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ABSTRACT. Let I'" be a non-cocompact lattice on a locally finite
regular right-angled building X. We prove that if I' has a strict
fundamental domain then I' is not finitely generated. We use the
separation properties of subcomplexes of X called tree-walls.

Tree lattices have been well-studied (see [BL]). Less understood are
lattices on higher-dimensional CAT(0) complexes. In this paper, we
consider lattices on X a locally finite, regular right-angled building (see
Davis [D] and Section 1 below). Examples of such X include products
of locally finite regular or biregular trees, or Bourdon’s building I,
[B], which has apartments hyperbolic planes tesselated by right-angled
p-gons, and all vertex links the complete bipartite graph K.

Let G be a closed, cocompact group of type-preserving automor-
phisms of X, equipped with the compact-open topology, and let I' be
a lattice in G. That is, T' is discrete, and the series Y | Stabr(¢)|~!
converges, where the sum is over the set of chambers ¢ of a fundamen-
tal domain for I'. The lattice I' is cocompact in G if and only if the
quotient T'\ X is compact.

If there is a subcomplex Y C X containing exactly one point from
each I'-orbit on X, then Y is called a strict fundamental domain for
['. Equivalently, I' has a strict fundamental domain if I'\ )X may be
embedded in X.

Any cocompact lattice in G is finitely generated. We prove:

Theorem 1. Let I' be a non-cocompact lattice in G. If I' has a strict
fundamental domain, then T" is not finitely generated.

Our proof, in Section 3 below, uses the separation properties of sub-
complexes of X which we call tree-walls. These generalize the tree-walls
(in French, arbre-murs) of I, ,, which were introduced by Bourdon in
[B]. We define tree-walls and establish their properties in Section 2
below.
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following examples of non-cocompact lattices on right-angled

buildings are known to us.

(1)

For i = 1,2, let G; be a rank one Lie group over a nonar-
chimedean locally compact field whose Bruhat—Tits building is
the locally finite regular or biregular tree 7;. Then any irre-
ducible lattice in G = G; x Gy is finitely generated (Raghu-
nathan [Ra]). Hence by Theorem 1 above, such lattices on
X =T x T, cannot have strict fundamental domain.

Let A be a minimal Kac-Moody group over a finite field IF, with
right-angled Weyl group W. Then A has locally finite, regular
right-angled twin buildings X, = X_, and A acts diagonally on
the product X, x X_. For ¢ large enough:

(a) By Theorem 0.2 of Carbone-Garland [CG] or Theorem 1(i)
of Rémy [Ré], the stabilizer in A of a point in X_ is a non-
cocompact lattice in Aut(X,). Any such lattice is con-
tained in a negative maximal spherical parabolic subgroup
of A, which has strict fundamental domain a sector in X,
and so any such lattice has strict fundamental domain.

(b) By Theorem 1(ii) of Rémy [Ré], the group A is itself a
non-cocompact lattice in Aut(X;) x Aut(X_). Since A is
finitely generated, Theorem 1 above implies that A does
not have strict fundamental domain in X = X, x X_.

In [T], the first author constructed a functor from graphs of
groups to complexes of groups, which extends the correspond-
ing tree lattice to a lattice in Aut(X) where X is a regular
right-angled building. The resulting lattice in Aut(X) has strict
fundamental domain if and only if the original tree lattice has
strict fundamental domain.

We thank Martin Bridson and Pierre-Emmanuel Caprace for helpful
conversations.

1. RIGHT-ANGLED BUILDINGS

In this section we recall the basic definitions and some examples
for right-angled buildings. We mostly follow Davis [D], in particular
Section 12.2 and Example 18.1.10. See also Sections 1.2-1.4 of [KT].

Let (W, S) be a right-angled Coxeter system. That is,

W= (S| (st)™ = 1)

where mg, = 1 for all s € S, and mgy € {2,00} for all s,t € S with
s # t. We will discuss the following examples:

o Wy =(s,t|s*=1t*=1)= D, the infinite dihedral group;
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o Wy =(rst|rt=s>=1t>=(rs)>=1) = (Cy x Cy) *Cy, where
(5 is the cyclic group of order 2;

e The Coxeter group W3 generated by the set of reflections S in
the sides of a right-angled hyperbolic p—gon, p > 5. That is,
W3 = (s1,...,8, | 82 = (s;8i+1)*> = 1) with cyclic indexing.

Fix (¢s)ses a family of integers with ¢, > 2. Given any family of
groups (Hy)ses with |Hy| = g5, let H be the quotient of the free product
of the (Hy)ses by the normal subgroup generated by the commutators
{[hs, ht] - hs € Hg, hy € Hy,mg = 2}.

Now let X be the piecewise Euclidean CAT(0) geometric realization
of the chamber system ® = ®(H, {1}, (H;)ses). Then X is a locally
finite, regular right-angled building, with chamber set Ch(X) in bijec-
tion with the elements of the group H. Let dy : Ch(X) x Ch(X) - W
be the W-valued distance function and let g : W — N be word length
with respect to the generating set S. Denote by dy : Ch(X)xCh(X) —
N the gallery distance ls o dy,. That is, for two chambers ¢ and ¢’ of
X, dw (¢, ¢') is the length of a minimal gallery from ¢ to ¢'.

Suppose that ¢ and ¢ are s—adjacent chambers, for some s € S.
That is, dw (¢, ¢') = s. The intersection ¢ N ¢’ is called an s—panel. By
definition, since X is regular, each s—panel is contained in ¢, distinct
chambers. For distinct s,t € S, the s—panel and t—panel of any chamber
¢ of X have nonempty intersection if and only if m, = 2. Each s—panel
of X is reduced to a vertex if and only if my = oo for all t € S — {s}.

For the examples Wy, W5, and W3 above, respectively:

e The building X; is a tree with each chamber an edge, each s—
panel a vertex of valence ¢,, and each t—panel a vertex of valence
q- That is, X7 is the (gs, g;)-biregular tree. The apartments of
X are bi-infinite rays in this tree.

e The building X, has chambers and apartments as shown in
Figure 1 below. The r— and s—panels are 1-dimensional and
the t—panels are vertices.

e The building X3 has chambers p—gons and s—panels the edges
of these p—gons. If ¢ = ¢ > 2 for all s € S, then each s—panel
is contained in ¢ chambers, and X3, equipped with the obvious
piecewise hyperbolic metric, is Bourdon’s building 1, ,.

2. TREE-WALLS

We now generalize the notion of tree-wall due to Bourdon [B]. We
will use basic facts about buildings, found in, for example, Davis [D].
Our main results concerning tree-walls are Corollary 3 below, which
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)]

FIGURE 1. A chamber (on the left) and part of an apart-
ment (on the right) for the building X,.

describes three possibilities for tree-walls, and Proposition 6 below,
which generalizes the separation property 2.4.A(ii) of [B].

Let X be as in Section 1 above and let s € S. As in Section 2.4.A of
[B], we define two s—panels of X to be equivalent if they are contained
in a common wall of type s in some apartment of X. A tree-wall of type
s is then an equivalence class under this relation. We note that in order
for walls and thus tree-walls to have a well-defined type, it is necessary
only that all finite my, for s # t, be even. Tree-walls could thus be
defined for buildings of type any even Coxeter system, and they would
have similar properties to those below. We will however only explicitly
consider the right-angled case.

Let T be a tree-wall of X, of type s. We define a chamber ¢ of X
to be epicormic at T if the s—panel of ¢ is contained in T, and we say
that a gallery a = (¢, ..., ¢,) crosses T if, for some 0 < i < n, the
chambers ¢; and ¢;,, are epicormic at 7.

By the definition of tree-wall, if ¢ € Ch(X) is epicormic at T and
¢ € Ch(X) is t-adjacent to ¢ with ¢t # s, then ¢’ is epicormic at T if
and only if mg = 2. Let s*:= {t € S | my = 2} and denote by (s)
the subgroup of W generated by the elements of s*. If s is empty then
by convention, (s*) is trivial. For the examples in Section 1 above:

e in Wy, both (st) and (t1) are trivial;

o in Wy, (rt) = (s) @ Cy and (st) = (r) = Oy, while (t*) is
trivial; and

o in Ws, (s3) = (8;_1,8i11) = Dy for each 1 <i < p.
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Lemma 2. Let T be a tree-wall of X of type s. Let ¢ be a chamber
which is epicormic at T and let A be any apartment containing ¢.

(1) The intersection T N A is a wall of A, hence separates A.

(2) There is a bijection between the elements of the group (s*) and
the set of chambers of A which are epicormic at T and in the
same component of A—T N A as ¢.

Proof. Part (1) is immediate from the definition of tree-wall. For Part
(2), let w € (st) and let v = 1, be the unique chamber of A such
that dw (¢, 1) = w. We claim that ¢ is epicormic at 7 and in the same
component of A —7T N A as ¢.

For this, let s;---s, be a reduced expression for w and let a =
(0o, ..., ®n) be the minimal gallery from ¢ = ¢¢ to » = ¢, of type
(51,...,8,). Since w is in (s1), we have m,,, = 2 for 1 < i < n. Hence
by induction each ¢; is epicormic at 7, and so ¥ = ¢,, is epicormic at
T. Moreover, since none of the s; are equal to s, the gallery o does not
cross 7. Thus ¢ = 1, is in the same component of A — 7 N A as ¢.

It follows that w + 1, is a well-defined, injective map from (s*) to
the set of chambers of A which are epicormic at 7 and in the same
component of A—T NA as ¢. To complete the proof, we will show that
this map is surjective. So let ¥ be a chamber of A which is epicormic at
7T and in the same component of A—T NA as ¢, and let w = dy (¢, ).

If (st) is trivial then ¢y = ¢ and w = 1, and we are done. Next
suppose that the chambers ¢ and 1 are t—adjacent, for some ¢t € S.
Since both ¢ and 1 are epicormic at T, either t = s or mg = 2. But ¢
is in the same component of A—7T NA as ¢, sot # s, hence w =t isin
(st) as required. If (s1) is finite, then finitely many applications of this
argument will finish the proof. If (s*) is infinite, we have established
the base case of an induction on n = lg(w).

For the inductive step, let s; - - - s, be a reduced expression for w and
let & = (oo, - - ., Pn) be the minimal gallery from ¢ = ¢g to b = ¢,, of
type (s1,- .., 8,). Since ¢ and 1 are in the same component of A—T NA
and « is minimal, the gallery @ does not cross 7. We claim that s,, is
in st. First note that s, # s since a does not cross 7 and ¢ = ¢, is
epicormic at 7. Now denote by 7, the tree-wall of X containing the
Sp,—panel ¢,_1 N ¢,. Since « is minimal and crosses 7,,, the chambers
¢ = ¢ and ¢ = ¢,, are separated by the wall 7, N A. Thus the s—panel
of ¢ and the s—panel of ¢ are separated by 7, N A. As the s—panels of
both ¢ and ¢ are in the wall 7 N A, it follows that the walls 7, N A
and 7 N A intersect. Hence mg ¢ = 2, as claimed.

Now let w' = ws,, = s1---5,_1 and let ¢’ be the unique chamber of
A such that dy(¢,1') = w'. Since s, is in s+ and ¢’ is s,~adjacent
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to 1, the chamber v’ is epicormic at 7 and in the same component of
A—TNA as ¢. Moreover s;---s,_1 is a reduced expression for w’,
so lg(w') = n — 1. Hence by the inductive assumption, w’ is in (st).
Therefore w = w's, is in (s*), which completes the proof. O

Corollary 3. The following possibilities for tree-walls in X may occur.

(1) Every tree-wall of type s is reduced to a vertex if and only if
(st) is trivial.

(2) Every tree-wall of type s is finite but not reduced to a vertex if
and only if (s*) is finite but nontrivial.

(3) Every tree-wall of type s is infinite if and only if (s*) is infinite.

Proof. Let T, ¢, and A be as in Lemma 2 above. The set of s—panels
in the wall 7 N A is in bijection with the set of chambers of A which
are epicormic at 7 and in the same component of A—7T NA as ¢. [

For the examples in Section 1 above:

e in X, every tree-wall of type s and of type t is a vertex;

e in X, the tree-walls of types both r and s are finite and 1—
dimensional, while every tree-wall of type t is a vertex; and

e in X3, all tree-walls are infinite, and are 1-dimensional.

Corollary 4. Let T, ¢, and A be as in Lemma 2 above and let
p=psa:X—A
be the retraction onto A centered at ¢. Then p~ (T NA)=T.

Proof. Let ¢ be any chamber of A which is epicormic at 7 and is in
the same component of A—7T N A as ¢. Then by the proof of Lemma 2
above, w := Sy (4,7) is in (s1). Let ¢/ be a chamber in the preimage
p () and let A’ be an apartment containing both ¢ and 1)’. Since the
retraction p preserves W—distances from ¢, we have that oy (¢, ¢’) = w
is in (s1). Again by the proof of Lemma 2, it follows that the chamber
1’ is epicormic at 7. But the image under p of the s—panel of ¢ is the
s—panel of 1. Thus p~}(7 N A) = T, as required. O

Lemma 5. Let T be a tree-wall and let ¢ and ¢' be two chambers of
X. Let a be a minimal gallery from ¢ to ¢' and let B be any gallery
from ¢ to ¢'. If a crosses T then B crosses T .

Proof. Suppose that « crosses 7. Since « is minimal, there is an apart-
ment A of X which contains «, and hence the wall 7 N A separates
¢ from ¢'. Choose a chamber ¢ of A which is epicormic at 7 and
consider the retraction p = pg, 4 onto A centered at ¢,. Since ¢ and
¢ are in A, p fixes ¢ and ¢'. Hence p(f) is a gallery in A from ¢ to
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¢, and so p(B) crosses T N A. By Corollary 4 above, p~ (T NA) =T.
Therefore 3 crosses T . d

Proposition 6. Let T be a tree-wall of type s. Then T separates X
into qs gallery-connected components.

Proof. Fix an s—panel in 7 and let ¢4, ..., ¢,, be the g5 chambers con-
taining this panel. Then for all 1 < ¢ < 5 < g5, the minimal gallery
from ¢; to ¢; is just (¢4, ¢;), and hence crosses 7. Thus by Lemma
5 above, any gallery from ¢; to ¢; crosses 7. So the g; chambers
®1,. .., 04 lie in g4 distinct components of X — 7.

To complete the proof, we show that 7 separates X into at most
qs components. Let ¢ be any chamber of X. Then among the cham-
bers ¢1, ..., ¢4, there is a unique chamber, say ¢;, at minimal gallery
distance from ¢. It suffices to show that ¢ and ¢; are in the same
component of X — 7.

Let o be a minimal gallery from ¢ to ¢; and let A be an apartment
containing . Then there is a unique chamber of A which is s—adjacent
to ¢1. Hence A contains ¢; for some ¢ > 1, and the wall 7 N A sep-
arates ¢; from ¢;. Since « is minimal and dy (¢, ¢1) < dw (@, ¢;), the
Exchange Condition (see p. 35 [D]) implies that a minimal gallery from
¢ to ¢; may be obtained by concatenating o with the gallery (¢1, ¢;).
Since a minimal gallery can cross 7 N A at most once, a does not
cross 7 N A. Thus ¢ and ¢; are in the same component of X — 7, as
required. O

3. PROOF OF THEOREM

Let GG be as in the introduction and let I' be a non-cocompact lattice
in G with strict fundamental domain. Fix a chamber ¢, of X. For each
integer n > 0 define

D(n) :={¢ € Ch(X) | dw(¢,I'd) <n}.

Then D(0) = I'gg, and for every n > 0 every connected component of
D(n) contains a chamber in I'¢g. To prove Theorem 1, we will show
that there is no n > 0 such that D(n) is connected.

Let Y be a strict fundamental domain for I' which contains ¢y. For
each chamber ¢ of X, denote by ¢y the representative of ¢ in Y.

Lemma 7. Let ¢ and ¢’ be t—adjacent chambers in X, fort € S. Then
either ¢y = ¢y, or ¢y and ¢ are t—adjacent.

Proof. 1t suffices to show that the t—panel of ¢y is the t—panel of ¢, .
Since Y is a subcomplex of X, the t—panel of ¢y is contained in Y.
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By definition of a strict fundamental domain, there is exactly one rep-
resentative in Y of the t—panel of ¢. Hence the unique representative
in Y of the t—panel of ¢ is the t—panel of ¢y. Similarly, the unique
representative in Y of the t—panel of ¢ is the ¢t—panel of ¢}.. But ¢ and
¢' are t—adjacent, hence have the same t-—panel, and so it follows that
¢y and ¢} have the same t—panel. O

Corollary 8. The fundamental domain Y is gallery-connected.

Lemma 9. For all n > 0, the fundamental domain Y contains a pair
of adjacent chambers ¢,, and ¢!, such that, if T, denotes the tree-wall
separating ¢, from @ :
(1) the chambers ¢o and ¢, are in the same gallery-connected com-
ponent of Y — T, NY;
(2) min{dw (¢o, ¢) | ¢ € Ch(X) is epicormic at T,} > n; and
(3) there is a v € Stabp(¢,) which does not fix ¢p,.

Proof. Fix n > 0. Since I' is not cocompact, Y is not compact. Thus
there exists a tree-wall 7, with 7, N'Y nonempty such that for every
¢ € Ch(X) which is epicormic at T, dw (¢o, ¢) > n. Let s, be the type
of the tree-wall 7,. Then by Corollary 8 above, there is a chamber
¢, of Y which is epicormic at 7, and in the same gallery-connected
component of Y —7,NY as ¢g, such that for some chamber ¢/, which is
sp—adjacent to ¢, ¢! isalsoin Y. Now, as I' is a non-cocompact lattice,
the orders of the I'-stabilizers of the chambers in Y are unbounded.
Hence the tree-wall 7, and chambers ¢,, and ¢!, may be chosen so that

| Stabr ()] < | Stabp(d)|- O

Let ¢y, ¢.,, T,, and v be as in Lemma 9 above and let s = s,, be the
type of the tree-wall 7,,. Let a be a gallery in Y —7,NY from ¢, to ¢,.
The chambers ¢,, and v - ¢,, are in two distinct components of X — T,,,
since they both contain the s—panel ¢, N ¢!, C T, which is fixed by ~.
Hence the galleries o and -« are in two distinct components of X —7,,,
and so the chambers ¢y and 7 - ¢y are in two distinct components of
X — T,. Denote by X, the component of X — 7,, which contains ¢,
and put Yo =Y N Xj.

Lemma 10. Let ¢ be a chamber in X, that is epicormic at T,,. Then
oy s in Yo and is epicormic at T, NY.

Proof. We consider three cases, corresponding to the possibilities for
tree-walls in Corollary 3 above.
(1) If 7, is reduced to a vertex, there is only one chamber in X
which is epicormic at 7,, namely ¢,. Thus ¢ = ¢, = ¢y and
we are done.
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(2) If 7, is finite but not reduced to a vertex, the result follows by
finitely many applications of Lemma 7 above.

(3) If 7, is infinite, the result follows by induction, using Lemma 7
above, on

k = min{dw (¢, ) | ¢ is a chamber of Y epicormic at 7, N Y}.
U

Lemma 11. For all n > 0, the complex D(n) is not connected.

Proof. Fix n > 0, and let a be a gallery in X between a chamber in
XoNT'¢y and some chamber ¢ in X, that is epicormic at 7,,. Let m be
the length of a.

By Lemmas 7 and 10 above, the gallery « projects to a gallery (8
in Y between ¢y and a chamber ¢y that is epicormic at 7,, NY. The
gallery 8 in Y has length at most m.

It follows from (2) of Lemma 9 above that the gallery 8 in Y has
length greater than n. Therefore m > n. Hence the gallery-connected
component of D(n) that contains ¢ is contained in X,. As the chamber
v+ o is not in Xy, it follows that the complex D(n) is not connected. [

This completes the proof, as I' is finitely generated if and only if
D(n) is connected for some n.
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