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Abstract

Let n points be randomly and independently placed in R
d according to a

common probability law. It is known that the expected volume for the convex

hull of these points, in the cases where n − d is even and ≥ 2, is related

linearly to expected volumes of the convex hulls for j points, j < n. We show

that similar identities for these volumes hold almost surely – and in contexts

where independence and communality of law do not apply. New geometric and

topological identities developed here provide a foundation for this result.
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1. Recursive volume formulae

Consider the random experiment where points P1, P2, ..., Pn are placed randomly and independently in

Rd (d ≥ 1) according to a common probability law given by the (induced) probability measure µ defined

on Bd, the Borel sets of Rd. Let the convex hull of the first j points placed be denoted by Hj , j = 1, 2, ...n.

The d-dimensional volume measure is denoted by V , so the volume of Hj is V (Hj), which we usually

abbreviate to Vj .

In the important special case of points uniformly distributed on a bounded convex subset K of Rd, our

experiment takes the familiar form studied extensively over the last 140 years since the famous 4-point

problem of Sylvester was first posed. Within this context, and with d = 2, Affentranger [1] discovered a

linear recursive link between E(Vn) and the expected volumes E(Vn−1),E(Vn−2), ...,E(V3) when n is even.

When d = 3, he proved a similar recursion for n odd. Using an analytic contribution by Badertscher [4],

Affentranger’s recursion can be written

E(Vn) =

(n−d)/2
∑

j=1

(

n

2j − 1

)

B2j
(22j − 1)

j
E(Vn+1−2j), (n− d) ≥ 2 and even, (1)
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where Br is the r-th Bernoulli number. Buchta [6] extended this result by proving (1) for general measure

µ and all dimensions d. He also noted the alternative form

E(Vn) =
1

2

n−d−1
∑

j=1

(−1)j−1

(

n

j

)

E(Vn−j), (n− d) ≥ 2 and even. (2)

Algebraic manipulation of (2), eliminating the terms where (n − j − d) is even by the sequential use of

(2) itself, leads to (1), so the two formulae are closely related.

In this paper we focus on (2), strengthening Buchta’s result significantly through the following theorem.

Theorem 1. For any placement method of the points P1, P2, ..., Pn in Rd, either random or not,

Vn =
1

2

n−d−1
∑

j=1

(−1)j−1
∑

s∈Sn−j

V (H(s)), (n− d) ≥ 2 and even, (3)

where Sj is the set of j-subsets of the points P1, P2, ..., Pn and, for s ∈ Sj, H(s) is defined as the convex

hull of s. One can write this as

Vn =
1

2

n−d−1
∑

j=1

(−1)j−1

(

n

j

)

V
(n)

n−j , (n− d) ≥ 2 and even, (4)

where V
(n)

j is defined as the average of volumes for all
(

n
j

)

j-hulls of P1, P2, ..., Pn. So Buchta’s formula

(2) holds in any random context where E(V
(n)

j ) = E(Vj) for all j < n.

This purely geometric result adds considerable insight to the random situation described above, whilst

also facilitating analyses of random-geometric applications where independence and/or communality of

distribution have been dropped.

2. Applications of a wider nature

For example, we can now deal with the situation where n points are placed exchangeably. By this

we mean that a probability measure, µn say, on (Rd)n endowed with the usual σ-algebra generated by

product Borel sets, has the property: µn(D1 ×D2 × . . .×Dn) = µn(Dρ(1) ×Dρ(2) × . . .×Dρ(n)) for any

D1, D2, . . .Dn ∈ Bd and any permutation ρ. We retain the notation µ as µ(D) := µn(D×Rd × . . .×Rd)

for all D ∈ Bd. Exchangeability of the first n placements means that the first j points are placed

exchangeably, for all 2 ≤ j < n.

Importantly, exchangeability for the locations of P1, P2, ..., Pn implies that the volumes of all
(

n
j

)

convex

hulls derived from j-subsets of the points P1, P2, ..., Pn are identically distributed, each distributed like

V (Hj) and having common expectation E(Vj). So E(V
(n)

j ) = E(Vj), satisfying the condition, stated in

Theorem 1, for (2) to hold.

• Example 1: Let {Q1, Q2, ..., Qm},m ≥ n be an arbitrary set of points in Rd – we call it the base

layout. Sample Pi, i = 1, 2, ..., n points randomly without replacement from this set (with uniform
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distribution from those still available for selection). The Pi are exchangeable and µ has probability

measure 1/m at each point in the base layout.

• Example 1(a) : Let m = 7 in Example 1, with 6 of the points Qi being placed at the vertices of

a regular hexagon in R2 (of unit area) and the 7th in the hexagon’s centre. When n = 6, one can

see that H6 is a random set. With probability 1
7 it is the regular hexagon; it is a pentagon of area

5
6 with probability 6

7 .

V
(6)

1 V
(6)

2 V
(6)

3 V
(6)

4 V
(6)

5

∑

i(−1)i−1
(

n
i

)

V
(6)

i 2V6

hexagon 0 0 6
20

9
15

5
6 2 2

pentagon 0 0 13
60

13
30

23
36

5
3

5
3

All of the column-headings in this table are random variables, being functionals of the random set

H6, but we see that (4) holds for each random version of H6. Formula (2) holds too.

• Example 2: The n points might be placed exchangeably using the Strauss model [9] – or one

of the more elaborate ’interacting-points’ models that have developed from it, for example: area-

interaction models [3]; nearest-neighbour Markov models [2].

• Example 3: The points P1, P2, ..., Pn are placed sequentially in Rd according to independent

sampling of µ, except that the j-th point (j ≥ 2) must be resampled until its location is not within

distance r of Pj−1. This sequential Markovian dependence does not create exchangeability.

Other point-construction methods which illustrate the widened repertoire of applications are easily

imagined.

• Example 4: Place I points randomly within subset A ⊂ Rd according to measure µA and J

randomly within B ⊂ Rd according to µB, I + J = n. For example, let A be the interior of a set K

and B be K’s boundary. Miles [8] studies this case when K is a ball and both measures are uniform

within their domains.

• Example 5: The points can be constructed from more elaborate random-geometric objects. For

example, let K be a bounded convex set in R2 and draw k IUR secants. The intersection of these

secants with the boundary of K create n = 2k points and hence a hull H2k. The secant-secant

intersections within K constitute another collection of points but since their number is random, not

fixed in advance, they do not fit our theory.

3. A topological identity for convex hulls

Behind Theorem 1 lies a beautiful identity of a topological character. Place n points P1, P2, ..., Pn,

n ≥ 1 in Rd. The locations of these points are arbitrary; we allow points to be collinear, coplanar or co-

incident with each other. We even permit the convex hull Hn of all n points to lie in a flat of dimension

< d, an arrangement which we call completely aligned. To take account of such alignment, however,
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we introduce the dimension of Hn and denote it by h. Effectively the action takes place in dimension

h, so if h < d we tacitly identify the h-flat in R
d which contains Hn with the space R

h. Naturally

1 ≤ h ≤ min (d, n− 1).

Later in the paper, when we discuss the random context, the experiment is set in Rd but the

arrangement of points may, by chance, have lower-dimensional convex hull; then h is a random variable

with range 1 ≤ h ≤ min (d, n− 1). The distinction between d and h is a necessary one.

If n > d, there may be no examples of j points being contained in a (j − 2)-flat (for any j ≤ n); the

placement of points is then called completely unaligned (the usual geometer’s phrase ‘in general position’

being unsuitable for an arrangement which is less general than the ‘arbitrary’ premises just stated).

P3
P6

A
B

C

D

E

F

G

HI

(a) (b)

Figure 1: (a) A completely unaligned layout of seven points in R
2. So h = d = 2. H7 is shown along with all

the 2-hulls, one of which (derived from P3 and P6) is marked. (b) Some collinearities exist so this layout is not

completely unaligned. Once again h = d = 2. Suppose also that there are coincident points at some of the 9

black dots A − H , say 3 at G and 2 at B. Therefore n = 12.

Theorem 2. P1, P2, ..., Pn, n ≥ 1, are points in Rd whose convex hull has dimension h ≤ min(d, n− 1).

For any reference point P ∈ Hn, define cj(P ) as the number of sub-collections of j points taken from

{P1, P2, ..., Pn} whose convex hull contains P . Then,

Ψ(P ) := c1(P ) − c2(P ) + ...+ (−1)n−1cn(P ) = (−1)h for almost all P ∈
◦

Hn,

= 0 P ∈ ∂Hn,

where ∂Hn and
◦

Hn denote the boundary and interior respectively of Hn, treated for topological purposes

as a set in the identified space Rh. Trivially, Ψ(P ) = 0 if one considers P /∈ Hn.
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Remark 1. The case h = 0 is covered by Theorem 2. Recall that the interior and boundary of R0 equal

R
0 and ∅, respectively. d = 0 is also permitted. The simple form of the theorem hides considerable

counting complexity. As an exercise, suppose that P is placed in the interior of the shaded zone of

Figure 1(a). Then Ψ(P ) = 0 − 0 + 12 − 26 + 21 − 7 + 1 = 1. If P is located at H in Figure 1(b), then

Ψ(P ) = 1 − 16 + 114 − ... + 782 − 494 +
(

12
9

)

−
(

12
10

)

+
(

12
11

)

− 1, but filling in the three missing terms,

c4(P ), c5(P ) and c6(P ), is a challenge to human counting skills.

NOTE ADDED POST-PUBLICATION: These manual counting attempts were indeed a challenge.

As later counting using a computer program revealed, I had made some counting mistakes when doing

the task manually. For Figure 1(a) the count should have been Ψ(P ) = 0− 0 + 13− 26 + 20− 7 + 1 = 1,

whilst for Figure 1(b) it is Ψ(P ) = 1− 16+118− 373+701−883+782−494+
(

12
9

)

−
(

12
10

)

+
(

12
11

)

− 1 = 1.

I have not seen this topological identity, which has a superficial appearance reminiscent of functionals

which appear in Euler’s formula or in the definitions of the Euler Characteristic, within the topological

literature. It has apparently been overlooked, perhaps because a mathematical structure composed of

these many convex hulls does not fit naturally into the framework of CW-complexes, the versatile and

commonly-studied cellular system of modern topology. In the random-geometry literature the identity

has not been recognised either, although the trivial case when n = h+ 2 and h = d is stated as a lemma

by Miles [8, p.372] and used implicitly by Buchta in [5].

Clearly, Theorem 2 (which we prove in Section 4) has the following corollary, which in turn proves

Theorem 1.

Corollary 1. Let ν be a σ-finite measure on (Rh,Bh). For 1 ≤ j ≤ n, define ν
(n)
j as the average of ν

measures over the
(

n
j

)

convex hulls formed from all j-subsets of P1, P2, ..., Pn. Then

n−1
∑

j=1

(−1)j−1

(

n

j

)

ν
(n)
n−j = 2ν(

◦

Hn) + ν(∂Hn), n− h ≥ 2 and even, (5)

= ν(∂Hn), n− h ≥ 3 and odd. (6)

When ν is absolutely continuous with respect to h-dimensional Lebesgue measure,

1

2

n−h−1
∑

j=1

(−1)j−1

(

n

j

)

ν
(n)
n−j = ν(Hn) ≡ ν(n)

n , n− h ≥ 2 and even, (7)

= 0, n− h ≥ 3 and odd. (8)

PROOF of Corollary. For P ∈ Rh and H ⊂ Rh let IH(·) be defined as the indicator function of the

domain H, namely IH(P ) = 1 if P ∈ H, being zero otherwise. Clearly,
∫

Rh

IH(P ) ν(dP ) = ν(H).

The entity cj in Theorem 2 is the sum of indicator functions of the j-subset convex hulls. So
∫

Rh

cj(P ) ν(dP ) =

(

n

j

)

ν
(n)
j .
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Therefore (5) and (6) follow from an integration of the identity in Theorem 2. With n ≥ h+ 1, we have

the following.

∫

Rh

Ψ(P )ν(dP ) =

∫

◦

Hn

(−1)hν(dP ).

Therefore
(

n
1

)

ν
(n)
1 −

(

n
2

)

ν
(n)
2 + ...+ (−1)n−1

(

n
n

)

ν
(n)
n = (−1)hν(

◦

Hn), and so

n−1
∑

j=1

(−1)j−1

(

n

j

)

ν
(n)
j + (−1)n−1ν(∂Hn) = [(−1)h − (−1)n−1]ν(

◦

Hn)

= 2(−1)nν(
◦

Hn), when (n− h) is even.

Therefore

n−1
∑

j=1

(−1)j−1

(

n

j

)

ν
(n)
n−j = 2ν(

◦

Hn) + ν(∂Hn) when (n− h) is even

= ν(∂Hn) when (n− h) is odd.

We have used the obvious fact that ν
(n)
n = ν(Hn). Identity (7) follows as an example of (5), one in which

absolute continuity allows us to ignore ν(∂Hn) and also to set ν
(n)
j = 0 for all j ≤ h. �

Remark 2. Mainly we shall use (5) and (7) in the sequel. It turns out that (6) and (8) are somewhat

redundant to our needs because (5) ⇒ (6) and (7) ⇒ (8).

The first use of (7) is, of course, the immediate proof of Theorem 1 by setting ν equal to the d-dimensional

measure V (restricted to the h-dimensional flat which contains Hn, if h < d).

PROOF of Theorem 1. If h = d, then (3) follows immediately from (7). The elimination of summation

terms, (n − d) ≤ j ≤ (n − 1), follows because Sn−j contains only sets of dimension less than d for that

range of j. If h < d, then Vn and each V (H(s)) in (3) equal zero, so (3) is true in a degenerate way. Thus

(3) is true for all positions of P1, P2, ..., Pn regardless of the variable h. Formula (4) and the Theorem’s

last remark follow trivially. �

In the random setting, we define ηx := P{h = x}, 0 ≤ x ≤ d. Sometimes ηj can be calculated easily;

for example, in the 7-point base layout used in Example 1(a), η2 = 1 for 4 ≤ n ≤ 7, but if n = 3, then

η1 = 3
35 , η2 = 32

35 .

• Example 6: In R2, consider independent placement with µ being concentrated totally on 3 points

whose convex hull is a triangle with area a > 0. The probability weights are p1, p2 and p3. It is

readily shown that Vn = a with probability 1 + pn
1 + pn

2 + pn
3 − (1− p1)

n − (1− p2)
n − (1− p3)

n (an

entity which is zero for n < 3), Vn = 0 otherwise. So here η0 = pn
1 + pn

2 + pn
3 , η1 = (1− p1)

n + (1−

p2)
n + (1 − p3)

n − 2pn
1 − 2pn

2 − 2pn
3 whilst η2 = P{Vn = a}.
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Other elementary calculations confirm Buchta’s identity (2). Its RHS, when n is even and ≥ 4,

equals

a

2

n−3
∑

j=1

(−1)j−1

(

n

j

)

[1 +

3
∑

i=1

pn−j
i −

3
∑

i=1

(1 − pi)
n−j ]

=
a

2
[(2 + 1

2n(n− 1) − n− (1 − 1)n) +
3

∑

i=1

(1 + pn
i + 1

2n(n− 1)p2
i − npi

− (1 − pi)
n) −

3
∑

i=1

(1 + (1 − pi)
n + 1

2n(n− 1)(1 − pi)
2 − n(1 − pi) − pn

i )]

=
a

2
[2 − n(n− 1) + 2n+ 2

3
∑

i=1

(pn
i + 1

2n(n− 1)pi − npi − (1 − pi)
n)]

= a[1 +
3

∑

i=1

(pn
i − (1 − pi)

n)] = LHS.

4. Proof of Theorem 2

We turn to the proof of Theorem 2, but before commencing formalities, we discuss the basic geometry

of convex hulls (aided by visual assistance when d = 2, 3 from Figures 1 and 2 respectively).

• Hn is an h-polytope, with faces of dimensions 0, 1, ..., (h− 1) on its boundary. In general, its facets,

that is the (h − 1)-faces, are (h − 1)-polytopes. In the completely unaligned case, however, these

facets are (h−1)-simplices as there will be no occurrence of more than h points lying in any (h−1)-

flat. By contrast, note in Figure 1(b) the 4 points lying in the 1-flat which contains CD, one of the

sides of Hn.

• Recall that an h-object is an object of h-dimensions (where ‘object’ can be polytope, flat, simplex,

face ...), Grünbaum [7]. One exception in this paper is the j-hull which is generated from j ≥ 1

points and may be an object of any dimension ≤ min (h, j − 1) if the points are in R
h.

• Let U be defined as the union of all h-hulls. U , seen as a network of line-segments in Figure 1,

partitions Hn into a tessellation. That is, Hn \U is a collection of disjoint, open, connected subsets

(called ‘zones’) whose closures cover Hn. Each zone Z is the interior of an h-polytope. One zone is

shaded in each part of Figure 1. We define an i-face of a zone Z as the interior of the corresponding

i-face of Z’s closure; this is an open set when i > 0.

• Let Z be a zone. cj(P ) is a constant for all P ∈ Z; in particular, cj(P ) = 0 for 1 ≤ j ≤ h, P ∈ Z.

• Figure 2(a) shows the polyhedron (3-polytope) H7 which arose from 7 uniformly random points

inside the unit cube. Only 3 facets are seen from the viewing point. When the two most prominent

facets and all structure above the line z = 2
5 are removed (as in Figure 2(b)), we see some of the

architecture of U . In Figure 2(c), the union of 2 hulls is shown as a ‘net’ of
(

7
2

)

line segments in

R3. Some edges (1-faces) of zones lie in this net, but some do not (just as in Figure 1, some of the
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(a) (b) (c)

Figure 2: (a) A view of one realisation of H7 in R
3, with only 3 facets visible. (b) Two of these 3 facets have

been removed, as has all structure above z = 2

5
, rendering some of the 3-hulls more visible. (c) The net of 2-hulls,

with blacker shading indicating closeness to the viewing point.

of the 0-faces of zones lie in the set of 1-hulls but some – indeed most – do not).

• In the completely unaligned case, any h-hull is an (h− 1)-simplex. The (h− 1)-flat containing this

h-hull does not contain any Pi other than the h which generated the hull. In general, there may be

many h-hulls lying in one (h− 1)-flat. For example in Figure 1(b), the line (1-flat) containing AB

contains
(

f
2

)

2-hulls, where f equals the number of points on that flat (f = c1(A)+ c1(I)+ c1(H)+

c1(B) = 5). For a more complicated example, consider that the 7 points in Figure 1(a) lie on a

common 2-flat in R3. There are
(

7
3

)

3-hulls lying within that flat. Their union is the convex hull of

the 7 points. Note, however, that the structure on this 2-flat is complicated further by other 3-hulls

constructed using points which do not lie on the flat. The thick grey lines in Figure 3 illustrate

this complication when n = 10, there being two points (P5 and P9, say) above the flat, one point

(P2, say) below the flat with the remaining 7 on the flat. A and B are the points where the 2-hulls

P2P5 and P2P9 intersect the flat.

• More formally, the relationship ‘lies in a common (h− 1)-flat ’ is an equivalence relationship on the

set of h-hulls. So this set can be partitioned into equivalence classes. Now U can be represented as

∪F∈Fh
conv(Pi : Pi ∈ F),

where Fk is the class of all (h− 1)-flats which contain at least k points from {P1, P2, ..., Pn}. Thus

in Figure 1(b), U , which is defined as the union of all 2-hulls, can be represented as AB ∪ FC ∪

CD ∪ {24 other letter pairs}, a saving on the
(

12
2

)

= 66 point-pairs.

The following lemma captures one of the essential notions in the proof of Theorem 2.
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A

B

Figure 3:

Lemma 1. With the action taking place in h ≥ 1 dimensions, let exactly f points from {P1, P2, ..., Pn}

lie on some (h − 1)-flat called F. Here 0 ≤ f < n. The flat F divides the space Rh into two open

half-spaces, called F
+ and F

− say. Denote the numbers of points from {P1, P2, ..., Pn} lying ∈ F
+ or ∈ F

−

by n+ or n−, respectively. Here f + n+ + n− = n. For a reference point P ∈ F, define

c+j (P ) := number of j−hulls covering P and intersecting F
+ but not F

−,

c−j (P ) := number of j−hulls covering P and intersecting F
− but not F

+,

c±j (P ) := number of j−hulls covering P and intersecting both F
+ and F

−,

c∅

j (P ) := number of j−hulls covering P and intersecting neither (i.e. hull ∩ (F+ ∪ F
−) = ∅).

If Ψ⋆(P ) :=
∑n

j=1(−1)j−1c⋆j (P ) for any symbol ⋆, then

Ψ+(P ) = − Ψ∅(P ), provided n+ > 0, (9)

Ψ−(P ) = − Ψ∅(P ), provided n− > 0, (10)

Ψ(P ) = Ψ±(P ) − Ψ∅(P ), provided n+ > 0 and n− > 0. (11)

Also Ψ+(P ) = 0 if n+ = 0, Ψ−(P ) = 0 if n− = 0 and Ψ(P ) = 0 if min (n+, n−) = 0.

Proof of Lemma 1. Obviously

cj(P ) = c∅

j (P ) + c+j (P ) + c−j (P ) + c±j (P ) (12)

and so we address the terms on the right-hand side, c+j (P ) firstly. By combining selections of j points,
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some in F
+ and the rest in F with convex hull covering P , we get, for 2 ≤ j ≤ n+ + f ,

c+j (P ) =

(

n+

1

)(

c∅

j−1(P )

1

)

+

(

n+

2

)(

c∅

j−2(P )

1

)

+ ...+

(

n+

n+

)(

c∅

j−n+(P )

1

)

=
n+

∑

i=1

(

n+

i

)

c∅

j−i(P ),

whilst c+j (P ) = 0 when j = 1 or j > n+ + f . There might be zero terms in this expression, because

c∅

j−i(P ) = 0 if j − i > f or j − i ≤ 0. Therefore,

Ψ+(P ) =

n++f
∑

j=2

(−1)j−1c+j (P ) since c+j (P ) = 0 when j > n+ + f

=

n++f
∑

j=2

(−1)j−1
n+

∑

i=1

(

n+

i

)

c∅

j−i(P )

=

n+

∑

i=1

(

n+

i

) n++f
∑

j=2

(−1)j−1c∅

j−i(P )

=
n+

∑

i=1

(

n+

i

) n++f
∑

j=i+1

(−1)j−1c∅

j−i(P ) since c∅

j−i(P ) = 0 when j < i+ 1

=

n+

∑

i=1

(

n+

i

)

(−1)i

n++f−i
∑

t=1

(−1)t−1c∅

t (P ) where t := j − i

=

n+

∑

i=1

(

n+

i

)

(−1)i

f
∑

t=1

(−1)t−1c∅

t (P ) since c∅

t (P ) = 0 when t > f

= ((1 − 1)n+

− 1) Ψ∅(P ) = −Ψ∅(P ), n+ > 0.

Likewise, Ψ−(P ) = −Ψ∅(P ) provided n− > 0, so we have established (9) and (10). From these new

findings and (12), with min (n+, n−) > 0,

Ψ(P ) = Ψ∅(P ) + Ψ+(P ) + Ψ−(P ) + Ψ±(P )

= Ψ∅(P ) − Ψ∅(P ) − Ψ∅(P ) + Ψ±(P ) = Ψ±(P ) − Ψ∅(P )

confirming (11). When n+ = 0, Ψ+(P ) = Ψ±(P ) = 0,Ψ−(P ) = −Ψ∅(P ), so Ψ(P ) = 0 (and likewise if

n− = 0). Finally we note that, if f = 0, the arguments and conclusions above are valid; also, Ψ∅(P ) = 0,

reducing (9)–(11) to obvious truths. �

Remark 3. There is little prospect of finding an expression for c±j (P ) for general h, f, n+ and n− and

general point-locations. P -covering j-hulls which intersect both F
+ and F

− include those where (a) none

of the j points lie in F or (b) P is not in the convex hull of those that do lie in F. Examples in Figure 1(b)

of (a) based on F ⊃ AB and P ∈ F in the neighbourhood of I are: 3-hulls EDF,ECF,GCF and EDG;

4-hulls ECFG and EDFG. Examples of (b) for the same F and P are: 3-hulls EDA,EHF and EBF ;
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4-hulls EBFH,GHDF and GBFH . Multiplicities in these lists also occur because of the coincidences

at B and G. In general, these types of P -coverings are very difficult to count.

Lemma 2. Using the premises of Lemma 1, define fj(F) as the number of j-hulls which intersect with

the flat F. Then

fj(F) =

(

n

j

)

−

(

n+

j

)

−

(

n−

j

)

. (13)

Proof of Lemma 2. This trivial expression is the total number of j-hulls minus those that do not

intersect F. �

Proof of Theorem 2 for h ≤ 1. The case h = 0 is trivial, so we consider only h = 1. For all P and j,

cj(P ) = fj(F) based on a 0-flat F located at P . This equals
(

n
j

)

−
(

n+

j

)

−
(

n−

j

)

from (13). Alternatively a

derivation of this comes from cj(P ) = c+j (P ) + c−j (P ) + c±j (P ) + c∅

j (P ), all terms including c±j (P ) being

easily derived when h = 1:

c+j (P ) =

(

n+ + f

j

)

−

(

n+

j

)

−

(

f

j

)

; c−j (P ) =

(

n− + f

j

)

−

(

n−

j

)

−

(

f

j

)

;

c±j (P ) =

(

n

j

)

−

(

n+ + f

j

)

−

(

n− + f

j

)

+

(

f

j

)

; c∅

j (P ) =

(

f

j

)

.

When P ∈
◦

Hn (which is equivalent to min(n+, n−) > 0),

Ψ(P ) =
n

∑

j=1

(−1)j−1
[

(

n

j

)

−

(

n+

j

)

−

(

n−

j

)

]

= [1 − (1 − 1)n] − [1 − (1 − 1)n+

] − [1 − (1 − 1)n−

] = −1,

with appropriate adjustment if P ∈ ∂Hn (equivalent to min(n+, n−) = 0). So summation of cj(P ) yields

Theorem 2 for h = 1 for all P (not just ‘almost all’). �

Lemma 3. Let the premises be the same as in Lemma 1, but now with min (n+, n−) > 0. Additionally,

let Z+ ⊂ F
+ and Z− ⊂ F− be two zones adjacent in the sense that a facet W of Z+ is ⊂ F and is also a

facet of Z−. If P ∈ W , then Ψ(P ) = Ψ(Q+) = Ψ(Q−), where Q+ is any point ∈ Z+ and Q− any point

∈ Z−.

If the case n− = 0 is also considered, then Z− and Q− are not defined, but Ψ+(P ) = Ψ(Q+) still.

This lemma is illustrated for h = 2 in Figure 4. The darkly-shaded region is the open zone Z+, with

the lightly-shaded being Z−. The 1-flat F is the line containing AB, whilst W is the open line-segment

(open 1-polytope) which separates the two shaded zones. The reference point P ∈ W . In Figure 3, the

open shaded region is an example of W .

Proof of Lemma 3. Clearly cj(Q
+) = c+j (P ) + c±j (P ) for any j. Therefore Ψ(Q+) = Ψ+(P ) + Ψ±(P )

and so, using (9), Ψ(Q+) = Ψ±(P )−Ψ∅(P ). By a similar argument and (10), Ψ(Q−) = Ψ±(P )−Ψ∅(P ).

Both entities equal Ψ(P ), when min (n+, n−) > 0, because of (11). When n− = 0, the use of (9) combined

with the obvious Ψ±(P ) = 0, establishes the stated results. �
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A

B

G

HIP
•

Figure 4: This drawing, an enlargement of part of Figure 1(b), illustrates Lemma 3.

Proof of Theorem 2 for P ∈ ∂Hn. We consider a facet of Hn, called T, and place an (h−1)-flat F ⊃ T.

If we arbitrarily declare F
+ to be the half-space which intersects Hn, then n+ > 0 and n− = 0. Thus,

from Lemma 1, Ψ(P ) = 0, P ∈ T. This argument can be applied to all facets, and so, to the whole

boundary of Hn. �

Proof of Theorem 2 for almost all P ∈
◦

Hn . We prove that Theorem 2 is true for all h and n when P

lies in a ‘restricted region’ – namely within any zone or in any zone’s facet ⊂
◦

Hn. An induction is used.

Suppose that Theorem 2 is true in dimension (h − 1) for P in the ’restricted region’. This means

that when the action is taking place in dimension h, the theorem can be applied on the boundary of

Hn, in particular, within any (h − 1)-polytope T which is a facet of Hn. Thus, in the h-dimensional

context, Ψ∅(P ) = (−1)h−1 for any P lying in the ‘restricted region’ of T – a region, some of which can

be characterised as being facets of zones within Hn.

If P ∈ T lies in a facet of such a zone (obviously a zone of Hn adjacent to T), then Lemma 3 proves

that Ψ+(P ) = Ψ(Q+) for every point Q+ in that zone. Because Lemma 1 shows that Ψ+(P ) = −Ψ∅(P ),

we have Ψ(Q+) = −Ψ∅(P ) = (−1)h.

A clear consequence of Lemma 3 is that Ψ(·) is a constant, ψ say, within the union of all the zones.

If Ψ(P ) = ψ for P in one zone, then the same is true in adjacent zones, their adjacent zones and so on.

Lemma 3 also shows that Ψ(·) = ψ on all zone facets – and therefore within all of our ‘restricted region’

of Hn. We readily see that the constant ψ equals the Ψ(Q+) in our previous paragraph; so ψ = (−1)h.

The inductive argument is completed by noting that we have already proved the result for h = 1. �

Remark 4. In this proof of Theorem 2 we have gone further than required, obviously so when h ≤ 1 (by

replacing ’almost all’ with ‘all’), but also when h ≥ 2. In this latter case the set of positions for P ∈
◦

H

not covered by our proof, namely those positions which lie on a zonal i-face where 0 ≤ i ≤ (h− 2), is of

dimension (h− 2), two dimensions lower than the space where the action takes place.

For some of the 0-faces, we have an added result.

Lemma 4. Suppose P ∈
◦

Hn is a zonal 0-face that coincides with a point Pi, which without loss of
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generality we can call Pn (because points can be relabelled to suit one’s needs). Define cj(P,m) as the

number of P -covering j-hulls taken only from {P1, P2, ..., Pm}, where 1 ≤ m ≤ n, and let Ψ(P,m) :=
∑m

j=1(−1)j−1cj(P,m). Then, for n ≥ 2,

Ψ(Pn) ≡ Ψ(Pn, n) = Ψ(Pn, n− 1).

Proof of Lemma 4.

cj(Pn) ≡ cj(Pn, n) = cj(Pn, n− 1) +

(

n− 1

j − 1

)

,

the second term capturing the idea that all (j−1)-subsets from {P1, P2, ..., Pn−1}, when augmented with

Pn, have convex hull which covers Pn. Then

Ψ(Pn) ≡ Ψ(Pn, n) =

n
∑

j=1

(−1)j−1
[

cj(Pn, n− 1) +

(

n− 1

j − 1

)

]

= Ψ(Pn, n− 1) + (−1)n−1cn(Pn, n− 1) + (1 − 1)n−1

= Ψ(Pn, n− 1) if n ≥ 2,

since cn(Pn, n− 1) = 0. �

5. Proof of the topological result for all positions of P when h = 2

We conjecture that the result in Theorem 2 is valid for all P ∈
◦

H, not just ‘almost all ’, for any

dimension h > 1. We conclude the paper by establishing this conjecture for h = 2, using Lemma 4

combined with other computations.

Theorem 3. When h = 2 (implying n ≥ 3), Ψ(P ) = (−1)2 = 1 for all P ∈
◦

H.

Proof of Theorem 3. The positions of P ∈
◦

Hn not included in Theorem 2 are at the corners (0-faces)

of zones. Most of these corners are located in the interior of some 2-hull, whilst the remaining few are

coincident with one of the points Pi ∈
◦

Hn (for example, point G in Figure 2(b), a point not in the interior

of a 2-hull).

Suppose P ∈
◦

Hn lies in the interior of some 2-hull, which without loss of generality can be the line-

segment Pn−1Pn . Let F be the flat which covers this line-segment, with n+ and n− being defined

relative to F. We introduce the notation fj(F,m) as the number of F-intersecting j-hulls taken only from

{P1, P2, ..., Pm}, where 1 ≤ m ≤ n. Then, we can write c1(P ) = c1(P, n− 2) and, when j ≥ 2,

cj(P ) ≡ cj(P, n) = cj(P, n− 2) + 2cj−1(P, n− 2) +
[

fj−1(F, n− 2) − cj−1(P, n− 2)
]

+

(

n− 2

j − 2

)

.

The second term captures the fact that any P -covering (j−1)-hull taken only from {P1, P2, ..., Pn−2} can

be augmented with either Pn−1 or Pn to give a P -covering j-hull. The term in square-brackets counts

the number of (j−1)-hulls taken only from {P1, P2, ..., Pn−2} which intersect F but do not cover P – and
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each of these makes a P -covering j-hull when augmented with the appropriate point Pn−1 or Pn. The

last term captures the idea that all (j − 2)-subsets from {P1, P2, ..., Pn−2}, when augmented with Pn−1

and Pn, have convex hull which covers P . Thus, using Lemma 2 to evaluate fj−1(F, n− 2),

cj(P ) ≡ cj(P, n) = cj(P, n− 2) + cj−1(P, n− 2) +

(

n− 2

j − 1

)

−

(

n+

j − 1

)

−

(

n−

j − 1

)

+

(

n− 2

j − 2

)

.

So, when the line-segment Pn−1Pn 6⊂ ∂Hn (implying n ≥ 4 and min(n+, n−) ≥ 1),

Ψ(P ) ≡ Ψ(P, n)

= Ψ(P, n− 2) − Ψ(P, n− 2) + [(1 − 1)n−2 − 1] − [(1 − 1)n+

− 1] − [(1 − 1)n−

− 1] − (1 − 1)n−2

= 1. (14)

If the segment Pn−1Pn ⊂ ∂Hn, whereby n ≥ 3, n− = 0 and n+ ≥ 1, then a minor adjustment to the

calculation above shows that Ψ(P ) = 0. Therefore, the Theorem is true when P is located at a zonal

corner which lies in the interior of a 2-hull. This leaves only some remaining positions for P ∈
◦

Hn where

P = Pi, for some i.

We note however that there are no such positions ∈ HN , where, N := min(m : dim(Hm) = 2) ≥ 3. So,

Ψ(P,N) = 1 for all P ∈
◦

HN and, by induction the theorem is proved – using Lemma 4 to cater for any

positions of P not covered by Theorem 2 and (14) – firstly for N + 1 points, then N + 2 points and so

on, until the theorem is proved for n points. �

Appendix: Other identities involving volume moments

Some results for higher moments emerge from our almost-sure identity (4). For example, consider

n = d + 2 where Buchta’s result is E(Vd+2) = 1
2 (d + 2)E(Vd+1). This result strengthens to Vd+2 =

1
2 (d + 2)V

(d+2)

d+1 = 1
2 [V

(d+2)
(1) + V

(d+2)
(2) + ... + V

(d+2)
(d+2) ], where V

(n)
(j) is the volume of the convex hull of all

the n points except Pj . A consequence of this breakdown of Vd+2 into the sum of (d + 2) exchangeable

entities is a new relationship, Var(Vd+2) = 1
4 (d+ 2)[Var(Vd+1) + (d+ 1)Cov(V

(d+2)
(1) V

(d+2)
(2) )].

We also note other recursion formulae found from (2) by strategic ’manipulation’ of the EVn−j terms

on its right-hand side when the subscript has the right parity, that is, when (n − j − d) ≥ 2 and even.

Various such forms (details of proof omitted) follow. For (n− d) ≥ 2 and even,

E(Vn) =

n−d−1
∑

j=1

(−1)j−1

(

n/2

j

)

E(Vn−j),

=

(

n
d

)

(

(n+d)/2
d

)

(n−d)/2
∑

j=1

(−1)j−1

(

d+j
j

)(

(n+d)/2
d+j

)

(

n−j
d

) E(Vn−j)

=

n−d−1
∑

j=1

(−1)j−1

(

n

j

)

E(Vn−j)

j + 1
.

The last of these three forms can also be derived from (8).
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