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Abstract

A known gamma-type result for the Poisson process states that certain domains defined
through configuration of the points (or ‘particles’) of the process have volumes which
are gamma distributed. By proving the corresponding sequential gamma-type result, we
show that in some cases such a domain allows for decomposition into subdomains each
having independent exponentially distributed volumes. We consider other examples—
based on the Voronoi and Delaunay tessellations—where a natural decomposition does
not produce subdomains with exponentially distributed volumes. A simple algorithm
for the construction of a typical Voronoi flower arises in this work. In our theoretical
development, we generalize the classical theorem of Slivnyak, relating it to the strong
Markov property of the Poisson process and to a result of Mecke and Muche (1995). This
new theorem has interest beyond the specific problems being considered here.
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1. Introduction

Many figures constructed with respect to points of a homogeneous point process have a
volume which is gamma distributed. We commence with a simple example.

Example 1. (Volumes of annuli.) Consider a homogeneous Poisson point (particle) process
with intensity λ in R

d and let x1, x2, . . . denote the first, second, . . . closest particles to the
origin. It is easily verified that the volume of the random ballBn centred at the origin with radius
‖xn‖ has a gamma �(n, λ) distribution in any dimension. Since this distribution coincides with
the distribution of the sum of n independent exponential Exp(λ) variables with parameter λ, it
is natural to ask: can we decompose the ball into a disjoint union of domains with independent
exponentially distributed volumes? In this particular case, the answer is easy: yes, these
domains are B1 and the sequence of rings Bk \ Bk−1, k = 2, . . . , n.

Situations where a random domain constructed with respect to Poisson particles has a
gamma-distributed volume can be far more complex than Example 1. The first general result of
this kind is the ‘complementary theorem’of Miles (1970), developed further in a Palm-measure
context by Møller and Zuyev (1996) and Zuyev (1999). Roughly speaking, any ‘scale-invariant’
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Figure 1: Voronoi sausage in R
2.

random domain constructed with respect to n+1 Poisson particles and containingm ≥ 0 other
particles (or ‘m-filled’ in Miles’ terminology) has �(n + m, λ)-distributed volume, as has an
m-filled domain constructed from n particles and a given reference point such as the origin O
or a domain constructed from n+ 1 particles containingm− 1 other particles and also known
to include (or ‘cover’) the given reference point.

The aim of this paper is to address the above decomposition question for such domains. The
following are nontrivial examples of domains which conform to the complementary theorem.
All use homogeneous Poisson particle processes of intensity λ.

Example 2. (Voronoi sausage.) Consider the Voronoi tessellation in R
d . Denote by yk the

points of intersection of the Voronoi cells’ hyper-faces with the positive first semi-axis. For
each such yk , there is, by definition, a ballBk centred at it which contains on its boundary exactly
two particles, with no particle inside. A Voronoi sausage is a finite union of these consecutive
balls and the ball B0 centred at the origin O with z0, the closest particle to O (and the centre
of the polygon covering O), on its boundary (see Figure 1). Each added ball Bk+1 has exactly
one particle, call it zk , in common with the previous ball Bk and one ‘new’ particle zk+1. If
we connect these particles, we obtain a path l on a Delaunay graph which does not deviate
‘very much’ from the first axis. This corresponds to connecting the centres of the cells in the
order the axis crosses them. The geometrical properties of this path are completely determined
by the sausage. For instance, its average length in R

2 is just 4/π ≈ 1.273 times larger than
the Euclidean distance; see Baccelli et al. (2000) for details. A Voronoi sausage formed by n
balls is constructed from the reference pointO and n sequentially determined Poisson particles.
Therefore, according to the complementary theorem, its area is �(n, λ) distributed, the domain
being empty of other particles. The area of B0 conforms to Exp(λ), but are the areas of the
lunes Bk \ Bk−1, k = 1, . . . , n, independent Exp(λ) random variables?

Example 3. (Delaunay lunes.) Consider a ‘typical’ Delaunay circumdisc in R
2, that is, a disc

which contains a ‘typical’ triple of Poisson particles on its boundary and is further constrained
to have no other particle inside. The disc’s centre is a vertex of the corresponding Voronoi
tessellation in which three edges meet. According to the complementary theorem, its area
has �(2, λ) distribution. There have been no suggestions in the literature about how one
might partition the disc into two Exp(λ) parts, but Figure 2 is immediately suggestive: choose
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Figure 2: Two lunes and a lens corresponding to a Voronoi edge.

uniformly one of the three Voronoi edges emanating from the centre; call it l, and consider
another Delaunay circumdisc at its other end. The two discs, sayB andB(l), define two ‘lunes’
B \ B(l) and B(l) \ B as well as one ‘lens’B ∩ B(l). Note that the chosen edge l is a typical
edge of the Voronoi tessellation, so the discB(l) is a typical Delaunay circumdisc too and hence
its area is also �(2, λ). It is therefore a natural hypothesis that both lunes and the lens all have
Exp(λ) distribution. We will address this hypothesis in Section 5.

Example 4. (Voronoi flower or fundamental region.) Consider a Voronoi polygon V in R
2,

centred at a typical particle labelled O. Its geometry is determined by the union of balls
B1, . . . , Bn, n being the number of its sides, each ball centred at a vertex of V and having the
particleO and exactly two other Poisson particles—three in all—on its boundary and no other
particle inside (see Figure 3). We call this union the Voronoi flower F associated with the cell
V . Conditioned on the number of sides n, the flower is constructed from n + 1 particles with
no other particle inside; hence it has a �(n, λ)-distributed area. This result is first mentioned
in Miles and Maillardet (1982), though without detailed proof; a proof is in Møller and Zuyev
(1996) (see also Zuyev (1999)). Hayen and Quine (2002) consider a natural decomposition of
F into n ‘petals’ formed by cutting F by the radii vectors of the flower’s particles, and show
that petal areas are neither exponentially distributed nor independent. Here we try another
approach; we decompose F into the lunes B1 \ Bn,B2 \ B1, . . . , Bn \ Bn−1 and ask ourselves
if their areas are Exp(λ) distributed.

The trivial decomposition result in Example 1 requires little more than the definition of
the Poisson process for its proof. The other examples, however, require more sophisticated
machinery. Our technique, described briefly in Section 2, is based on set-indexed martingales
developed for the case of point processes in Zuyev (1999); it uses the idea of a stopping set,
extending the notion of a stopping time, well known for temporal stochastic processes.

In Section 3, we prove a generalization of the Slivnyak theorem, a result more appropriately
called the ‘Slivnyak–Mecke theorem’ because Mecke (1967) extended Slivnyak’s theorem for
Poisson processes on the line to a general state space, also providing a characterization result
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2 decomposed into lunes.

for Poisson processes. Their theorems say, roughly, that the Poisson process � has the same
distribution when viewed from one of the Poisson particles as from a given reference point
(provided that the viewing location is not part of the view). We prove a similar result in
Section 3; when viewing from within a random compact domain S, any view of that part of
� which lies outside S is unaffected by the process structure in S, so long as this domain
is a stopping set with respect to �. A similar conditional independence was established in
Miles (1970), and more formally in Mecke and Muche (1995), for the case when S is a typical
Delaunay circumdisc with respect to �.

In Section 4, we develop two sequential gamma-type theorems extending the corresponding
result of Zuyev (1999); their application, presented in Section 5, proves the required decompo-
sition in some cases.

Although these results are formulated for the case of Euclidean space R
d , a generalization

to a locally compact separable topological group (LCS-space) is straightforward.
Richard Cowan writes: I corresponded with Joseph Mecke long before I finally met him at

one of the Oberwolfach meetings. These letters were warm and stimulating, and so, from early
times more than 25 years ago, I have held him in high personal regard. Best wishes, Joseph.

Sergei Zuyev writes: I belong to the generation next to Professor Mecke’s and surely have
a deep respect for him. Although I have never had the chance to work with him, I also have
a rather personal feeling towards Joseph as my teacher, as in almost every subject where my
interests have led me I soon discovered that it was marked by his fundamental results, be it in
stochastic geometry, point processes or Palm theory. I should have started by reading all his
publications first. Long live dear Professor Mecke!

2. Preliminaries and notation

LetX ⊆ R
d be a subset of d-dimensional Euclidean space R

d with its Borel σ -algebra B, F

and K being the system of its closed and compact subsets respectively in the induced topology.
In this paper we deal with point processes on X that are treated by us as random counting

measures. More specifically, a point process � is a measurable mapping from some abstract
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probability space into (N ,F ), where N is a set of all counting measures without accumulation
points: for any φ ∈ N , we have φ(K) ∈ Z+ for all K ∈ K; and F is the σ -algebra generated
by events {φ ∈ N : φ(K) = k} for k ∈ Z+,K ∈ K. A point process � is canonically defined
if the probability space is (N ,F ,P) itself and � is the identity mapping. The process � is
simple if, almost surely, �({x}) is 0 or 1 for any singleton {x}.

Together with the σ -algebra F , we will also consider a family of σ -algebras

FK = σ({φ ∈ N : φ(K ′ ∩K) = k}, k ∈ Z+,K ′ ∈ K)

indexed by compact sets K ∈ K which are generated by the truncated counting measures
φ|K(·) = φ(K ∩ ·).

The following two properties of the ensemble {FK} allow us to call it a filtration:

(i) monotonicity: FK1 ⊆ FK2 for any two compact sets K1 ⊆ K2;

(ii) continuity from above: FK =⋂∞
n=1 FKn if Kn ↓ K .

We also put F∅ to be the trivial σ -algebra. We will use the term natural filtration for this
minimal filtration generated by simple counting measures.

When X = R
d , any x ∈ X generates a measurable bijection θx : X → X defined by

θx(y) = y + x. We will also write

θxB = B + x = {y + x : y ∈ B}.
The family θ·, called a flow, gives rise to the compatible flow in N : θxφ is the measure taking
value (θxφ)(B) = φ(θxB) on a Borel set B. In particular, θxδy = δy−x , where δy is the unit
measure concentrated on {y}.

The probability measure P is stationary if P(�) = P(θx�) for all � ∈ F and x ∈ X. Any
process � compatible with the flow, i.e. such that θx�(φ) = �(θxφ) for all φ and x, is then
automatically stationary in the sense that the distributions of � and θx� coincide.

The intensity measure of a point process defined as λ(B) = E�(B) in the stationary case is
proportional to the Lebesgue measure: λ� dx; the term λ� is called the intensity of the point
process.

The Palm distribution Q� on [N ,F ] corresponding to a stationary point process� is defined
on any � ∈ F by means of

λ�Q�(�) = E
∫

1�(θx�)h(x)�(dx), (1)

where 1�(φ) is the indicator function of these events � and h : X → R+ is any function
such that

∫
h(x) dx = 1. Here and afterwards, the integration domain is the whole ofX unless

explicitly written. The Palm distribution Q� for a simple point process � is concentrated
on configurations φ such that φ({0}) = 1 and can be regarded as a distribution of a random
configuration viewed from a typical point of �.

A random closed set  is a measurable mapping : (N , {FK},P)→ (F, σf ), where σf is
the σ -algebra generated by the system {F ∈ F : F ∩K �= ∅}, K ∈ K.

A random compact set S is called a stopping set (more precisely, {FK}-stopping set) if the
event {S ⊆ K} is FK -measurable for all K ∈ K. It is a natural generalization of the notion
of a stopping time: knowing the configuration inside a compact set K is sufficient to conclude
whether S is a subset of K or not, very much in the same way as, for a stopping time τ ,
occurrence of the event {τ ≤ t} is determined by the history up to a moment t only.
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Let F =∨
K∈K

FK . The stopping σ -algebra is the following collection:

FS = {A ∈ F : A ∩ {S ⊆ K} ∈ FK ∀K ∈ K}.
It is straightforward to verify that FS is indeed a σ -algebra and that a random compact set S is
a stopping set if and only if it is FS-measurable.

A Poisson process with intensity measure λ(dx) is a point process�with the following two
properties: the variables�(B1), . . . ,�(Bk) are mutually independent for disjoint B1, . . . , Bk
for any k; and �(B) follows a Poisson distribution with parameter λ(B). As a result, for any
Borel set B and any functional F(·),∫

F(φ)P(dφ) =
∫
F(φ|B + φ|Bc)P(dφ)

=
∫∫

F(φ1|B + φ2|Bc)P(dφ1)P(dφ2)

=
∫∫

F(φ1 + φ2)PB(dφ1)PBc(dφ2). (2)

Here and afterwards, PB denotes restriction of P onto FB . The above property implies
complete independence of the Poisson process distribution, due to which P = PB ⊗PBc . In
particular, a Poisson process is a Markov process. Therefore, it also possesses the strongMarkov
property: ∫

F(φ)P(dφ) =
∫∫

F(φ1|S(φ1) + φ2|Sc(φ1))P(dφ1)P(dφ2) (3)

for every compact stopping set S; see Rozanov (1982, Theorem 4).
The property (3) can also be expressed as

E[F(�) | FS](φ|S(φ)) = ESc(φ)F (φ|S(φ) +�) (4)

(more exactly, this is one version of the conditional expectation). Since nonrandom compact
sets are also stopping sets, (4) also covers (2).

A set-indexed process XK = XK(φ) for K ∈ K is {FK}-adapted if, for any K ∈ K, the
process XM for M ⊆ K,M ∈ K is FK -measurable. Such a process is called a martingale
(more precisely, a ({FK},P)-martingale) if, for any two compact sets K ⊆ L,

E[XL | FK ] = XK P -a.s.

The following statement is an analogue of Doob’s optional sampling theorem for set-indexed
martingales.

Theorem 1. Let S1, S2 be two almost surely compact stopping sets such that S1 ⊆ S2 almost
surely. Let XK be a uniformly integrable martingale. Then

E[XS2 | FS1 ] = XS1 a.s. (5)

provided that E|XS2 | <∞.

The proof is based on the result of Kurtz (1980) for directed processes and can be found in
Zuyev (1999, Theorem 1).

An example of a uniform integrable martingale is provided by the likelihood ratio. If P and
P′ are two probability distributions on (N , {FK}) such that the restriction P′K of P′ onto FK
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is absolutely continuous with respect to the restriction PK of P onto the same σ -algebra for
any K ∈ K, then the Radon–Nikodym derivative LK = d P′K /d PK is a uniformly integrable
P-martingale. In particular, if Pλ and Pρ are the distributions of stationary Poisson processes
with intensities λ and ρ respectively, then

LK(φ) = d Pρ
d Pλ

(φ) =
(
ρ

λ

)φ(K)
e(λ−ρ)|K|, (6)

where |K| stands for the d-volume of K .

3. Generalization of Slivnyak’s theorem

In this section, we establish a result generalizing Slivnyak’s famous theorem for a Poisson
process �, stating that its distribution is still the same when viewed from one of the Poisson
particles. We show that even when viewed from one of the points of a new process �(�)
effectively dependent on realizations of � and given that only a compact domain is used for
construction of each �, the distribution of � outside of this compact domain is still Poisson.
A similar fact was established in Mecke and Muche (1995) in the particular case where � is
the vertices of the Voronoi tessellation and the domain is the Delaunay empty disc.

Let (N , {FK},P) be a filtered probability space, where P is invariant under the flow θ·. Here
and below, � is a homogeneous Poisson process in X compatible with the flow: �(θxφ) =
θx�(φ). Assume that on the same space there is defined a process of random compact sets
G = {Gi} compatible with the flow: G(θxφ) = θxG(φ) for all x ∈ X. Let us also assume that
each compact setGi is supplied with a centroid zi = z(Gi) so that there is a bijection between
the point process � = {z(Gi)} and G. Finally, we assume that the centroids are chosen in a
compatible manner: z(θxGi) = θxz(Gi). Under the above conditions, the point process � is
stationary and G(zi, φ) = G(0, θzi φ), where obviously G(zi, φ) is the random compact set
with centroid zi . Let λ� be the intensity of �.

Theorem 2. If G(φ) = G(0, φ) is an {FK}-stopping set, then, for any P-integrable func-
tional F , ∫

F(φ)Q�(dφ) =
∫∫

F(φ|G(φ) + φ′|Gc(φ))Q
�(dφ)P(dφ′). (7)

Proof. By the definition (1) of the Palm distribution and by the strong Markov property (3),
we have

λ�

∫
F(φ)Q�(dφ) =

∫∫
F(θxφ)h(x)�(dx)P(dφ)

=
∫∫

F(θx(φ|G(φ) + φ|Gc(φ)))h(x)�(dx)P(dφ)

=
∫∫∫

F(θx(φ|G(φ) + φ′′|Gc(φ)))h(x)�(dx)P(dφ)P(dφ′′).

Now put φ′ = θ−xφ′′ and use the stationarity of the distribution due to which P(dφ′′) = P(dφ′).
Thus, the above expression equals∫∫∫

F((θxφ)|G(θxφ) + φ′|Gc(θxφ))h(x)�(dx)P(dφ)P(dφ′)

= λ�
∫∫

F(φ|G(φ) + φ′|Gc(φ))Q
�(dφ)P(dφ′),

which ends the proof.
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Corollary 1. IfGi are just the points of�andhence� = �, then (7) transforms into Slivnyak’s
theorem: ∫

F(φ)P0(dφ) =
∫
F(δ0 + φ′)P(dφ′),

where P0 is the Palm distribution of �; see Slivnyak (1962) and Mecke (1967).

4. Sequential gamma-type results

In this part, we consider a homogeneous Poisson process� of intensity λ inX = R
d , {FK}

being its natural filtration and Pλ its distribution. Let S0 ⊆ S1 ⊆ S2 ⊆ · · · be a (possibly
finite) sequence of {FK}-stopping sets. Define Fk = FSk , -k = Sk \ Sk−1, Ak = |-k| and
πk = �(-k) (by convention, S−1 = ∅ and F−1 is the trivial σ -algebra).

Theorem 3. Assume that {πk} is a predictable sequence, i.e. πk is Fk−1-measurable for all
k = 0, 1, . . . . Then

(i) the conditional distribution of Ak given Fk−1 is �(πk, λ);
(ii) the Laplace transforms φAk (z) = EλezAk of Ak and φπk (z) of πk are related through

φAk (z) = φπk
(
− log

(
1− λ

z

))
;

(iii) if, in addition, there exists an m ≥ 0 such that π0, . . . , πm are constants, then Ak for
k = 0, . . . , m are independent �(πk, λ)-distributed random variables.

Proof. Let ξk = LSk , where L is the likelihood ratio (6) with a parameter ρ to be specified
later. By Theorem 1, the sequence ξk is a positive (Fk,Pλ)-martingale (ordinary). Thus (5) can
also be written as

Eλ

[
ξk

ξk−1

∣∣∣∣ Fk−1

]
= 1 Pλ -a.s.

Using the expression (6) this can be written as

Eλ

[(
ρ

λ

)πk
e(λ−ρ)Ak

∣∣∣∣ Fk−1

]
= 1 a.s.

The function (ρ/λ)πk is Fk−1-measurable, and therefore

Eλ[e(λ−ρ)Ak | Fk−1] =
(
λ

ρ

)πk
a.s.

Putting now z = λ− ρ, we see that

Eλ[ezAk | Fk−1] =
(

1− λ
z

)−πk
a.s., (8)

which proves part (i) of the theorem. Part (ii) follows immediately after taking the expectation
of both sides in (8).
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In the case when πk are constants, the conditional distributions ofAk are seen not to depend
on Fk . So (iii) is proved by the following chain:

Eλ exp

{ m∑
k=0

zkAk

}
= Eλ exp

{m−1∑
k=0

zkAk

}
Eλ[ezmAm | Fm−1]

= Eλ exp

{m−1∑
k=0

zkAk

}(
1− λ

zm

)−πm

= · · ·

=
m∏
k=0

(
1− λ

zk

)−πk
.

The condition used above that πk be Fk−1-measurable for all k = 0, 1, . . . means that the
number of particles in -k must be known before the construction of -k from information
available after Sk−1 has been constructed. Predictability of πk is, however, not always needed
for a gamma-type result to hold, as the next theorem shows.

Theorem 4. If, for some n and k ≥ 1, Pλ{πk = n | Fk−1} is positive and not dependent on λ,
then the Pλ[· | πk = n;Fk−1] distribution of Ak is �(n, λ).

Proof. From Theorem 2, the point process on R
d \ Sk−1 is Poisson, independent of the

events in Fk−1. So the current theorem follows from Theorem 2 of Zuyev (1999). It should
only be noted that this theorem deals with compact stopping sets while -k = Sk \ Sk−1 is not
compact in R

d . However, it is compact in the topology induced on X = R
d \ Sk−1, so the

machinery of Zuyev (1999) is applicable to the stopping set-k and the restricted process�|X,
which is Poisson on X under the distribution Pλ(· | FSk−1) by Theorem 2.

Theorem 2 considered earlier has further important consequences in the context of these
two ‘sequential’ results: since the distribution of points under Q� outside of G = G(0, φ) is
still Poisson, we may apply the same machinery embodied in Theorems 3 and 4 to arrive at the
following Palm version of the sequential gamma-type results.

Theorem 5. (i) Assume that the conditions of Theorem 3 hold with S0(φ) = G(0, φ). Then
the statements of Theorem 3 are valid for k ≥ 1 (not for k = 0 in general!) almost surely
with respect to a conditional Palm distribution Q�G (i.e. with Eλ[·] replaced by E�[· | FG]
everywhere).

(ii) Theorem 4 is valid with Pλ[·] replaced by P�[· | FG].
In particular, both (i) and (ii) are true for the Palm distribution P0 of �.

5. Applications

Here we address the decomposition issues posed in Section 1; we refer to the corresponding
examples described there.

Example 2. (Voronoi sausage.) Theorem 3(iii) applies directly here with Sk =⋃k
i=0 Bi and

πi = 1 for all i. So the areas of B0 and the lunes are indeed independent Exp(λ), implying a
gamma distribution for the volume of the whole sausage. The whole sausage is, of course, a
stopping set.
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Example 3. (Delaunay lunes.) Consider the process � of the Voronoi vertices. On the Palm
space of�, the Delaunay circumdisc centred at the originO is a stopping set (discB in Figure 2);
we denote its area by C. Let l1, l2, l3 be the Delaunay edges emanating from O and ordered
according to the size of their angle with the positive x-semi-axis. Let B(li) be the Delaunay
empty disc centred at the other endpoint of li for i = 1, 2, 3. Then S0 = B, S1 = S0 ∪ B(l1),
S2 = S1 ∪ B(l2) and S3 = S2 ∪ B(l3) are stopping sets and, according to Theorem 5 applied
to Theorem 3(iii), the areas of the lunes Si \ Si−1 for i = 1, 2, 3 given FS0 are conditionally
independent and Exp(λ) distributed. Thus, also for a uniformly randomly chosen edge l, the
Q�-conditional distribution of the areaAl of the luneB(l)\B given FB is Exp(λ), independent
of FB (and in particular of C). So the unconditional Q� distribution of Al is also Exp(λ).

Recall from Section 1 that both B and B(l) are typical Delaunay circumdiscs, each with
�(2, λ)-distributed areas. Thus, by rôle reversal, the area A of the lune B \B(l) is also Exp(λ)
independently of the area ofB(l). So we have the intriguing fact thatC, the area of the discB, is
�(2, λ) and that a well-defined part of it, namely the lune B \B(l), has an areaA distributed as
Exp(λ). Knowing that the sum of two independent Exp(λ) variables has the�(2, λ) distribution,
we may ask: is the area of the remaining part of B, the lens B ∩ B(l) (whose area we denote
by A∩), distributed as Exp(λ) too? The answer turns out to be no!

Let R be the radius of B and α be the angle between the edge l and the radius vector of the
intersection point of the two discs. Also, let sR be the length of l. Given C and α, we can show
that the area of B(l) is, for s ≥ 0,

A∩ + Al = C(s2 − 2s cosα + 1) (9)

while we can write A∩ as

A∩ = C

π

[
α − s sin α + (s2 − 2s cosα + 1) arccos

s − cosα√
s2 − 2s cosα + 1

]
. (10)

For any given C and α, A∩ is a monotone increasing function of s, starting at C and declining
to an infimum of C(α − sin α cosα)/π . On the other hand, from (9) and (10), Al increases
monotonely with s from 0 to infinity. Note that, if α < π/2, then A∩ +Al attains a minimum
value of C sin2 α at s = cosα.

Denote the monotone increasing function s �→ Al by Cgα(·). Then

gα(s) = 1

π
(s2 − 2s cosα + 1) arccos

cosα − s√
s2 − 2s cosα + 1

− 1

π
(α − s sin α).

Since Al has probability density function λ exp{−λx} independently of (C, α), we can imme-
diately write the conditional distribution function of s given (C, α) as

Fs(C, α) = 1− exp{−λCgα(s)}, s ≥ 0.

The probability density function of the angle α is known to be

f (α) = 4 sin α

3π
[(π − α) cosα + sin α], α ∈ (0, π),

proved in Mecke and Muche (1996) and, by a different method, in Cowan (2002) (where further
detail of the above calculations is provided).
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Figure 4: Frequency distribution of A∩ for a sample of 100 000 simulated cases with λ = 1. Overlaid
on the empirical results is the probability density function of the exponential distribution of mean 1.

It is simple to generate the independent random variables C, α and Al . Given these, we can
calculate the random variable s as the unique root of Al = Cgα(s). Then A∩ can be calculated
using (10). This has been done 100 000 times (using λ = 1); the histogram for A∩ is plotted in
Figure 4.

Under the null hypothesis that the true distribution of A∩ is Exp(1), the data were classified
into 10 equi-probable classes, leading to class frequencies of

19 158, 10 532, 8819, 8071, 7886, 7631, 8015, 8486, 9272 and 12 128.

The resulting Pearson χ2 statistic was 11 064; obviously the hypothesis is rejected. The
distribution is longer tailed, with greater weight at very small and very large values. While the
sample mean was close to 1 at 0.9951, the second sample moment, 2.3278, was clearly larger
than the hypothesized value of 2.

As a check, the simulation was repeated for A∩ + Al and A; results were highly consistent
with the known �(2, 1) and Exp(1) laws respectively.

Thus, we have demonstrated (though not exactly proved mathematically) that A∩ does not
conform to the Exp(λ) distribution, even though:

(i) both A and Al have Exp(λ) laws;

(ii) both A+ A∩ and Al + A∩ are �(2, λ) distributed;

(iii) A+ A∩ + Al is �(3, λ) distributed;

(iv) A is independent of A∩ + Al ; and

(v) Al is independent of A+ A∩.

Example 4. (Voronoi flower.) When trying to apply Theorem 3 to this example, we face the
problem of the choice of the first stopping set S0 as the lunes thus defined are not stopping sets.
The geometry of a lune Bk+1 \ Bk depends on information outside it, namely, on Bk . We can
circumvent this by defining a domain S0 as a starting set for a sequence of stopping sets. Let
S0 be the largest disc centred on the positive x-axis passing through the origin and one of the
Poisson particles (call it x1), and not having any Poisson particles in its interior (see Figure 5).
Clearly S0 is a stopping set.
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Figure 5: Stopping set S0 and the second lune L2.

The right bisector of O and x1 can be seen in Figure 5; it is the side of the Voronoi polygon
cut by the positive x-axis. To form the next stopping set in the sequence, consider the continuum
of discs passing through O and x1, with centre moving upward along this right bisector. Stop
when this ‘growing’ disc first hits another particle (which is labelled x2). This disc is B1 and
our second stopping set in the sequence is now defined as S1 = S0 ∪ B1. In a similar fashion,
we move a circle-centre along the next right bisector, stopping the growing disc (which passes
through O and x2) when it hits another particle, x3. Now S2 = S1 ∪ B2. The last of these
constructions stops when x1 is encountered by a growing disc. This algorithm successfully
constructs the Voronoi flower.

So, with B1 being the circumcircle of O, x1 and x2, B2 the circumcircle of O, x2 and x3,
and so on, we have the sequence of stopping sets S0, S1 = S0 ∪ B1, S2 = S1 ∪ B2, . . . , Sn =
Sn−1 ∪ Bn = F . Note that not all of the ‘added’ domains Si \ Si−1 are lunes. Some are discs
with more than one ‘bite’ taken out.

In Section 1, we defined the lunesL1 = B1\Bn,L2 = B2\B1, . . . , Ln = Bn\Bn−1. While
pictures may sometimes suggest that these lunes correspond to the ‘added’ domains—see the
most darkly shaded L2 in Figure 5, which does coincide with S2 \ S1—this is not general.

By Theorem 3, the area of S0 has Exp(λ) distribution. The same is true for the areas of
S1 \S0 and S2 \S1. The theorem is not applicable to Sk \Sk−1 for k ≥ 3 as πk = �(Sk \Sk−1)

is not predictable any more. Indeed, for k < 3, we can predict that πk = 1; for larger k, we
cannot predict from Fk−1 whether it equals 1 or 0. Theorem 4 does not help when k ≥ 3
because P{πk = 1 | Fk−1} depends on λ. Although it is disappointing not to find application
of the theorems for k ≥ 3, we consider that we have benefited from clarification of the precise
conditions necessary for the complementary theorem to work in a sequential way. For example,
P{πk = 1}, without the conditioning, does not depend on λ; it is just the probability that the
typical Voronoi polygon has more than k sides, a scale-independent quantity. Yet, with the
conditioning on Fk−1, there is dependence.
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Figure 6: Frequency distributions for lune areas for n = 3, 6, 9, 12. For the first three cases, one lune
was sampled from each independently generated Voronoi flower to build the histogram. Since we had
only 239 independent flowers with n = 12, that histogram includes all 12 lunes, albeit slightly correlated

in area, from each flower.

We note that the domain S1 \ S0 (the white part of B1 in Figure 5) is always a lune, but not
one of the lunes in our decomposition of F . Indeed, it is always smaller than L1. Thus, we
may conclude that the area of L1 is larger than an Exp(λ)-distributed area of S1 \ S0; so its
mean is greater than 1/λ. Quite a special case is the lune L2. Although in Figure 5 it coincides
with the ‘added domain’ S2 \ S1, this is not the case if the centre of B2 lies below the x-axis.
Then S2 \ S1 = L2 \ S0. Thus, even the second lune has an area which is stochastically larger
than the exponential distribution.

The observations noted above on theoretical grounds were reinforced by a large simulation
study. We simulated one million typical Poisson–Voronoi cells with intensity 1 and then
separately analysed polygons with n sides for each observed value of n. The simulation
algorithm used was based on a radially symmetric method proposed in Quine and Watson
(1984) and coded by Andrew Hayen.

The upward bias in the area of L1, anticipated from the theory, was clearly evident in the
simulations. For instance, for the 106 413 quadrilaterals, the means of the areas of L1, . . . , L4
were 1.13, 1.00, 1.02 and 0.85, while for the 89 929 octogons the means were 1.41, 1.02, 1.01,
1.02, 1.02, 0.99, 0.87 and 0.66. Of course, this is a labelling artefact. The side of the Voronoi
cell which is hit by an axis passing through its centre is biased upward, so discs B1 and Bn have
an upwardly biased separation between centres. That makes both discs bigger than average,
with an upward bias in the area of L1 and a downward bias in the area of Ln.

The simulations showed that the difference between the areas of S2 \S1 andL2 is very small;
the mean value of the area of L2 ∩ S0 calculated on the one million flowers was approximately
0.00098. Thus,L2 has an area which is only marginally larger than the exponential distribution.
Although the hypothesis regarding exponentially distributed lunes is false, there is one lune in
the Voronoi flower which has an ‘almost exponential’ area, and there is a domain which is
‘almost a lune’ that has an Exp(λ) area.
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Of interest are the simulation results when, for each polygon, the lunes are numbered from
a random starting point s. Figure 6 shows the histograms of areas of Ls for 3-, 6-, 9- and
12-sided polygons, with the Exp(1) density superimposed. Means of Ls were very close to 1
while variances ranged from about 0.78 at n = 3 to 1.32 at n = 12.

The 6-sided case is of special interest. The χ2 goodness-of-fit test for Exp(1), for the area of
Ls , for the 295 199 flowers could not reject the hypothesis. Although a formal test rejected the
hypothesis of independence of the lunes’ areas, the observed correlations were mostly negative,
but less than 0.01 in absolute value.

Neighbouring lune areas for other values of n are clearly not independent; estimated corre-
lations between randomly labelled neighbouring lunes Ls and Ls+1 were about 0.1 for n = 3,
0.04 for n = 4, 0.01 for n = 5 and mostly negative and smaller than −0.01 for n > 6.
Details can be found on the authors’ Web pages, http://www.maths.usyd.edu.au/u/richardc/,
http://www.maths.usyd.edu.au/u/malcolmq/, http://www.stams.strath.ac.uk/∼sergei/.
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