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Introduction

One of the oldest formulae in the traffic engineering literature is that derived by Adams [1]. He derived
the expected delay to a pedestrian wishing to cross a traffic stream given that he needs a gap of at least
β in the stream before he can cross. Adams used the Poisson process as a statistical model for the traffic
stream. If the flow rate is q, then each headway of the Poisson process is exponentially distributed with
mean 1/q. Adams derived the average delay to pedestrians as1

E(D) =
eqβ − 1

q
− β. (1)

Observations of traffic have usually confirmed that the upper tail of headways is well fitted by an ex-
ponential distribution (see for example Buckley [2], Branston [3], Wasielewski [4] and Cowan [5]). The
lower tail is clearly influenced by the safety headway (of around 2 seconds) that cars leave between each
other. Furthermore, real traffic streams have a tendency to form bunches of vehicles with gaps between
bunches. The Poisson process does not model these features, so one would expect Adams’ formula to
behave poorly at the higher flows (where bunching and minimum spacing constraints are significant).

One model which has been used extensively by the author in traffic modelling studies ([6]–[9]) encap-
sulates these realistic features whilst retaining most of the tractable mathematics that one obtains with
Poisson process assumptions. In this paper a revised version of Adams’ formula, based on this powerful
model, is presented and a small comparative study given.

The traffic stream model

The model is presented in Fig 1. Behind each vehicle there is a headway of at least one time unit.
Vehicles within a bunch have this minimum headway between each other. At the end of a bunch the
headway exceeds one time unit by a random quantity X which is assumed to be exponentially distributed
(in conformity with the empirical observation of exponential upper tail for headways). The number of
vehicles per bunch is random, with any sensible probability distribution on the positive integers. Both
the mean and variance of bunch size affect the results, so we denote these by µ and σ2. The mean of X
is denoted by g (for ‘gap’). The flow rate q is linked to these parameters by

q =
µ

µ+ g
(2)

1This formula was mistyped in the original 1984 paper. Another good reason to have a 2015 revision of the paper! The
figures and comparative remarks in the original paper were based on the correct Adams formula.
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Any two of µ, g and q determine the third via (2). The two chosen, together with σ2, can be considered
for the moment as unrelated variables. Later we consider additional, empirically-based links between
these four variables. Note that the time units are in terms of the minimal headway which will typically
be around 2 seconds. Thus q will be between 0 and 1 in these units; q = 1 indicates capacity flow.

Figure 1: The stochastic arrival process for the traffic stream.

This stochastic model for a traffic stream has many interesting theoretical features. Two or more such
streams merging into one generate a single stream with the same stochastic structure of bunches and
exponentially distributed gaps. Enforcing a larger intra-bunch gap creates a new stream with similarly-
preserved structure.

Feeding a single-lane road with such a stream and allowing vehicles to take differing speeds initially
destroys the bunches. Eventually, however, bunches with exponentially distributed gaps reform. Thus
there are some ‘forces’ prevalent in traffic which tend to preserve the stochastic structure of this simple
model.

The new delay formula

A pedestrian arrives at an arbitrary time independent of the traffic stream. This epoch may be within a
traffic gap whereupon the pedestrian compares the residual gap with β. If it is greater than β he crosses
immediately with zero delay. If it is less than β he must wait until the next inter-bunch gap (precisely
until one time unit after the last vehicle in the bunch) before making another gap comparison with β.
Similarly, if he arrives within a bunch he must wait at least until the end of the bunch before comparing
gaps. He will eventually cross at the beginning of a gap which is greater than β.

The new average delay formula, which is derived in the Appendix is given here in (3):

E(D) = (eβ/g − 1)(µ+ g)− β + 1
2q(µ+ σ2/µ). (3)

Note that as flow rate q −→ 0, implying g −→ ∞, then E(D) −→ 0. Also as capacity flow is
approached (q −→ 1), then g −→ 0 and E(D) −→ ∞. (Note that there is a sensible concept of capacity
flow here, unlike with the Poisson process model). Representative curves are shown in Figs 2 and 3. They
demonstrate that average delay is sensitive to the bunch gap structure of traffic. Importantly, the new
results are sufficiently different from those given by Adams’ original formula that a revision of practical
traffic warrants involving pedestrian facilities seems desirable. Finally note that, since the three variables
µ, g and q are linked by equation (2), equation (3) can be reorganised in a variety of forms.

Remarks and generalisations

1. The Appendix also shows other results concerning delay. In particular, the chance that a pedestrian
is undelayed is (1 − q)e−β/g. The Laplace transform of delay, which embodies full distributional
information, is also presented.

2. The assumption that intra-bunch headways are constant is not one which seriously reduces the
realism of the model, since in real traffic intra-bunch headway variance is small compared with inter-
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Figure 2: A comparison of average delay for three cases using the present model (solid curves) and Adams’ original model (dashed
curve). For the three solid curves geometrically distributed bunches have been assumed. The red and black curves incorporate
realistic relationships between mean bunch size and flow rate (see Remarks 3 and 4). The blue curve has mean bunch size equal
to one (and therefore all bunches have only one car.) The critical gap β has been chosen as 4 seconds compared with an assumed
intra-bunch headway of 2 seconds, both realistic values.

bunch headway variance. It is possible, however, to relax this assumption without complicating the
formulae unduly (see Appendix).

3. The probability distribution of bunch size is required in some studies of this type. The most
sensible choices are the geometric distribution (sometimes mathematically convenient because the
arrival process becomes a ’renewal’ process) or the Borel distribution which has a theoretical traffic
rationale ([5], [7], [10]–[12]). Our curves are based upon these choices to the extent that Fig 2 uses
σ2 = µ2 − µ (a property of the geometric distribution) whilst Fig 3 uses σ2 = µ3 − µ2 (a property
of the Borel distribution).

We note that, under the assumption that bunches are geometrically distributed, our formula can
be derived by the methods of Mayne [13] who generalised Adams’ result for renewal processes.

4. Our model for arrivals does not necessarily constrain the mean bunch size µ to be functionally
dependent upon flow rate q. Indeed, the blue curve in Figs 2 and 3 fixes µ to be 1 for all values
of q. This is somewhat unrealistic, though the curve is of interest as a datum for comparison with
Adams’ formula. In practice µ rises with q; thus some sensible empirical relationship between them
should be used in combination with our new formula. This study has used (for the red curve)
a theoretically-derived relationship µ = 1/(1 − q) which will be appropriate for streams of traffic
which have (a) just merged or (b) have had ample overtaking opportunities upstream. The solid
black curve uses an ad hoc relationship µ = (1 + 2q)/(1 − q) which models the situation where
bunch sizes have grown somewhat due to upstream constraints on overtaking.

5. Note that in Fig 2 the average delay decreases as µ increases for any fixed q. This occurs because g
increases too, significantly raising the chance that a gap exceeds β; in effect the (eβg−1) contribution
decreases faster than other terms rise. On the other hand if an increase in µ produces a more
substantial rise in σ2 (as in Fig 3) the last term plays a more dominant role. This explains the fact
in Fig 3 that the black curve is higher than the red curve.

6. Our concepts of bunches and gaps should not be confused with those of blocks and anti-blocks
employed by Raff [14] and Oliver [15] using Poisson and renewal processes respectively. It is possible,
however, to link their concepts with our model. The anti-blocks are the periods during which
crossing is possible; these periods occupy a proportion (1−q)e−β/g of the time and are exponentially
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Figure 3: This figure differs from Fig 2 only in the choice of bunch size distribution. Here Borel-distributed bunches are used
(see Remark 3).

distributed with mean g. (In short, any gap of length X > β creates an anti-block of length X−β.)
The remaining time periods are blocks which may comprise a number of bunches and any intervening
gaps which are less than β. The relationship between E(D) and the mean and variance of block
durations, together with a formula analogous to Raff’s Equation (8) (in [14]), are given in the
Appendix.
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APPENDIX

• Let D be the delay to a random pedestrian arriving at an arbitrary time. Let G be the event that
he arrives within a gap of the traffic stream (that is, the most recent car passed by at least one
time unit previously). G′ is the complement. It is easy to show that P{G} = 1− q.
Given G, the time until the first car is distributed exponentially with mean g. This will exceed the
critical gap β with probability e−β/g. Thus using the more convenient notation γ := 1/g

P{D = 0} = (1− q)e−βγ .

If the first gap is less than β, the pedestrian will be delayed at least until the start of the next
full gap, whereupon he will be confronted with another (stochastically-identical) decision. Thus we
have the regenerative argument

E(D|G) =

∫ β

0

[x+ µ+ E(D|G)]γe−γx dx

= (eβγ − 1)(µ+ g)− β.

Now given G′, the event that the pedestrian arrives during a traffic bunch (that is, within one
time-unit of a vehicle arrival), he waits at least until that bunch passes and then faces a decision
which is stochastically identical to those mentioned above. Given G′, the time until the start of the
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next gap, where the decision is faced, has mean 1
2 (µ + σ2/µ). This is a result of the well-known

fact that given G′ the size (and time duration) of the bunch encountered is size-biassed having
mean µ+ σ2/µ. The residual time is on average half of this size-biassed time duration. Therefore
E(D) = (1− q)E(D|G) + qE(D|G′) where E(D|G′) = 1

2 (µ+ σ2/µ) +E(D|G). This yields Equation
(3).

• Similar arguments yield the complete Laplace transform of D

E(e−sD|G) =
(s+ γ)[1− exp(−sβ)]

s+ γ − γf∗(s) + γf∗(s) exp[β(s+ γ)]
,

E(e−sD|G′) =
1− f∗(s)

µs
E(e−sD|G) and

E(e−sD) = (1− q)E(e−sD|G) + qE(e−sD|G′)

Here f∗(s) is the Laplace transform of bunch duration (and size).

• In fact it is bunch duration (rather than size) that is the important quantity. Thus the reader
wishing to generalise the theory need only replace µ, σ2 and f∗ in the equation above by newly-
defined quantities µd, σ

2
d and f∗d . These are the equivalent quantities for bunch durationrather

than size. Such a consideration allows one to relax the assumption that intra-bunch headways are
constant. For example, if intra-bunch headways are assumed random and independent with mean
µ0, variance σ2

0 and transform f∗0 , with µ, σ2 and f∗ still referring to bunch size, then

µd = µµ0

σ2
d = µσ2

0 + σ2µ2
0

f∗d (s) = f∗(− ln f∗0 (s)).

• Let µB and σ2
B be the mean and variance of blocks (see Remark 6). A pedestrian arrives in a block

period with probability θB = 1− (1− q)e−β/g. If so, the block duration will be size-biassed in the
usual manner: its residual duration R will have mean 1

2 (µB + σ2
B/µB) and distribution function

P{R ≤ r} =
1

µB

∫ r

0

[1−B(u)]du

where B is the distribution function of a typical block duration.

Clearly E(D) and P{D ≤ t} can be expressed in terms of block properties.

E(D) = 1
2θB(µB + σ2

B/µB)

P{D ≤ t} = 1− θB +
θB
µB

∫ t

0

[1−B(u)] du. (4)

Equation (4) is analogous to Raff’s equation (8).
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