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LETTER TO THE EDITOR

Dear Editor,

Convex hulls on a hemisphere

We write to describe how recent identities on convex hulls in Euclidean space,

proved by this letter’s first author (Cowan [2], [3]), can be applied to a study

of random points on a hemisphere published by the second author (Miles [4]).

Cowan showed that for points P1, P2, ...,Pn distributed exchangeably in Rd,

with any probability law µ for the common distribution of each point,

EVn =
1
2

n−d−1∑

j=1

(−1)j−1

(
n

j

)
EVn−j , (n− d) ≥ 2 and even, (1)

where Vj is defined as the volume of Hj , the convex hull of P1, P2, ...,Pj . We have

noticed from Miles [4] that, somewhat surprisingly, the (d = 2)-version of this

formula also holds on a hemisphere H. So identities like EV4 = 2EV3, EV6 =
1
2(6EV5−15EV4+20EV3) and EV8 = 1

2(8EV7−28EV6+56EV5−70EV4+56EV3)

– and so on – hold on the plane and on the hemisphere too.

A set X on a topologically-open hemisphere H (a hemisphere without its

great-circle boundary) is convex if all shorter great circle arcs joining pairs of

points ∈ H lie wholly within the set. With this definition, Miles studied the

polygonal convex hull of n points uniformly and independently distributed on

H – this being the convex set of minimal area on H covering all n points. This

set’s boundary comprises parts of great circles.

His Table 3 gives numerically the expectations of the convex hull’s area Vn,

perimeter Sn and number of sides Nn. These are given theoretically for n ≥ 1

(using our notation and replacing equation (8.2) in [4]) by:

EVn = π(2− nγn−1); ESn = 2π(1− γn); ENn
n>1=

(
n

2

)
γn−2, (2)
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with EN1 = 1. Here, for n ≥ 0,

γn :=
∫ π

0

(
1− θ

π

)n
sin θ dθ

and from this, we get γ0 = 2, γ1 = 1 and, for n ≥ 2, γn = 1 − n(n−1)
π2 γn−2.

Using this γn-recurrence it is easily shown that the (d = 2)-version of (1) holds.

It is also easy to establish that Cowan’s identity for ENn in Rd, namely

ENn =
n

2
+

1
2

n−1∑

j=1

(−1)j−1

(
n

j

)
ENn−j , (n− d) ≥ 3 and odd, (3)

augmented by ENn = n for n ≤ d+1, applies also in Miles’s hemisphere study;

one can readily show that the expression for ENn given in (2) satisfies (3).

Identity (3) has been proved in [3] under less general conditions than those in

identity (1) – exchangeability is replaced by independence and the probability

law µ must give zero measure to any j-dimensional flat (j < d).

Greater geometric insight on why the volume identity (1) applies to a hemi-

sphere can be gained by utilising another identity, proved in [3]:

Eν(Hn) =
1
2

n−d−1∑

j=1

(−1)j−1

(
n

j

)
Eν(Hn−j), (4)

where ν is any measure on the Borel sets of Rd, absolutely continuous with

respect to Lebesgue measure. Equation (1) is an example of (4) with ν equal

to the volume measure V in Rd.

Let us construct another example by projecting n points, which have been

placed randomly on H using any exchangeable probability law, into R2 via the

usual projection P from an open hemisphere to the plane. This projection

is defined as follows. Place the centre of a sphere S of radius r at the point

C = (0, 0, r) ∈ R3; so S is tangential to the xy-plane. The hemisphere of S
lying in the region 0 ≤ z < r is called H. Then, for Q ∈ H, P(Q) := P where

P is the unique point in the xy-plane such that C, Q and P are collinear.

Thus we obtain as a result of projection n exchangeable points P1, P2, ...,Pn ∈
R2 with some common exchangeable law. We now choose the measure ν on R2
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induced by the projection. That is, a Borel set X in R2 is given the measure

ν(X) equal to the area of the set on the hemisphere which, when projected,

gives X. This is obviously absolutely continuous, so (4) holds, initially as a

result for the planar convex hulls. But the polygonal convex hull of j points on

H projects into the convex hull of the projections of these j points (and vice

versa using the inverse map), so the result holds for the polygonal convex hulls

on the hemisphere.

So we have proved that (1) applies to points distributed with any exchange-

able probability distribution on H – a rather more general situation than

the independent uniform case studied by Miles. Furthermore, because the

hemispherical projection conserves Nn, we have also proved that (3) applies for

hemispheres – when points are distributed independently by any probability

measure that give zero mass to points and great circles in H.

The findings of this letter also apply to the situation where n points are

distributed exchangeably on a sphere, conditional upon all of them being con-

tained in some hemisphere; this conditional construction was also considered

in [4] for the independent uniform case.

Remark 1. Miles’s formula (6.16) in [4] is incorrect. It should be:

γn = 1 +

n
2−1∑

i=1

(
n

2i

)
(−1)i(2i)!

π2i
+ 2(−1)n/2 n!

πn
, n even

= 1 +

n−1
2 −1∑

i=1

(
n

2i

)
(−1)i(2i)!

π2i
+ (−1)(n−1)/2 n!

πn−1
, n odd.

Remark 2. Formula (1) first appeared in 1990 (see [1]) using the less-general

assumption that points are independent and identically distributed. Our ar-

gument depends on the more recent result (4). By a similar use of projection

arguments, we can prove that (4), with ν replaced by ν∗ (an absolutely contin-

uous measure on the Borel sets of H), holds on H.

Remark 3. The findings of this letter apply to hemispheres of higher-dimension,
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because (1) and (4) are formulae in Rd, and a suitable projection P mapping

H (which is now part of a d-sphere ⊂ Rd+1) to Rd can be defined.
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