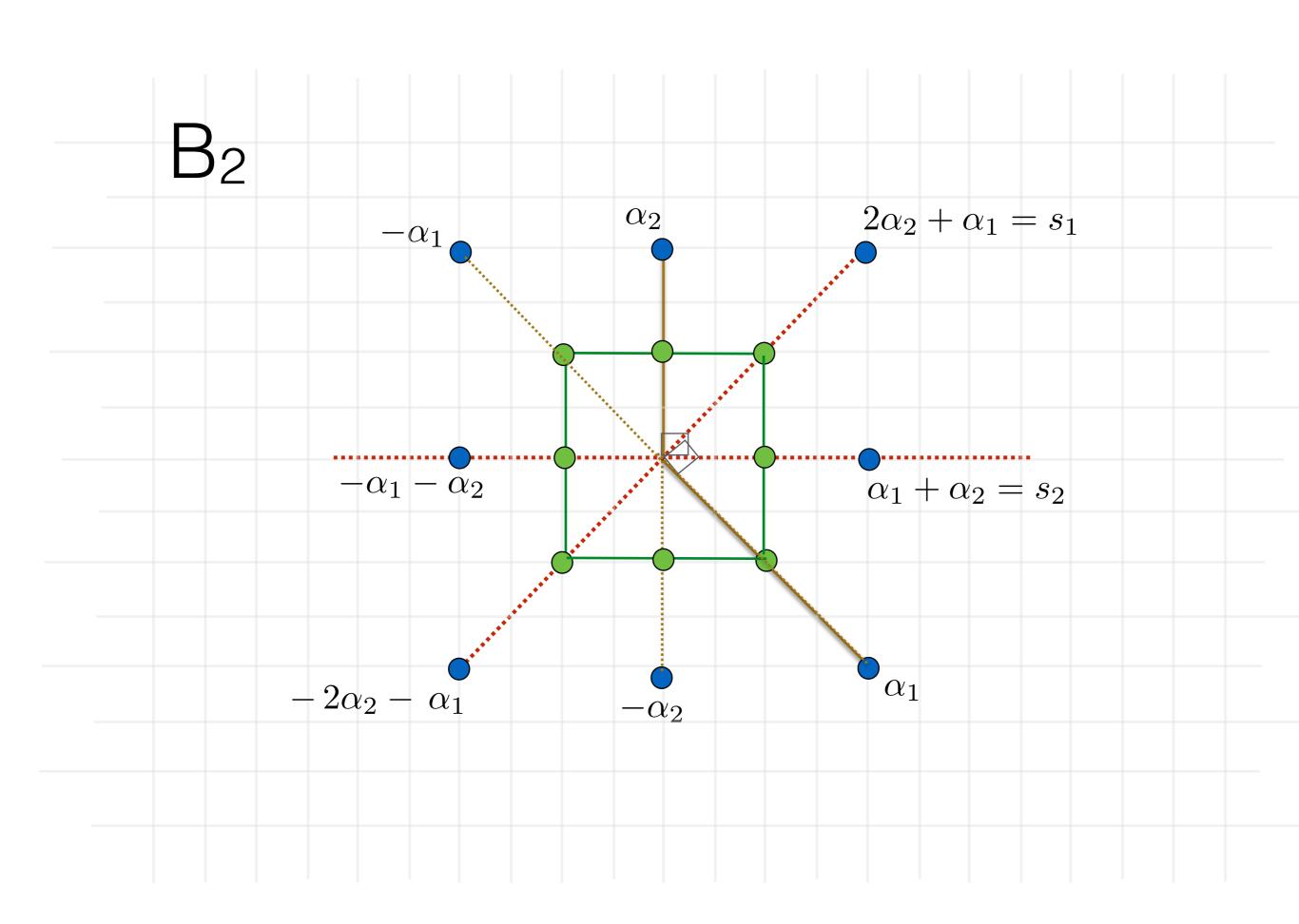


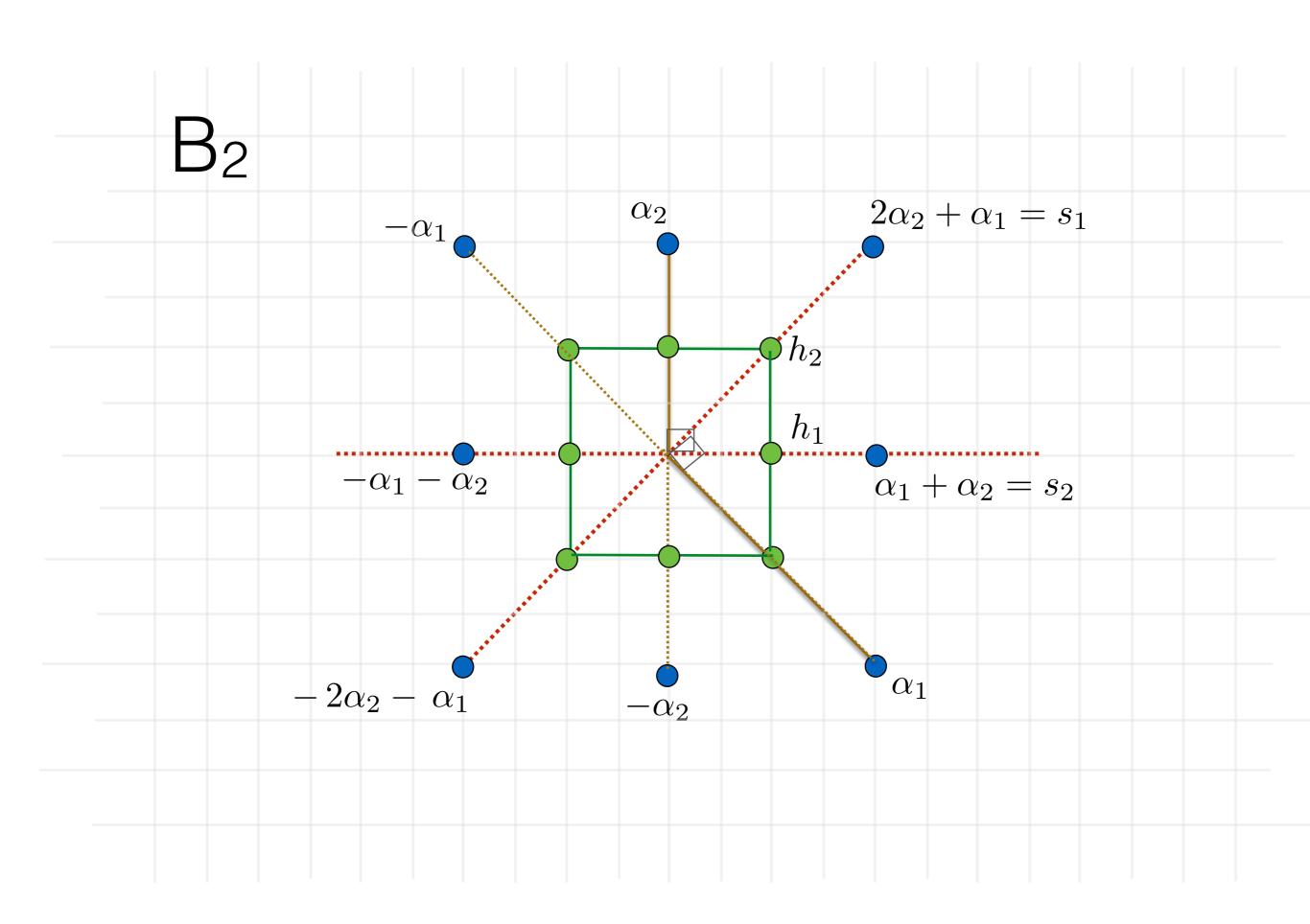












Crystallographic Property

$$(\alpha_i, \check{\alpha}_j) \in \mathbb{Z}$$

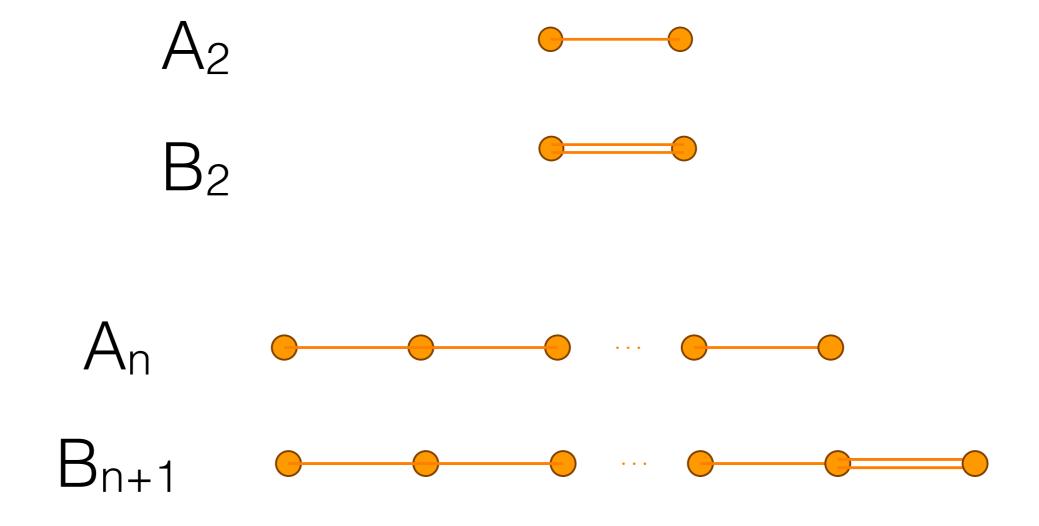
$$\Rightarrow (\alpha_i, \check{\alpha}_j)(\check{\alpha}_i, \alpha_j) = 4\cos^2(\theta_{\alpha_i\alpha_j}) \in \mathbb{N}$$

$$\Rightarrow \cos(\theta_{\alpha_i \alpha_j}) = 0, \pm \frac{1}{2}, \pm \frac{1}{\sqrt{2}}, \pm \frac{\sqrt{3}}{2}, \pm 1$$

$$\Rightarrow \theta_{\alpha_i \alpha_j} = \pi - \theta_{s_i s_j} = \pi - \frac{\pi}{m_{ij}}$$

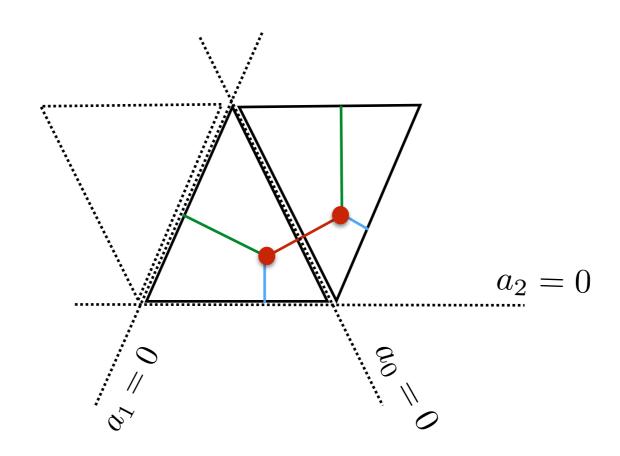
$$\Rightarrow m_{ij} = 2, 3, 4, 6$$

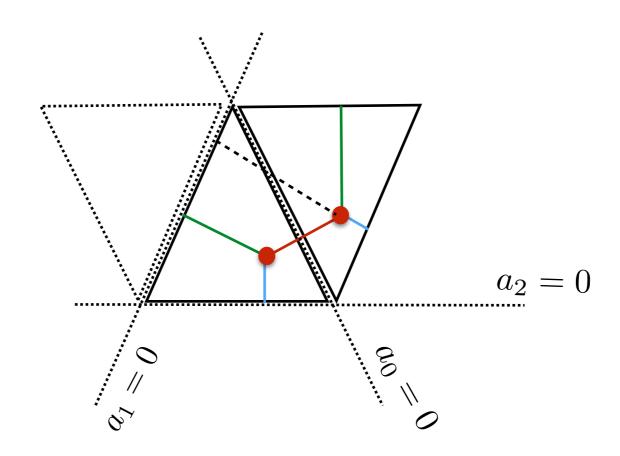
Dynkin Diagrams

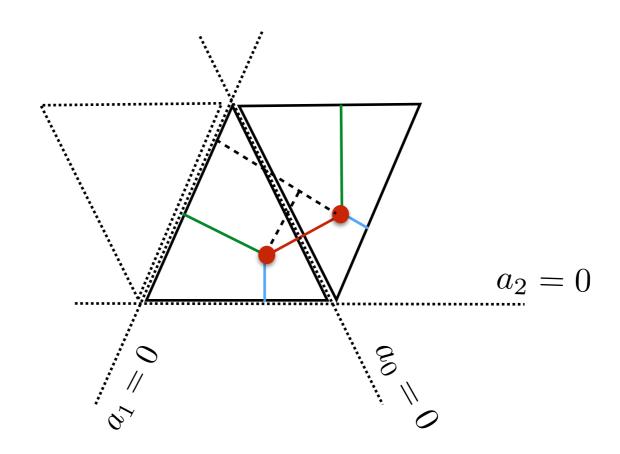


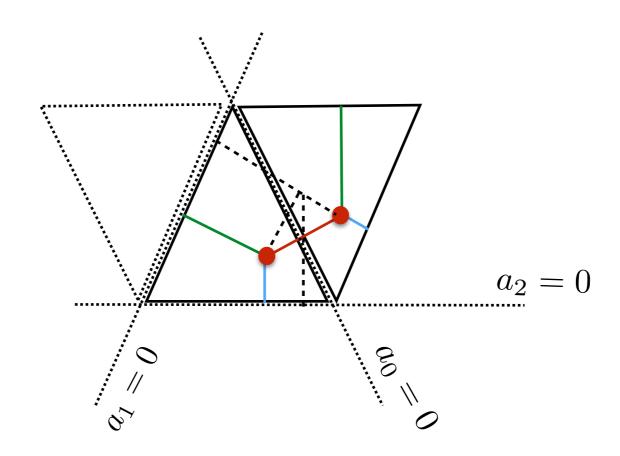
Part I

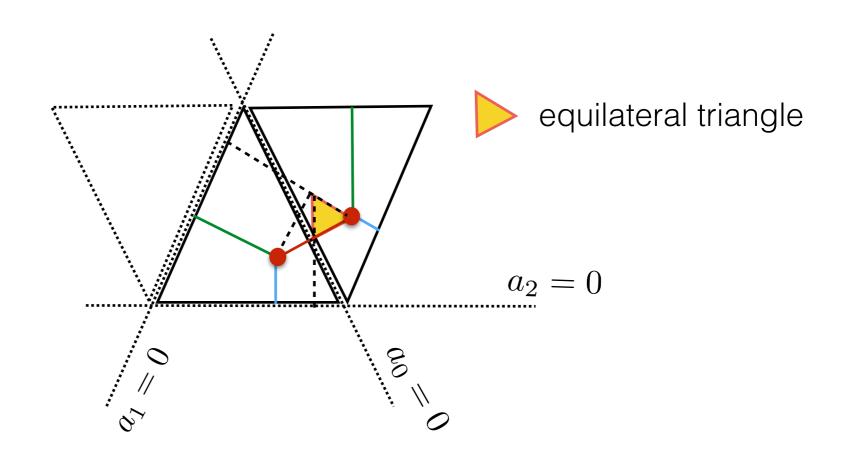
- Lattices
- Dynamics on N-cubes
- Symmetry reductions

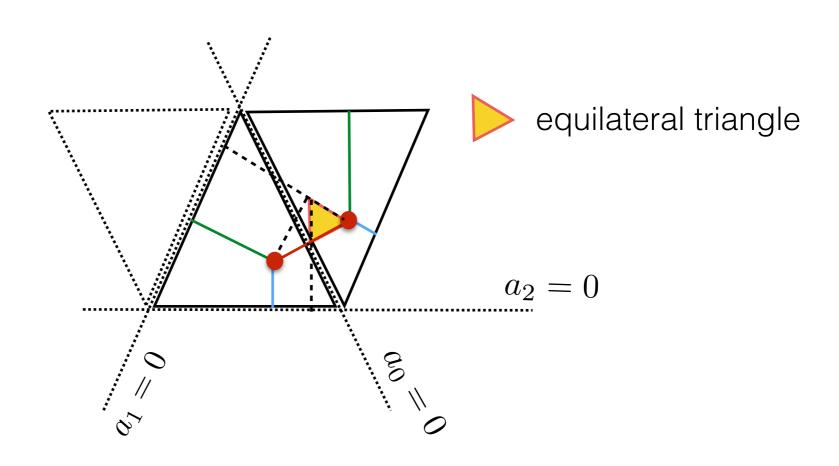












$$s_0(a_0, a_1, a_2) = (-a_0, a_1 + a_0, a_2 + a_0)$$

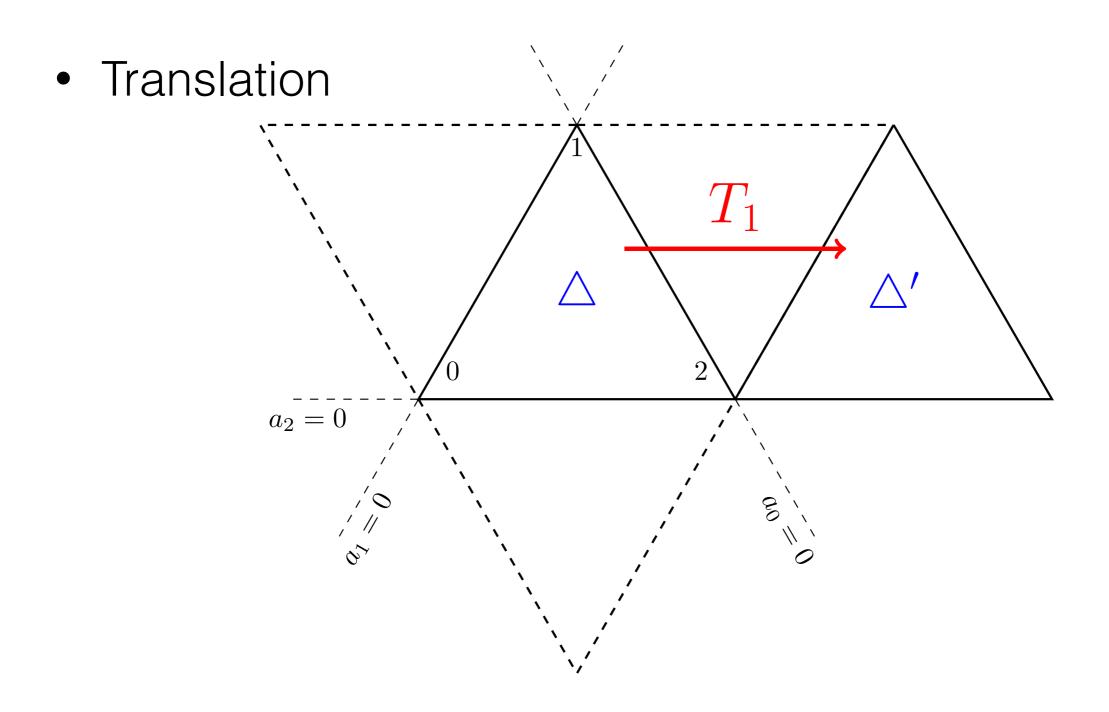
Coxeter Relations

$$\widetilde{\mathcal{W}}(A_2^{(1)}) = \langle s_0, s_1, s_2, \pi \rangle$$

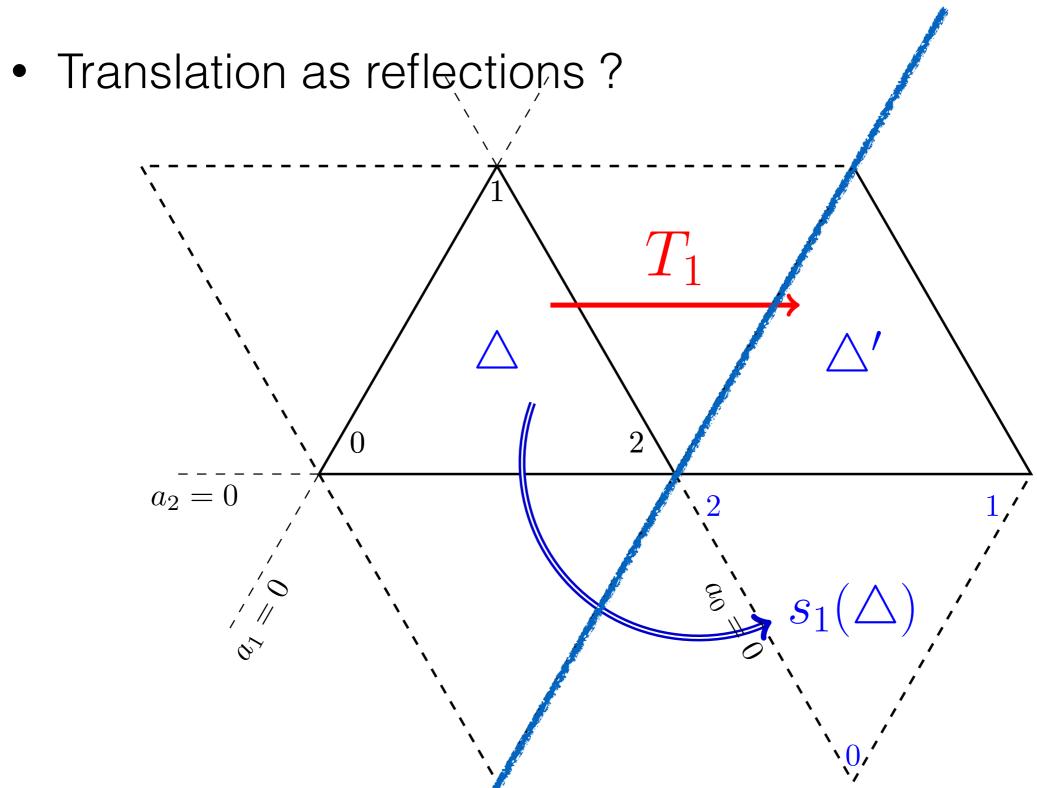
$$\begin{cases}
 s_j^2 = 1 \\
 (s_j s_{j+1})^3 = 1 \\
 \pi s_j = s_{j+1} \pi
 \end{cases}
 \qquad j \in \mathbb{N} \mod 3$$

 π : diagram automorphism $\pi^3 = 1$

Discrete Dynamics I



Discrete Dynamics II

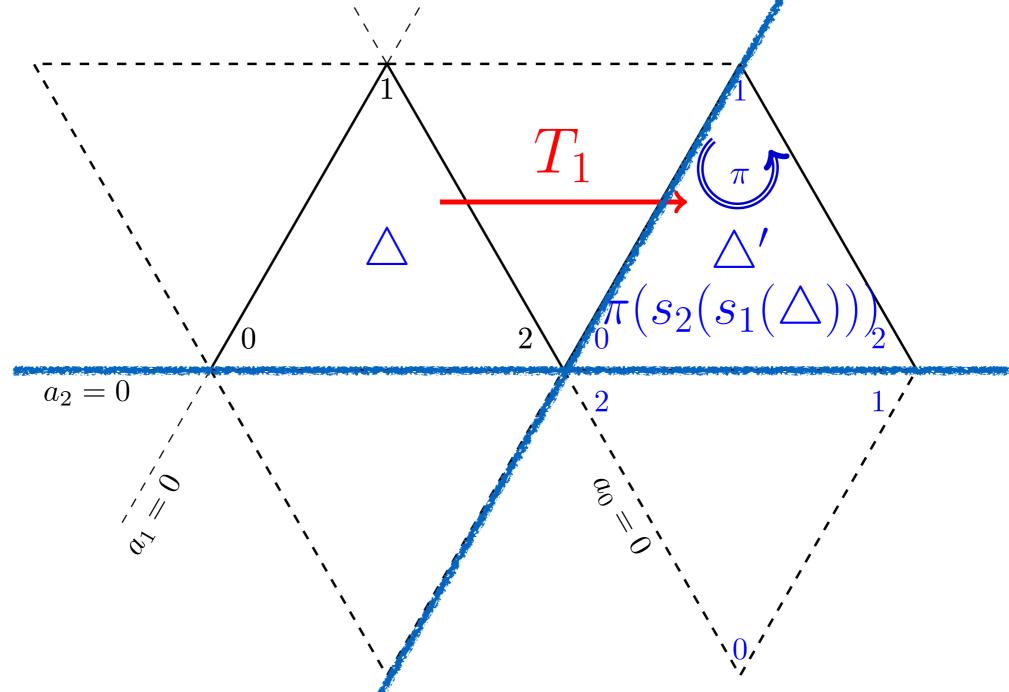


Discrete Dynamics II

 Translation as reflections? $a_2 = 0$

Discrete Dynamics II

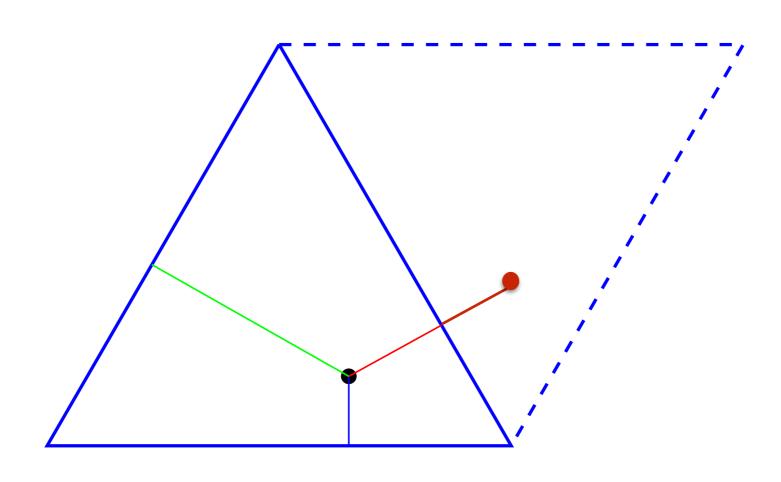
Translation as reflections?



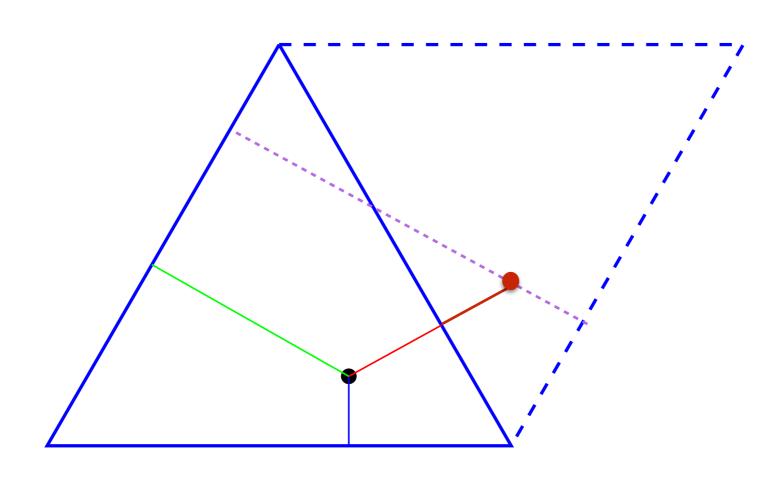
Discrete Dynamics III

- Translations as reflections
 - + diagram automorphism

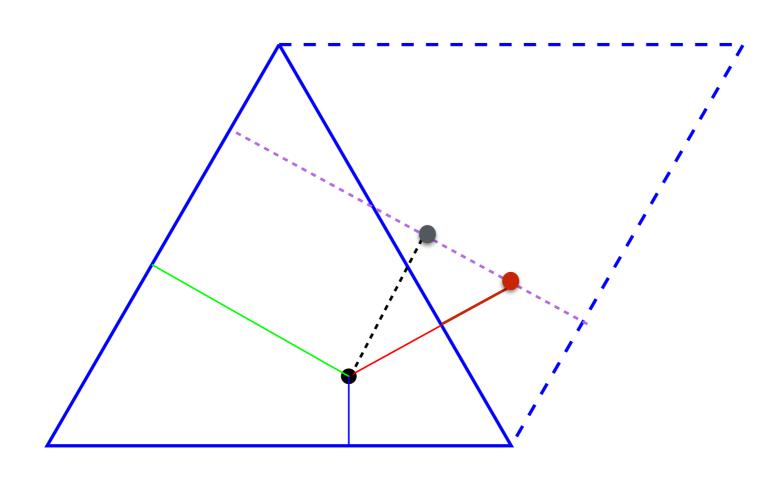
$$T_1 = \pi s_2 s_1$$
 $T_2 = s_1 \pi s_2$
 $T_0 = s_2 s_1 \pi$



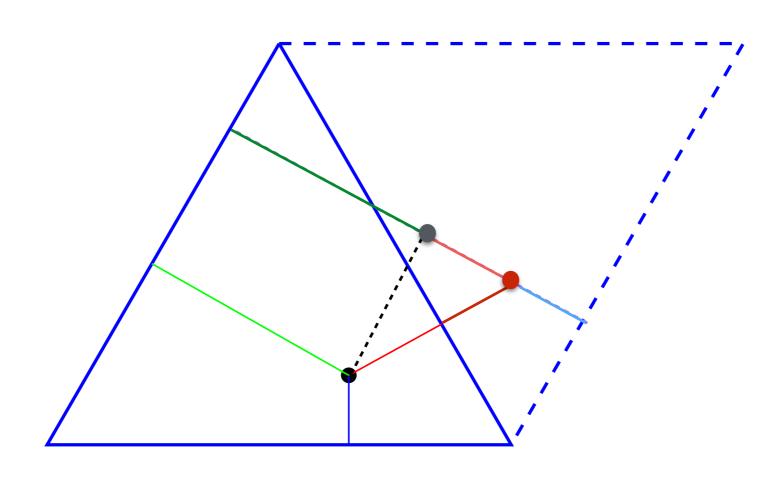
$$a_0 + a_1 + a_2 = k$$



$$a_0 + a_1 + a_2 = k$$



$$a_0 + a_1 + a_2 = k$$



$$a_0 + a_1 + a_2 = k$$

Translations

So we have

$$T_1(a_0) = \pi s_2 s_1(a_0)$$

$$= \pi s_2 (a_0 + a_1)$$

$$= \pi (a_0 + a_1 + 2a_2)$$

$$= a_1 + a_2 + 2 a_0 = a_0 + k$$

$$\Rightarrow$$

$$T_1(a_0) = a_0 + k$$
, $T_1(a_1) = a_1 - k$, $T_1(a_2) = a_2$

Cremona Isometries

	a_0	a_1	a_2	f_0	f_1	f_2
s_0	$-a_0$	$a_1 + a_0$	$a_2 + a_0$	f_0	$f_1 + \frac{a_0}{f_0}$	$f_2 - \frac{a_0}{f_0}$
s_1	$a_0 + a_1$	$-a_1$	$a_2 + a_1$	$f_0 - \frac{a_1}{f_1}$	f_1	$f_2 - \frac{a_1}{f_1}$
s_2	$a_0 + a_2$	$a_1 + a_2$	$-a_2$	$f_0 + \frac{a_2}{f_2}$	$f_1 - \frac{a_2}{f_1}$	f_2

Noumi 2004

Cremona Isometries

	a_0	a_1	a_2	f_0	f_1	f_2
s_0	$-a_0$	$a_1 + a_0$	$a_2 + a_0$	f_0	$f_1 + \frac{a_0}{f_0}$	$f_2 - \frac{a_0}{f_0}$
s_1	$a_0 + a_1$	$-a_1$	$a_2 + a_1$	$f_0 - \frac{a_1}{f_1}$	f_1	$f_2 - \frac{a_1}{f_1}$
s_2	$a_0 + a_2$	$a_1 + a_2$	$-a_2$	$f_0 + \frac{a_2}{f_2}$	$f_1 - \frac{a_2}{f_1}$	f_2

Translations again

Using

$$T_1(a_0) = a_0 + 1, T_1(a_1) = a_1 - 1, T_1(a_2) = a_2$$

Define

$$u_n = T_1^n(f_1), v_n = T_1^n(f_0)$$

Translations again

Using

$$T_1(a_0) = a_0 + 1, T_1(a_1) = a_1 - 1, T_1(a_2) = a_2$$

Define

$$u_n = T_1^n(f_1), v_n = T_1^n(f_0)$$

$$\begin{cases} u_n + u_{n+1} = t - v_n - \frac{a_0 + n}{v_n} \\ v_n + v_{n-1} = t - u_n + \frac{a_1 - n}{u_n} \end{cases}$$

Translations again

Using

$$T_1(a_0) = a_0 + 1, T_1(a_1) = a_1 - 1, T_1(a_2) = a_2$$

Define

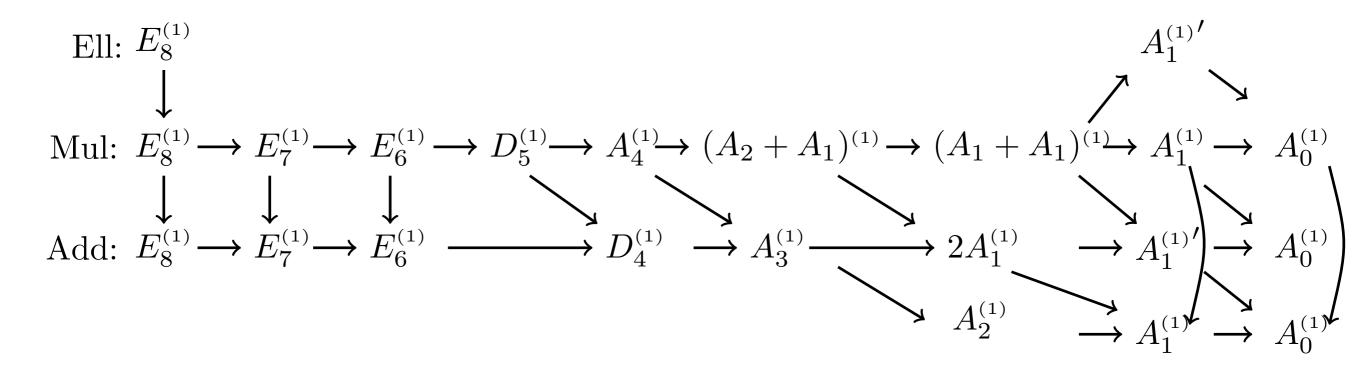
$$u_n = T_1^n(f_1), v_n = T_1^n(f_0)$$

$$\begin{cases} u_n + u_{n+1} = t - v_n - \frac{a_0 + n}{v_n} \\ v_n + v_{n-1} = t - u_n + \frac{a_1 - n}{u_n} \end{cases}$$

This is a discrete Painlevé equation.

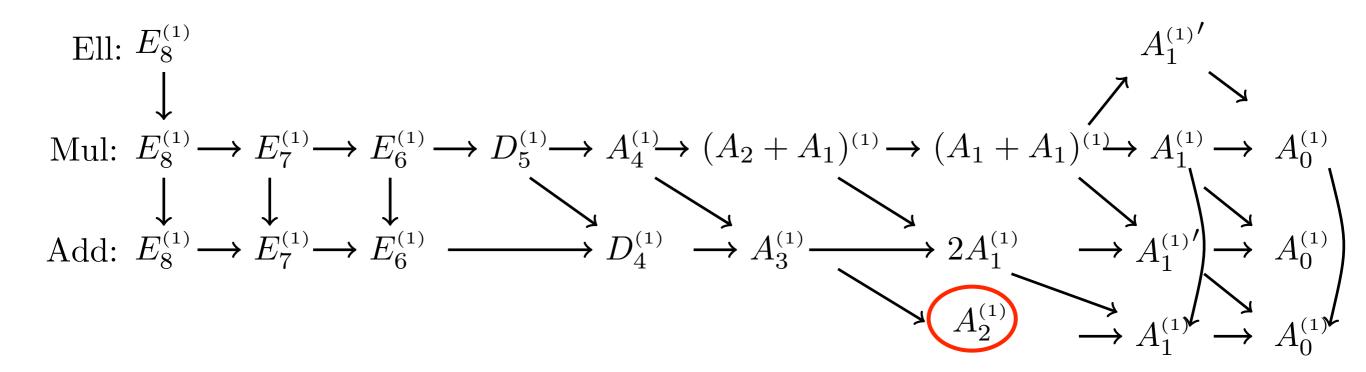
Sakai described all such equations.

Sakai's Description I



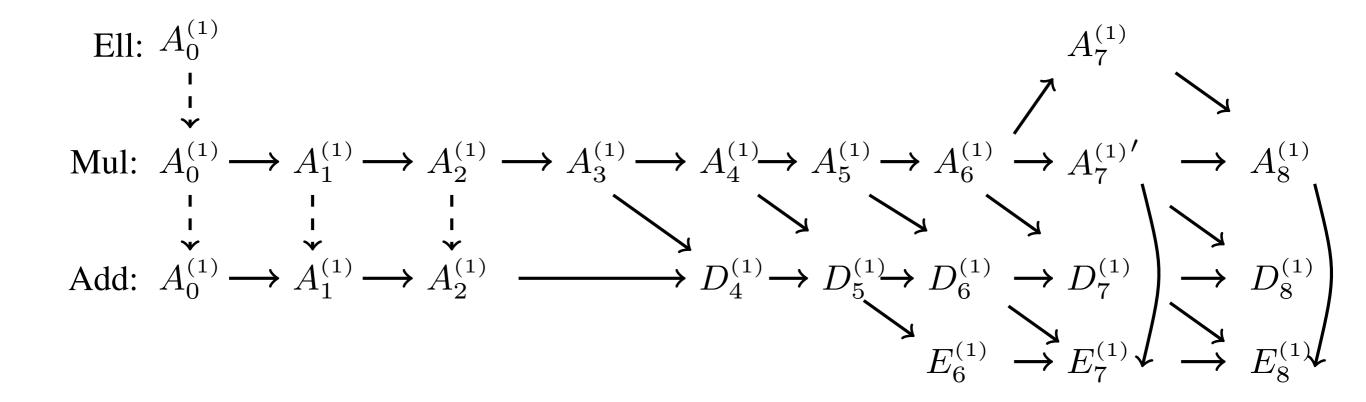
Symmetry groups of Painlevé equations

Sakai's Description I



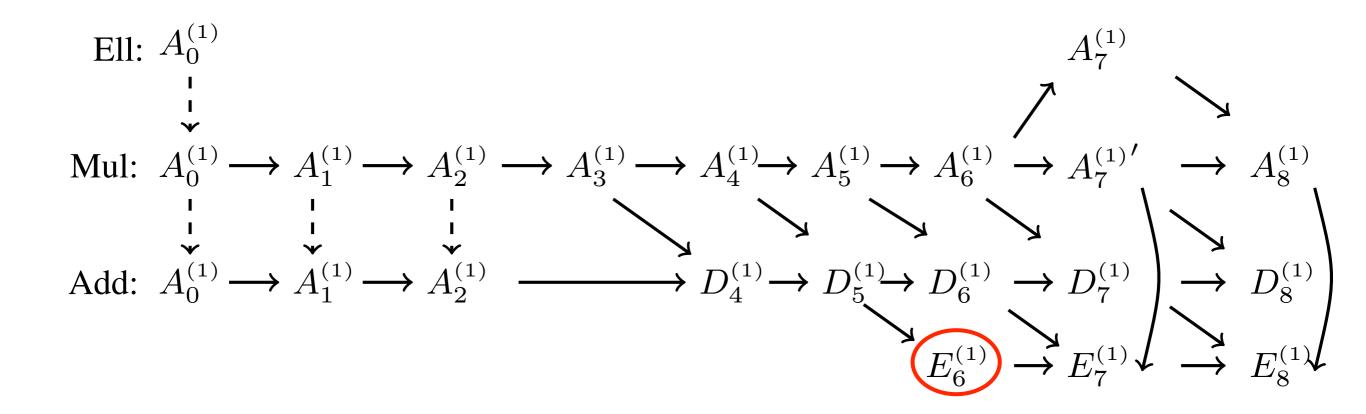
Symmetry groups of Painlevé equations

Sakai's Description II

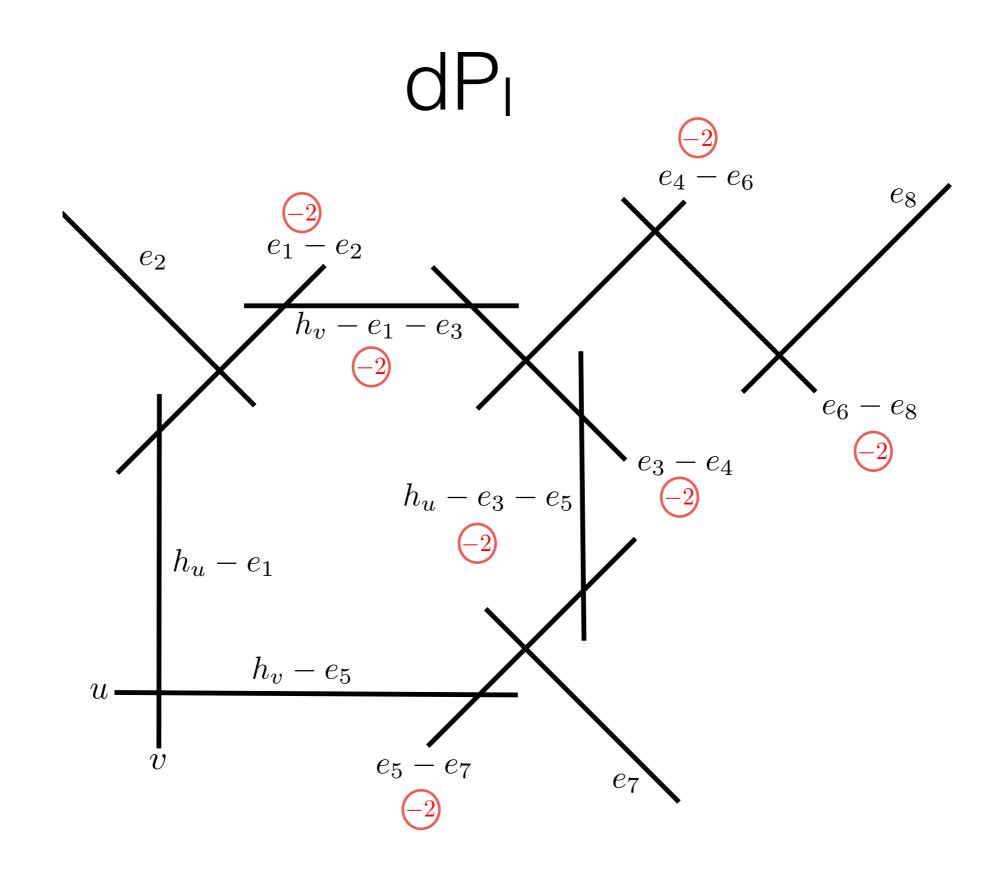


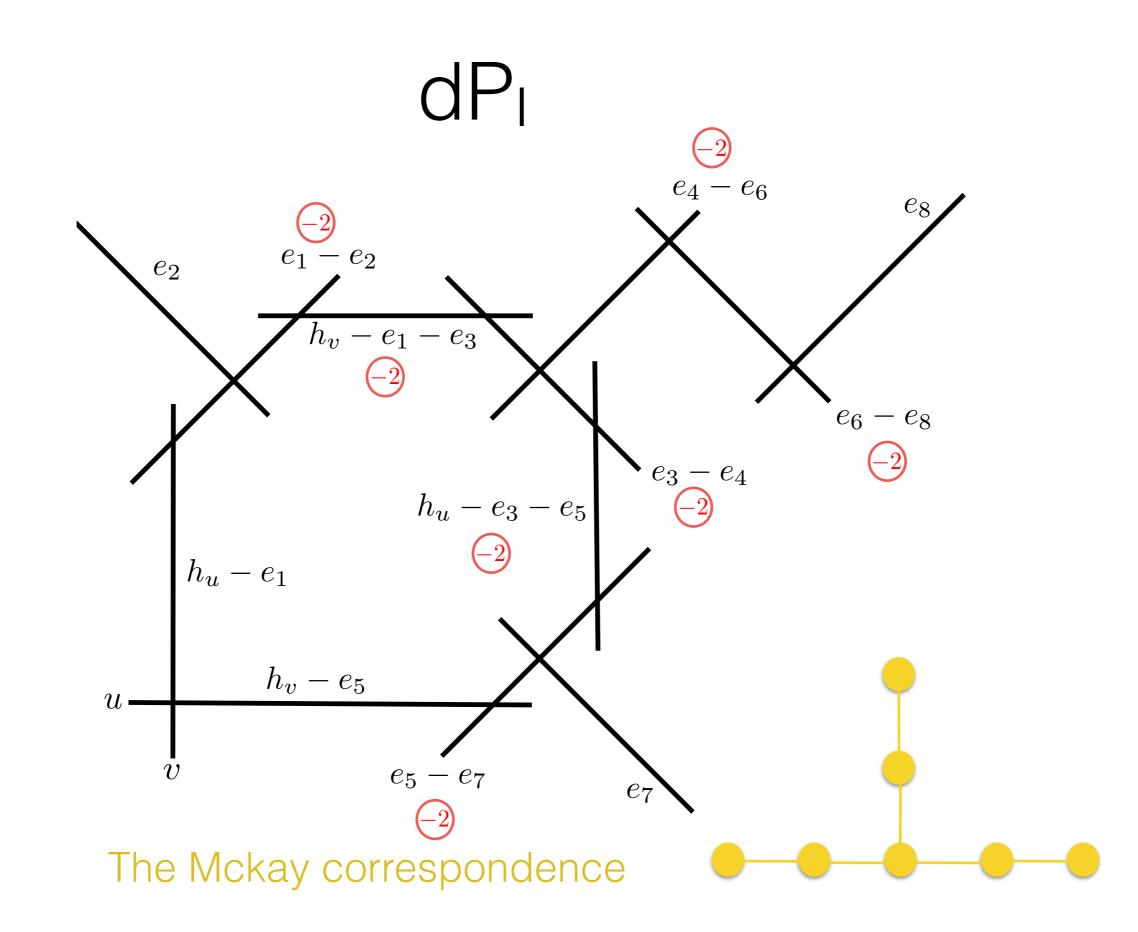
Initial-value spaces of Painlevé equations

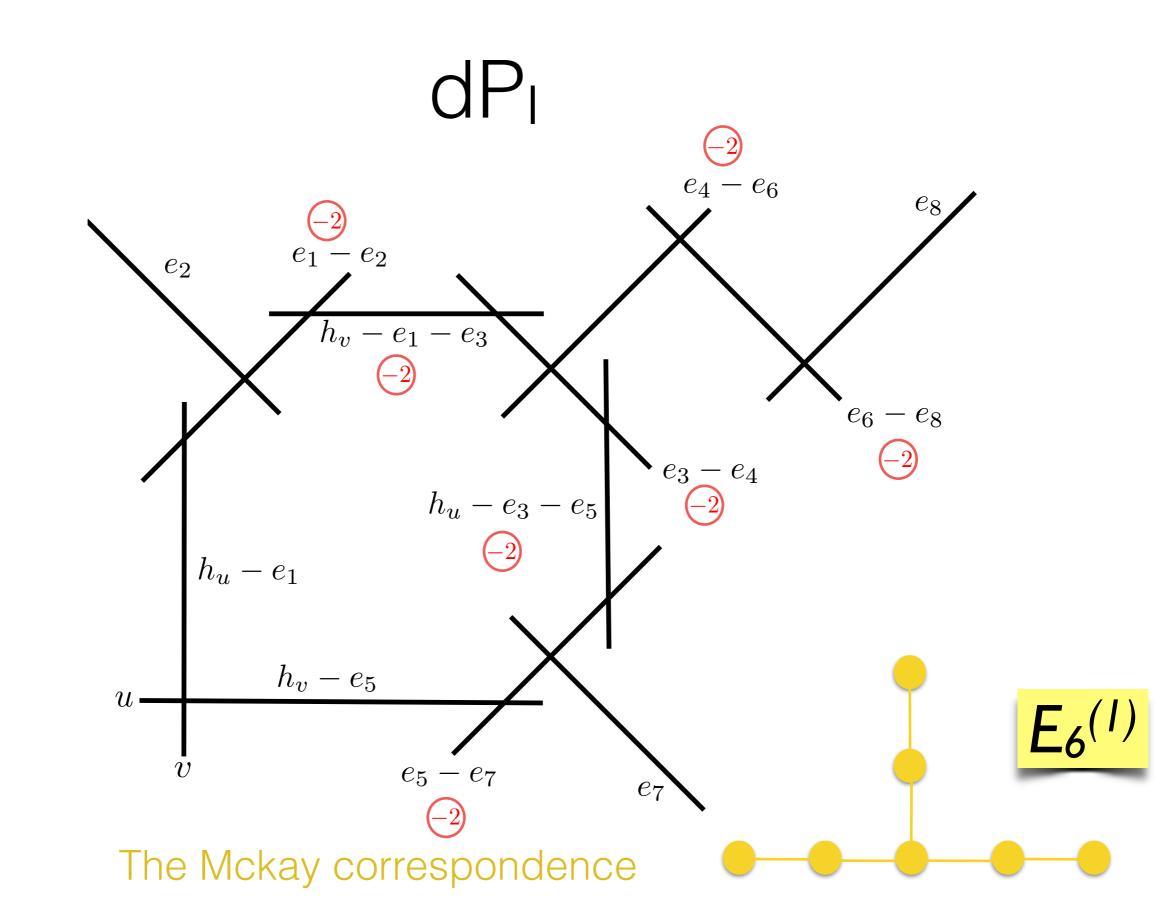
Sakai's Description II



Initial-value spaces of Painlevé equations







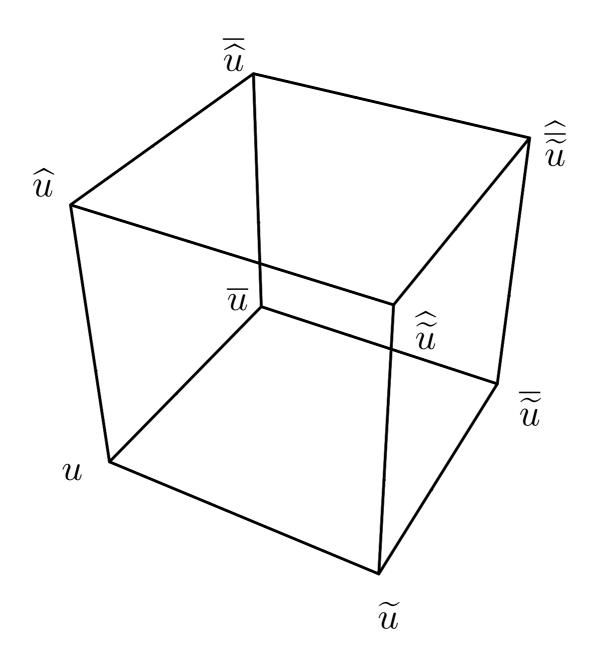
Part 2

- Lattices
- Dynamics on N-cubes
- Symmetry reductions

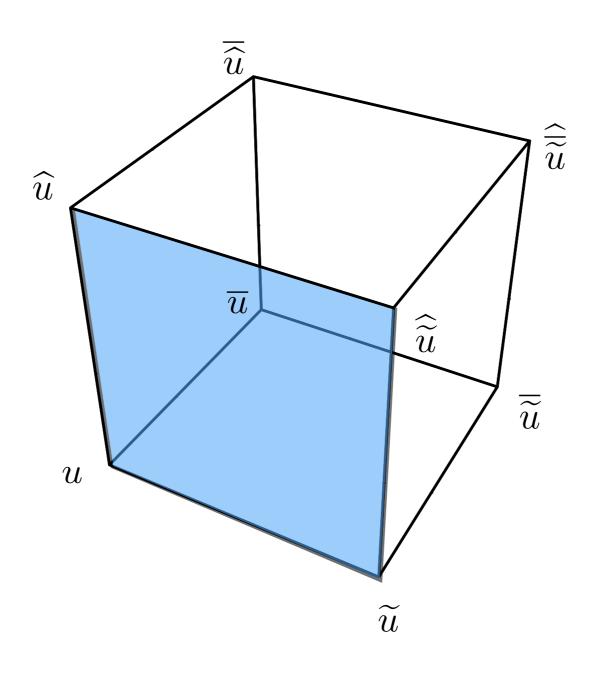


Q(x, u, v, y) = 0

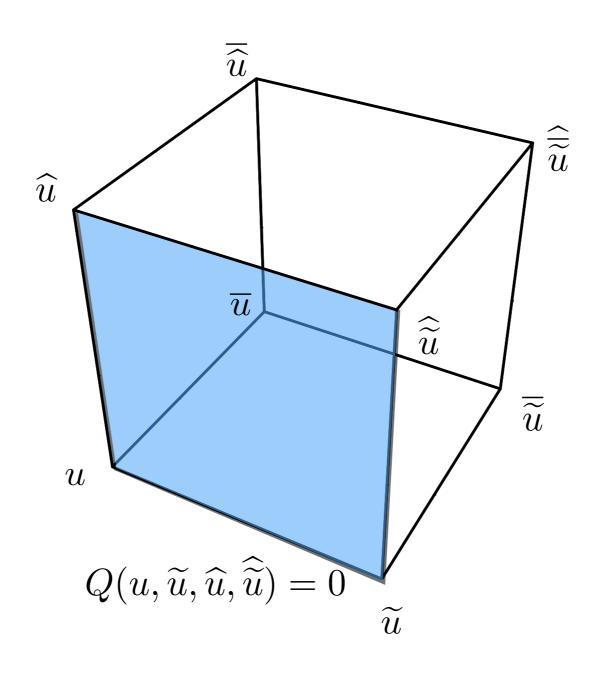
Consistency



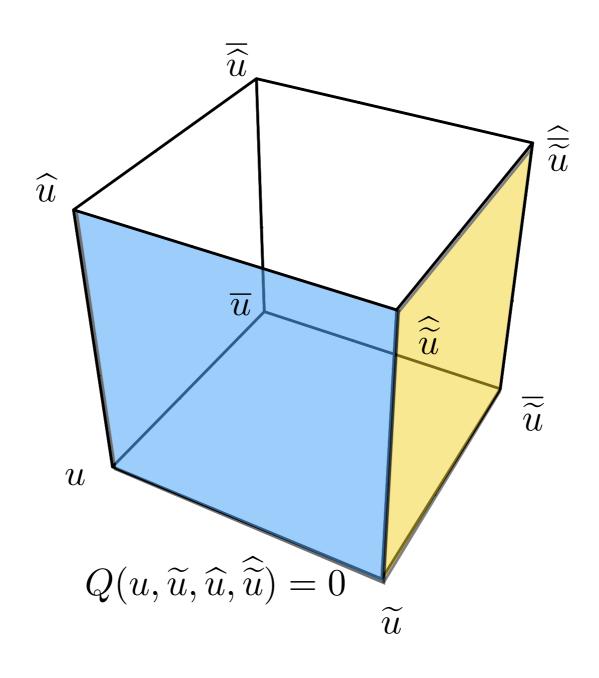
Consistency



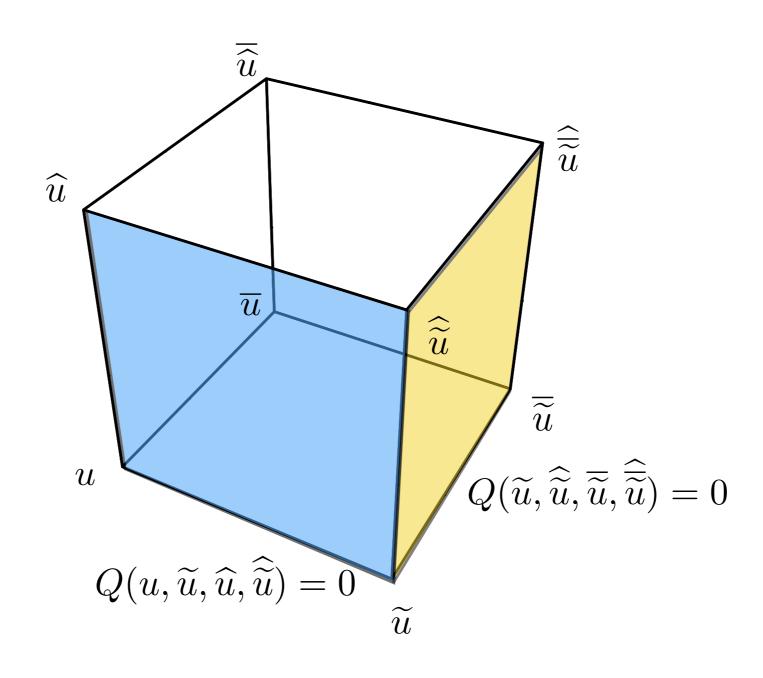
Consistency



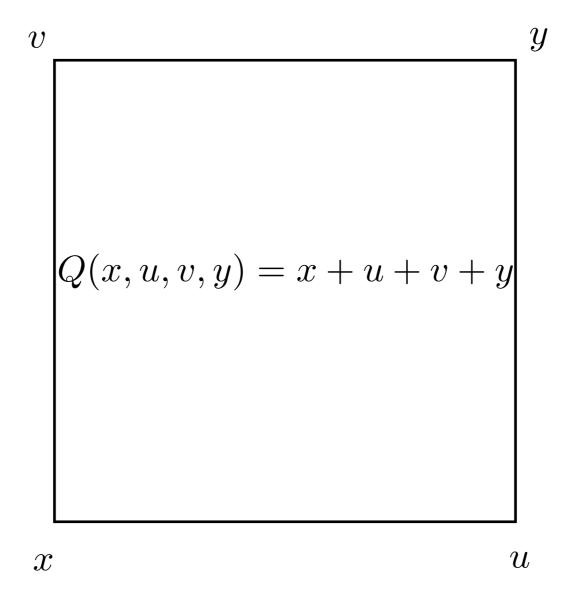
Consistency



Consistency



Linear Case



$$x + u + v + y = 0$$

Consider Q(x, u, v, y) = x + u + v + y

$$u + \widetilde{u} + \widehat{u} + \widehat{\widetilde{u}} = 0$$

$$u + \widetilde{u} + \overline{u} + \widehat{\overline{u}} = 0$$

$$u + \overline{u} + \widehat{u} + \widehat{\overline{u}} = 0$$

$$\widetilde{u} + \overline{\widetilde{u}} + \widehat{\widetilde{u}} + \widehat{\overline{\widetilde{u}}} = 0$$

$$\widehat{u} + \widehat{\widetilde{u}} + \widehat{\widetilde{u}} + \widehat{\overline{\widetilde{u}}} = 0$$

$$\overline{u} + \widehat{\widetilde{u}} + \widehat{\overline{u}} + \widehat{\overline{\widetilde{u}}} = 0$$

$$\widehat{\overline{\widetilde{u}}} = 2u + \widetilde{u} + \overline{u} + \widehat{u}$$

Consider Q(x, u, v, y) = x + u + v + y

$$u + \widetilde{u} + \widehat{u} + \widehat{\widetilde{u}} = 0$$

$$u + \widetilde{u} + \overline{u} + \widehat{\overline{u}} = 0$$

$$u + \overline{u} + \widehat{u} + \widehat{\overline{u}} = 0$$

$$\widetilde{u} + \overline{\widetilde{u}} + \widehat{\widetilde{u}} + \widehat{\overline{\widetilde{u}}} \neq 0$$

$$\widehat{u} + \widehat{\widetilde{u}} + \widehat{\widetilde{u}} + \widehat{\overline{\widetilde{u}}} \neq 0$$

$$\overline{u} + \widehat{\widetilde{u}} + \widehat{\overline{u}} + \widehat{\overline{\widetilde{u}}} \neq 0$$

$$\widehat{\overline{\widetilde{u}}} = 2u + \widetilde{u} + \overline{u} + \widehat{u}$$

Consider Q(x, u, v, y) = x + u + v + y

$$u + \widetilde{u} + \widehat{u} + \widehat{\widetilde{u}} = 0$$

$$u + \widetilde{u} + \overline{u} + \overline{\widetilde{u}} = 0$$

$$u + \overline{u} + \widehat{u} + \widehat{\overline{u}} = 0$$

$$\widetilde{u} + \overline{\widetilde{u}} + \widehat{\widetilde{u}} + \widehat{\overline{\widetilde{u}}} = 0$$

$$\widehat{u} + \widehat{\widetilde{u}} + \widehat{\overline{u}} + \widehat{\overline{\widetilde{u}}} \neq 0$$

$$\overline{u} + \widehat{\overline{u}} + \widehat{\overline{u}} + \widehat{\overline{u}} + \widehat{\overline{\widetilde{u}}} \neq 0$$

$$\widehat{\overline{\widetilde{u}}} = 2u + \widetilde{u} + \overline{u} + \widehat{u}$$

Consider Q(x, u, v, y) = x + u + v + y

$$u + \widetilde{u} + \widehat{u} + \widehat{u} \neq \widehat{u} \neq 0$$

$$u + \widetilde{u} + \widehat{u} + \widehat{u} \neq \widehat{u} \neq 0$$

$$u + \overline{u} + \widehat{u} + \widehat{u} = 0$$

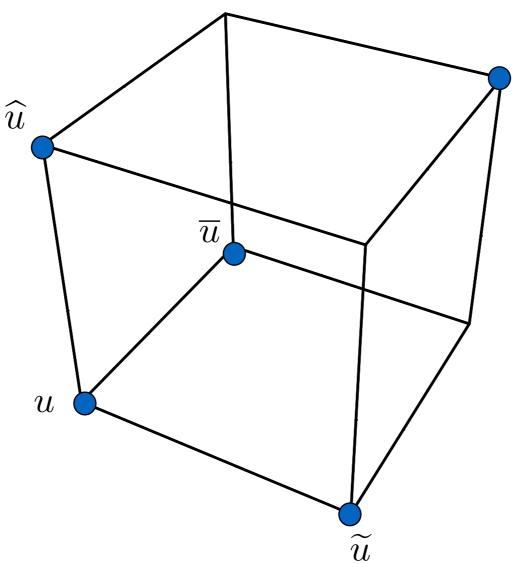
$$\widetilde{u} + \widehat{u} + \widehat{u} + \widehat{u} \neq \widehat{u} \neq \widehat{u} \neq 0$$

$$\widehat{u} + \widehat{u} + \widehat{u} + \widehat{u} \neq \widehat{u} \neq 0$$

$$\overline{u} + \widehat{u} + \widehat{u} + \widehat{u} \neq 0$$

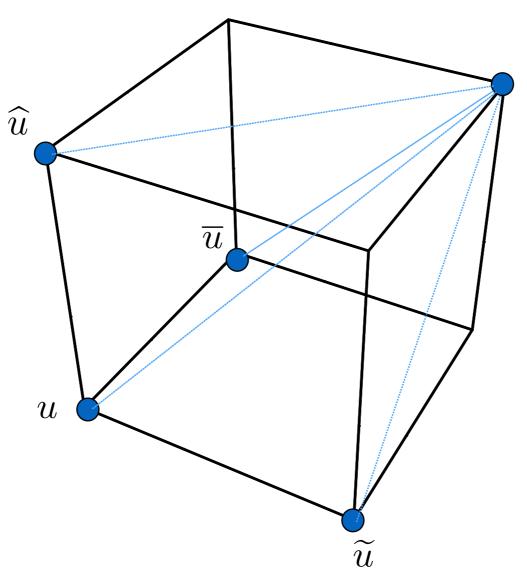
$$\widehat{\overline{\widetilde{u}}} = 2u + \widetilde{u} + \overline{u} + \widehat{u}$$

Tetrahedral Condition



The result depends only on 4 earlier vertices to which it is not connected by an edge.

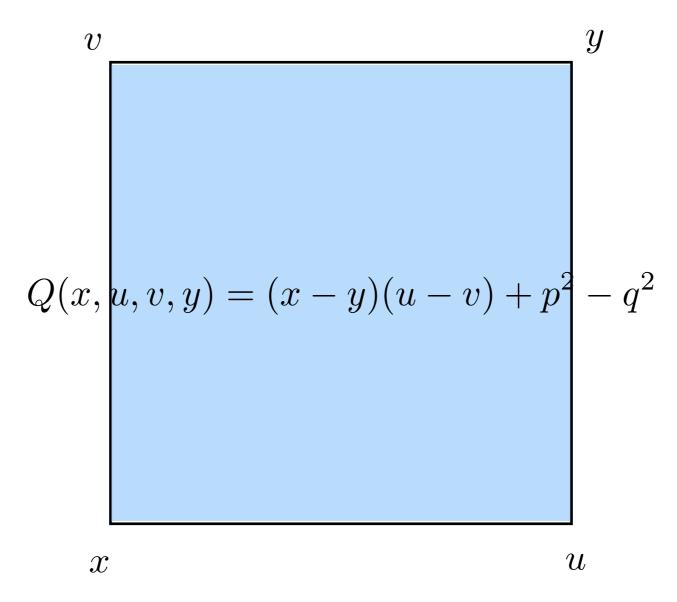
Tetrahedral Condition



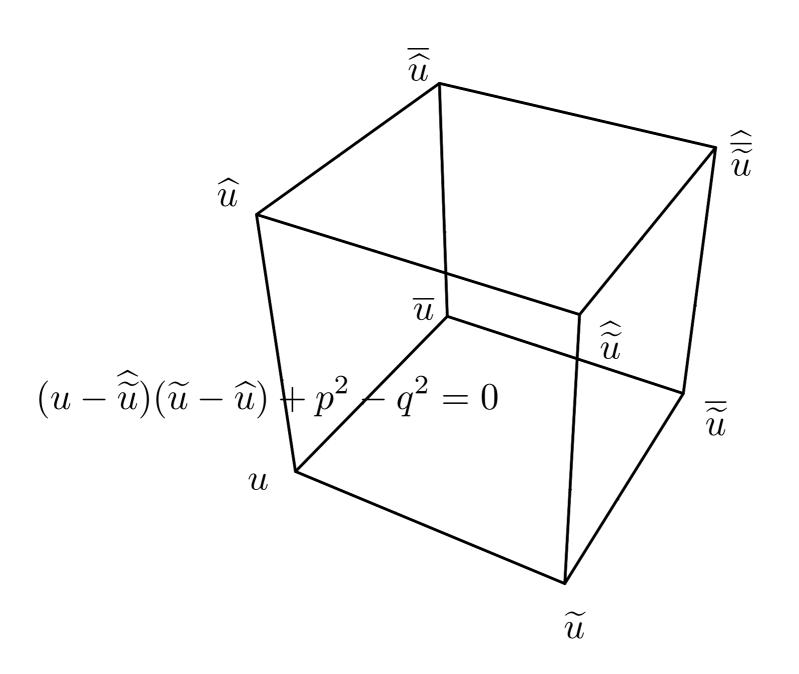
The result depends only on 4 earlier vertices to which it is not connected by an edge.

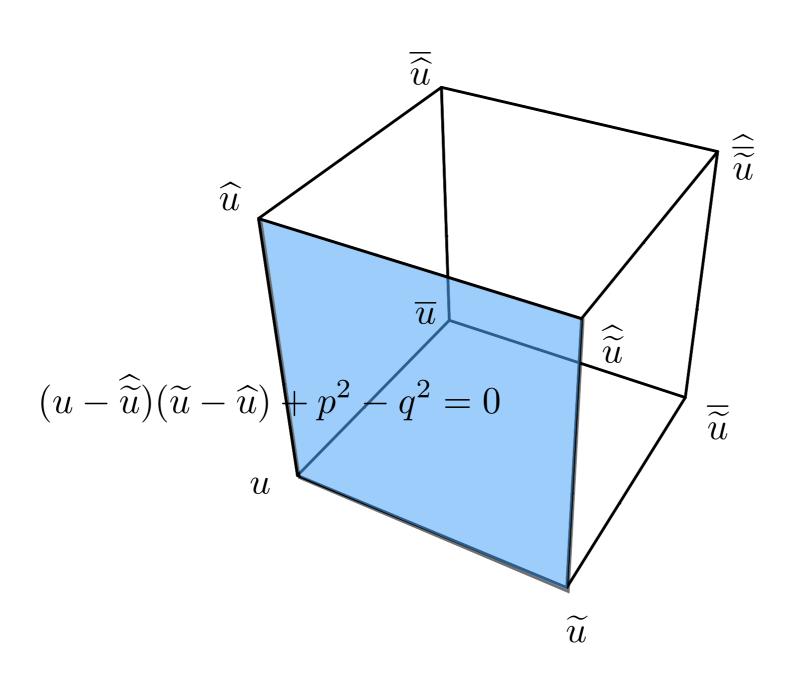
Are there more examples?

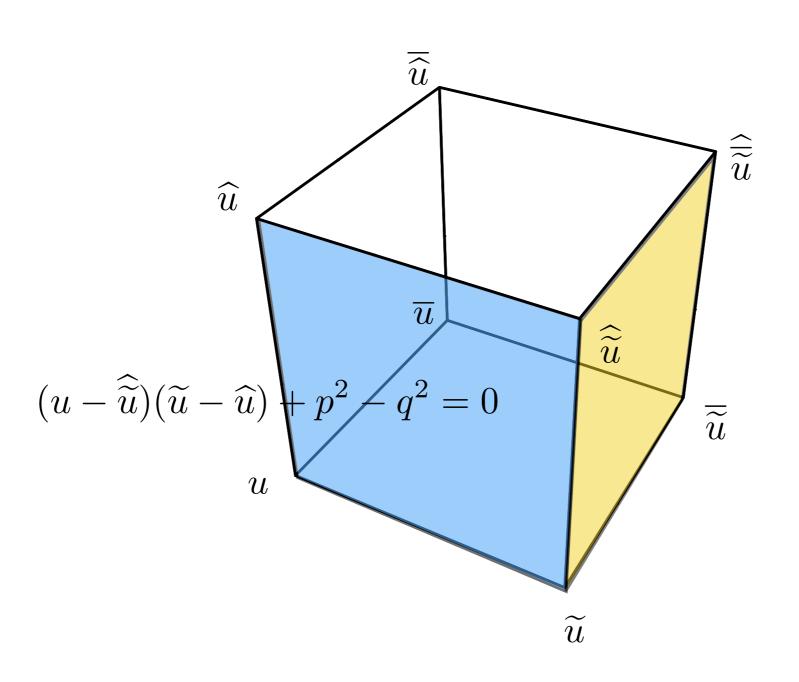
Non-Linear Case



Nijhoff, Quispel, Capel, 1983 Nijhoff, Quispel, van der Linden, Capel, 1983







$$(u - \widehat{u})(\widetilde{u} - \widehat{u}) + p^2 - q^2 = 0$$

$$(u - \overline{u})(\widetilde{u} - \overline{u}) + p^2 - r^2 = 0$$

$$(u - \widehat{u})(\overline{u} - \widehat{u}) + r^2 - q^2 = 0$$

$$(\overline{u} - \overline{\widehat{u}})(\overline{u} - \widehat{u}) + p^2 - q^2 = 0$$

$$(\overline{u} - \overline{\widehat{u}})(\overline{u} - \overline{u}) + p^2 - r^2 = 0$$

$$(\widehat{u} - \overline{\widehat{u}})(\overline{u} - \overline{u}) + p^2 - r^2 = 0$$

$$(\widetilde{u} - \overline{\widehat{u}})(\overline{u} - \overline{u}) + r^2 - q^2 = 0$$

$$\downarrow \downarrow$$

$$\overline{\widehat{u}} = \frac{p^2 \overline{u} \widetilde{u} - p^2 \widehat{u} \widetilde{u} - q^2 \overline{u} \widehat{u} + q^2 \widehat{u} \widetilde{u} + r^2 \overline{u} \widehat{u} - r^2 \overline{u} \widetilde{u}}{p^2 \overline{u} - p^2 \widehat{u} - q^2 \overline{u} + q^2 \widehat{u} + r^2 \widehat{u} - r^2 \overline{u}}$$

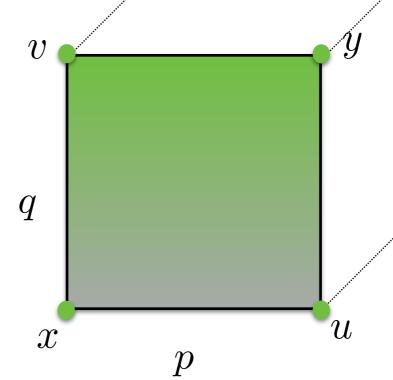
Classification

Motivated by work of Nijhoff, Capel et al (1983—'01) Adler,
 Bobenko & Suris (2003,2009) classified all affine linear equations

$$Q(w, \widetilde{w}, \widehat{w}, \widehat{\widetilde{w}}; p, q) = 0$$

which are multi-dimensionally consistent on a quad-graph

$$Q(x, u, v, y; p, q) = 0$$



CAC Equations

Q4:
$$a_0xuvy + a_1(xuv + uvy + vyx + yxu) + a_2(xy + uv) + \overline{a}_2(xu + vy) + \widetilde{a}_2(xv + uy) + a_3(x + u + v + y) + a_4 = 0$$

CAC Equations

- ABS: Three classes of equations
- The "mistress" equation:

Q4:
$$a_0xuvy + a_1(xuv + uvy + vyx + yxu) + a_2(xy + uv) + \overline{a}_2(xu + vy) + \widetilde{a}_2(xv + uy) + a_3(x + u + v + y) + a_4 = 0$$

where the coefficients lie on an elliptic curve.

The two other classes are labelled H and A.

Some ABS Equations

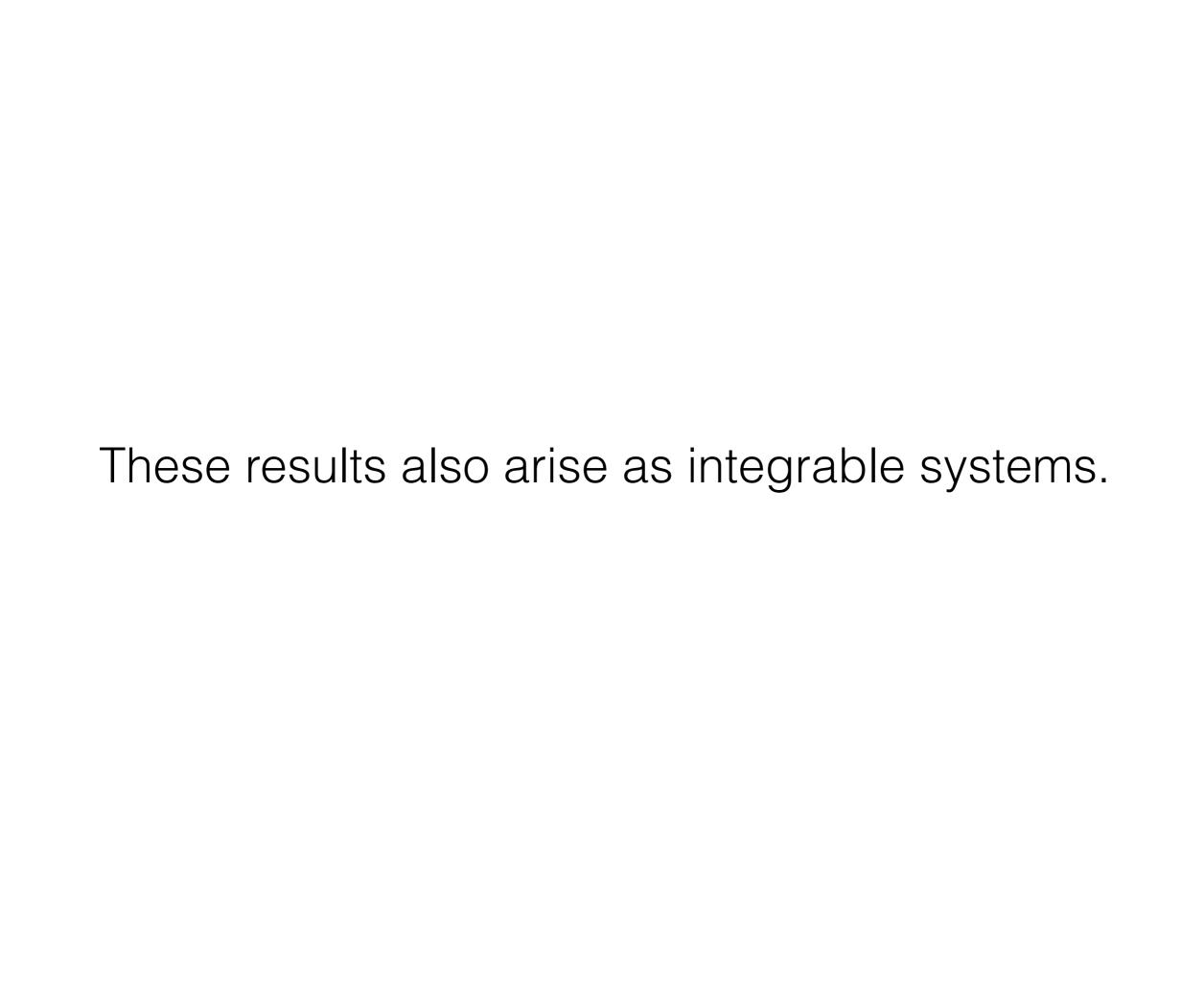
$$(x - y)(u - v) + p^2 - q^2 = 0$$

$$Q(xu + vy) - \mathcal{P}(uv + uy) + \frac{p^2 - q^2}{\mathcal{P}\mathcal{O}} = 0$$

where
$$\mathcal{P}^2 = a^2 - p^2, \mathcal{Q}^2 = a^2 - q^2$$

$$\mathcal{P}(uv + uy) - \mathcal{Q}(xu + vy) - (p^2 - q^2) \left(uv + xy + \frac{\delta^2}{4\mathcal{P}\mathcal{Q}} \right) = 0$$
 where
$$\mathcal{P}^2 = (p^2 - a^2)(p^2 - b^2)$$

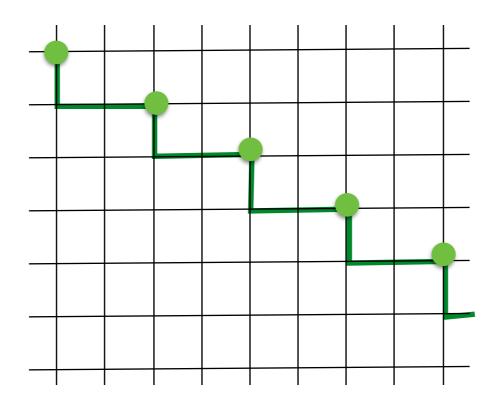
$$\mathcal{Q}^2 = (q^2 - a^2)(q^2 - b^2)$$



Part III

- Lattices
- Dynamics on N-cubes
- Symmetry reductions

Discrete Staircases



$$w(l+2,k) = w(l,k+1)$$

Reductions

• Grammaticos *et al* 2005 showed for $H3_{\delta=0}$

$$\frac{\widehat{\overline{w}}}{w} = \frac{\alpha \overline{w} - \beta \,\widehat{w}}{\alpha \,\widehat{w} - \beta \,\overline{w}}$$

• $r = \frac{\beta}{\alpha}$ and $\widehat{w} = \overline{\overline{w}} \Rightarrow \overline{\overline{r}} r = \overline{r} \overline{\overline{r}}$

$$h = \frac{\overline{\overline{w}}}{\overline{w}} \Rightarrow \overline{h} h \underline{h} = \frac{1 - rh}{r - h}$$

a discrete third *q*-Painlevé equation (qP₃)

Other examples of reductions now known, but no systematic approach.

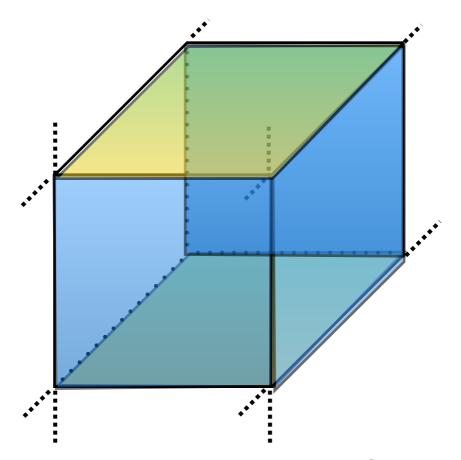
Different Equations on Faces

Boll (20011, 2012) showed that combinations of H3 and H6 provide new consistent systems on the 3-cube, where

$$H6: \quad xy + uv + \delta_1 xu + \delta_2 vy = 0$$

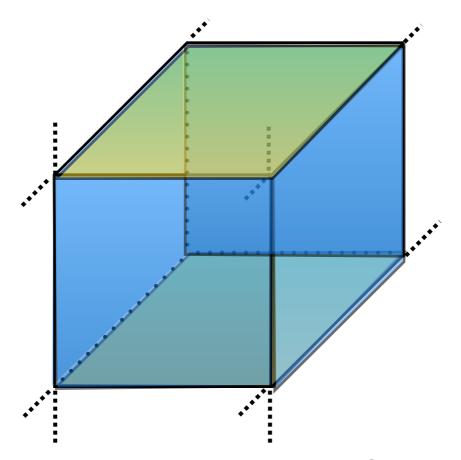
We place H3 (δ =0) on two faces and H6 (δ ₂=0) on four faces.

H3 & H6 on 3-cube



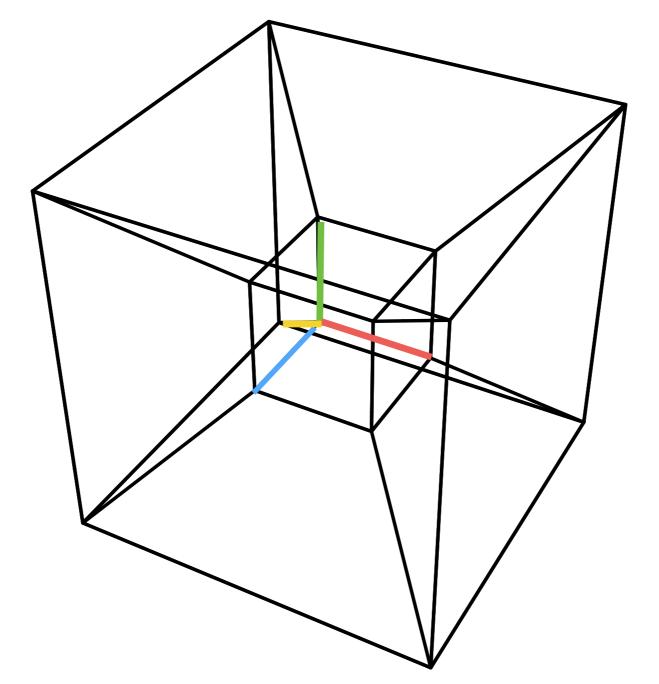
- •H3 is on top and bottom faces
- H6 is on the front, right, back and left faces.
- Consistency imposes conditions on parameters.

H3 & H6 on 3-cube



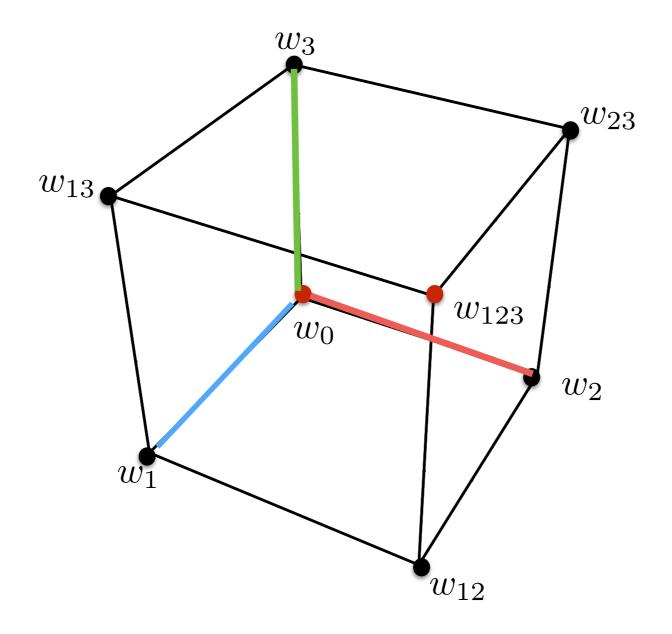
- •H3 is on top and bottom faces
- H6 is on the front, right, back and left faces.
- Consistency imposes conditions on parameters.

H3 & H6 on 4-cube

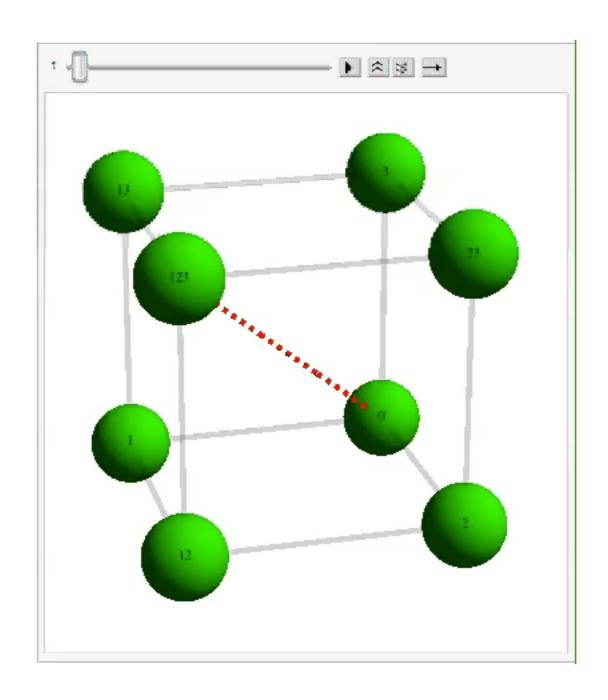


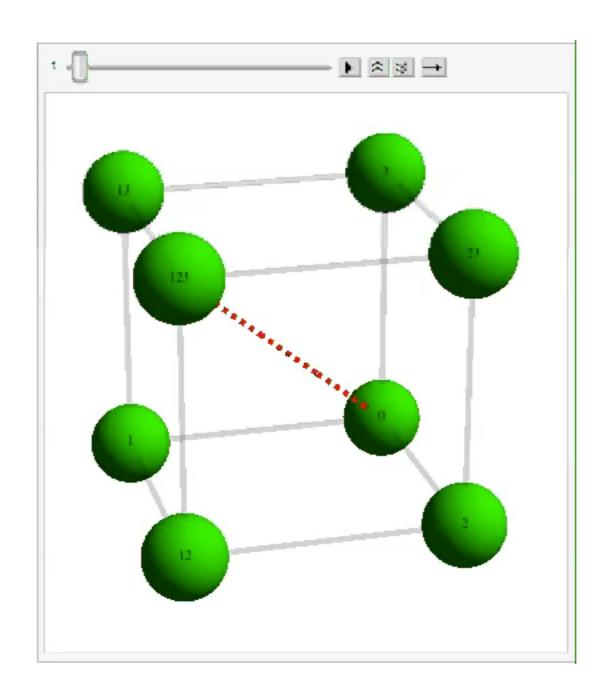
Each sub 3-cube in this 4-cube has 2 copies of H3 and 4 copies of H6 associated to its faces.

In 3D



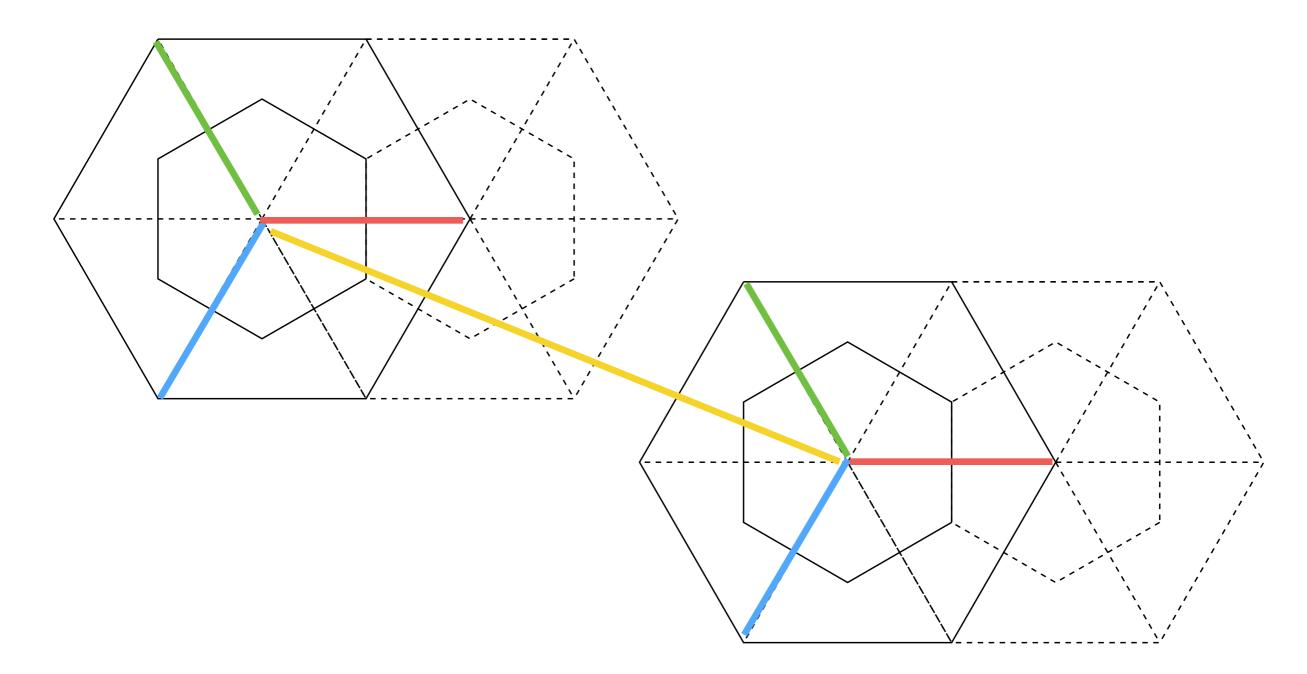
Push one corner of the cube to the diagonally opposite corner ⇒ a hexagon





Reduction

$$\hat{\overline{\widetilde{w}}} = -i \lambda w$$
 $\hat{\lambda} = q \lambda$



Reductions

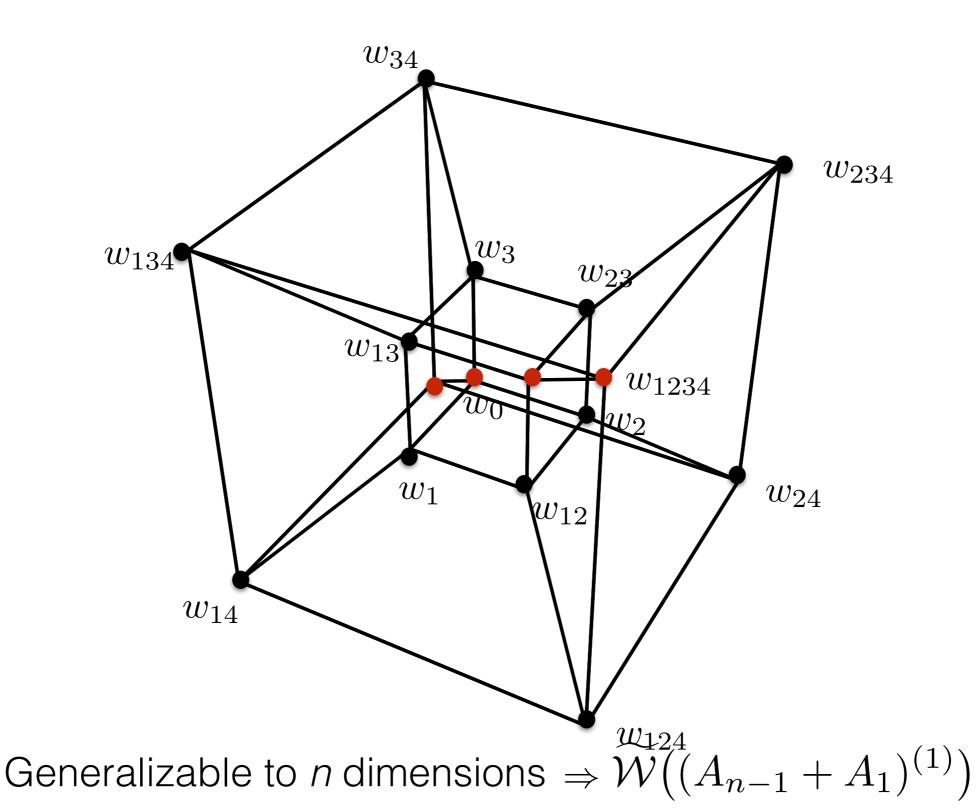
- The reductions have symmetry group $\widetilde{\mathcal{W}}\big((A_2+A_1)^{(1)}\big)$
- They are *q*-discrete Painlevé equations

$$q\text{-P}_{\text{IV}}: \begin{cases} f(qt) = ab \ g(t) \ \frac{1+c \ h(t) \ (a \ f(t)+1)}{1+a \ f(t) \ (b \ g(t)+1)}, \\ g(qt) = bc \ h(t) \ \frac{1+a \ f(t) \ (b \ g(t)+1)}{1+b \ g(t) \ (c \ h(t)+1)}, \\ h(qt) = ca \ f(t) \ \frac{1+b \ g(t) \ (c \ h(t)+1)}{1+c \ h(t) \ (a \ f(t)+1)}, \\ q\text{-P}_{\text{III}}: \begin{cases} g(qt) = \frac{a}{g(t) f(t)} \frac{1+t f(t)}{t+f(t)}, \\ f(qt) = \frac{a}{f(t) g(qt)} \frac{1+b t g(qt)}{b t+g(qt)}, \end{cases}$$

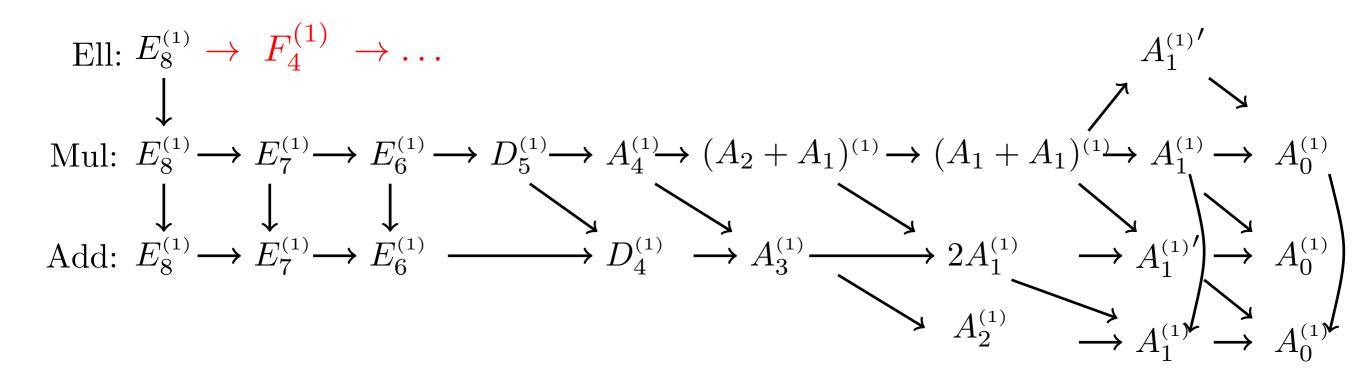
$$q\text{-P}_{\text{II}}: \ f(pt) = \frac{a}{f(p^{-1}t) f(t)} \frac{1+t f(t)}{t+f(t)},$$

Reductions also provide linear problems (Lax pairs)

Generalization



More Steps in Sakai's Description

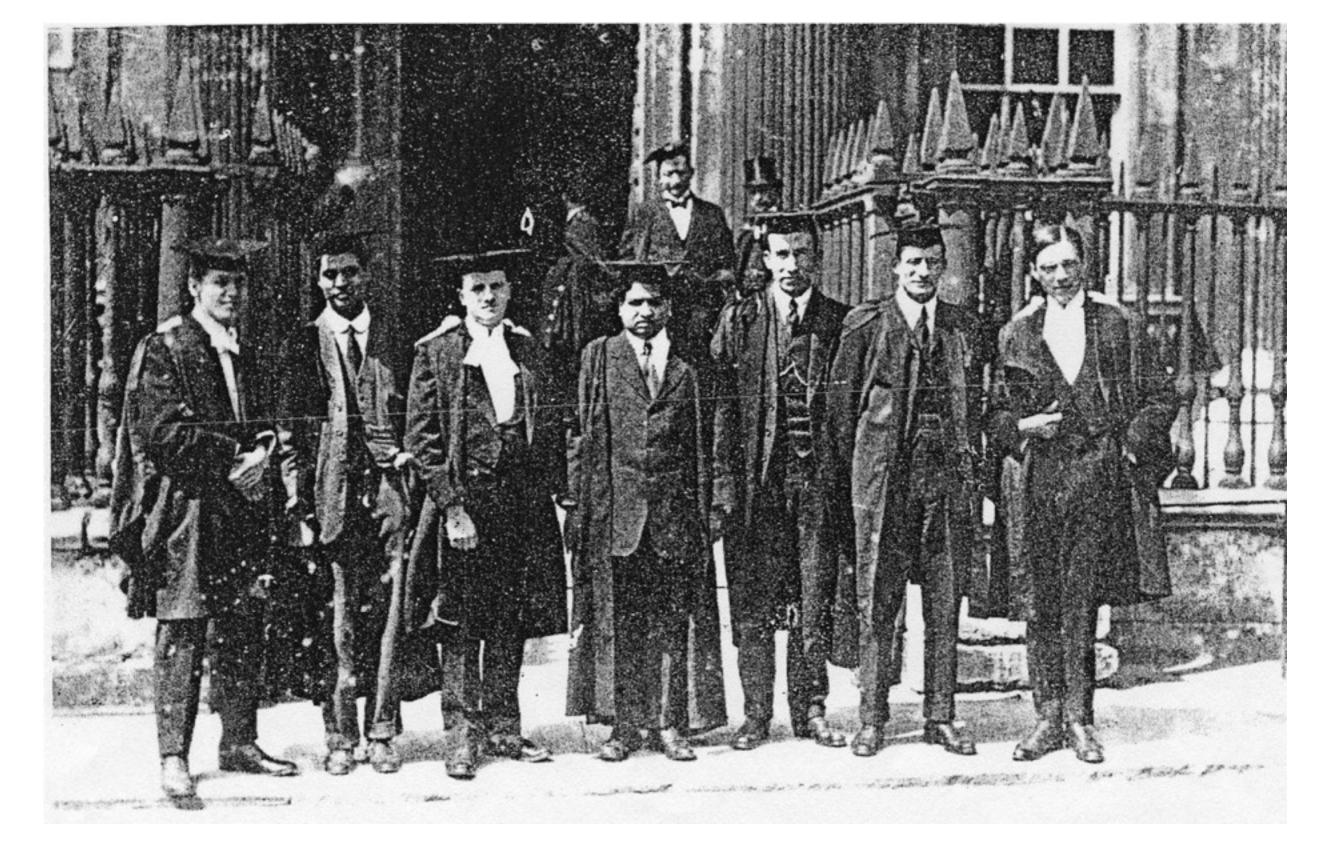


Symmetry groups of Painlevé equations

Sakai 2001

Summary

- Geometry provides a systematic method of finding reductions of partial difference equations.
- Reduction of the n-cube leads to q-discrete Painlevé equations of higher dimensions, with symmetry group $\widetilde{\mathcal{W}}\big((A_{n-1}+A_1)^{(1)}\big)$
- The symmetry lattice is realised as tessellations of the Voronoi cell of A_{n-1} .
- The lattice equations are found through ω-lattices,
 related to tau functions of discrete Painlevé equations.
- Other symmetry groups also arise.



The mathematician's patterns, like those of the painter's or the poet's, must be beautiful, the ideas, like the colours or the words, must fit together in a harmonious way. *GH Hardy, A Mathematician's Apology, 1940*