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Abstract

Tessellations of R
3 that use convex polyhedral cells to fill the space can be

extremely complicated. This is especially so for tessellations which are not

‘facet-to-facet’, that is, for those where the facets of a cell do not necessarily

coincide with the facets of that cell’s neighbours. Adjacency concepts between

neighbouring cells (or between neighbouring cell elements) are not easily

formulated when facets do not coincide. In this paper, we make the first

systematic study of these topological relationships when a tessellation of R
3 is

not facet-to-facet. The results derived can also be applied to the simpler facet-

to-facet case. Our study deals with both random tessellations and deterministic

‘tilings’. Some new theory for planar tessellations is also given.

Keywords: random geometry, tessellations, tilings, packing of polyhedra, space-

filling, topology.
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1. Introduction

In this paper we study random stationary spatial tessellations, that is, random tessellations of the

three-dimensional space R
3 having statistical properties that are invariant under translation. We develop

new mean-value formulae for various topological parameters in cases where the cells of the tessellation

are convex polyhedra. The formulae generalize one of the identities for stationary planar tessellations

presented by the second author ([2], [3]) in 1978. These identities, using notations based on his later

papers ([4], [7]), are:

µ =
2θ

θ − 2
(1)

ν =
2(θ − φ)

θ − 2
. (2)
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Here µ indicates, for a typical cell, the expected number of edges (or vertices) of the tessellation on the

cell’s boundary. The entity ν is the expected number of sides (or corners) that the typical cell has. For a

typical tessellation vertex, θ is the mean number of emanating edges. If a vertex has j emanating edges,

there are j angles subtended by these edges at the vertex; if one of these angles is equal to π, the vertex

is called a π-vertex. The parameter φ is defined as the proportion of vertices which are π-vertices. The

words ‘vertex’ and ‘edge’ refer to the tessellation, whilst ‘corner’ and ‘side’ are words used for the 0-faces

and 1-faces of the convex polygonal cells.

z

(a) (b)

Figure 1: (a) The planar tessellation formed as the superposition of a Poisson-Voronoi tessellation and its Poisson-Delaunay

‘dual’. The tessellation is side-to-side – every edge is a ‘side’ of the two polygonal cells that it separates. Side-to-side tessellations

have no π-vertices. (b) A Voronoi tessellation with each cell split by a random chord through the point used to generate that cell.

These generating points are shown in grey; they are not tessellation vertices. Note that half of all vertices of the tessellation are

π-vertices. The cell marked ”z” has five sides and seven edges on its boundary.

The two entities µ and ν are equal for a side-to-side tessellation (see Figure 1(a) for a definition of

this terminology and an example), but differ if there exist π-vertices as in the example of Figure 1(b).

We illustrate formulae (1) and (2) with four examples. In Figure 1(a), suppose that the Poisson point

process that generates the tessellation has intensity ρ. Then the vertex-intensities of the Delaunay and

Voronoi components of the tessellation are ρ and 2ρ respectively. It is known (Muche [21]) that the

intensity of the edge-crossings of these two components is 4ρ. So θ = (6 × ρ + 3 × 2ρ + 4 × 4ρ)/7ρ = 4.

Since φ = 0, we can write µ = ν = 4.

In Figure 1(b), both the Voronoi vertices and the new vertices created by the random chords have

intensity 2ρ. So φ = 1
2 . Each type is always of order three, so θ = 3. Therefore µ = 6 and ν = 5.

The other two examples are based on Figure 2. In Figure 2(a), a realisation of the so-called STIT

model of Nagel and Weiss ([22], [14]) is shown. Here the tessellation within the window is constructed by

successive division of cells (in a particular manner) by independent random chords. This is one of a wide

class of tessellations (recently systemised in Cowan [6]) which can be constructed in an iterative way.

Many such constructions have similar characteristics to this picture, with all vertices being π-vertices

and having order 3. Thus φ = 1 and θ = 3; so µ = 6 and ν = 4. Although not constructed by iterative

division of cells, we note that one of the Arak class of models ([1], [17]) has similar parameters and so a
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similar calculation.

(a) (b)

Figure 2: (a) A realisation of the STIT model within a rectangular viewing window. (b) This tessellation is constructed by

successive division of cells with independent random chords, commencing with a bounded triangular window which is the first cell

in the process (the ancestor). The division chord is drawn from a randomly-selected corner of the triangle to a random point on the

opposite side, thereby creating two triangular daughter cells. This rule is applied iteratively, with dilation to keep the line-intensity

and mean cell size constant, to yield a tessellation comprising only triangular cells. If this construction converges to a stationary

locally-finite tessellation of R
2 (an issue still under consideration in our studies), its realisation will look like the figure.

The tessellation in Figure 2(b) also comes from the iterative division of cells, but it starts with a

triangular window and all random chords are constrained to create only triangular cells (see caption and

Cowan ([5], [6])). Here, too, all vertices are π-vertices and all cells have three sides (so φ = 1 and ν = 3).

Therefore from (2),

3 =
2(θ − 1)

θ − 2
,

which implies that θ = 4. From (1), µ = 4.

These examples illustrate that (2) is an essential adjunct to (1). In all the examples, we note that the

fundamental parameters θ and φ satisfy the general constraints:

0 ≤ φ ≤ 1; 3 ≤ θ ≤ 6 − 2φ. (3)

These constraints, which improve those derived by Kendall and Mecke [9] who made no use of φ, apply

to (1) and (2). The upper bound on θ, which has not been reported before, follows from (2) and ν ≥ 3.

Strangely, few authors have paid any attention to the difference between edges and sides. Mecke [11]

develops (1), but not (2), and the standard text of Stoyan, Kendall and Mecke ([28], Sections 10.3 and

10.4) includes only (1) in a list of identities for stationary planar tessellations. In R
3, there has been

no discussion of the analogues of (2), although there have been generalisations of (1) (see Radecke [25],

Mecke [12] and Stoyan et al [28], together with the d-dimensional study of Møller [18].) Likewise in the

influential book of Schneider and Weil ([26], Chapter 10) which discusses tessellations of R
d, d ≥ 2, only

the facet-to-facet case is treated (though they use the equivalent concept, face-to-face). These books and

papers do not discuss the rather complicated issues that arise in three-dimensional tessellations which

are not facet-to-facet.
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Formula (2) is shown to be valid, for the planar case with non-convex cells and curved edges, in

Cowan and Tsang [7] — but the issue is not discussed in the studies of planar structures with curved

cell-boundaries by either Stoyan [27] or Miles [16]. Nor has there been reference to formulae like (2) in the

studies of more general tessellations, those where the structure is a cell-complex in R
d constructed with

various systems of non-convex cells (Weiss and Zähle [30], Zähle [31], Leistritz and Zähle [10]). This is

perhaps understandable as those cell-complex papers deal with purely topological structures not tainted

by the geometric concepts of ‘angles equal to π’.

So there is a gap in the literature; our current paper fills this gap. It provides the first systematic

study of the complications in R
3 when a tessellation is not facet-to-facet, whilst also giving some new

theory for the planar case.

2. Notational style

With some exceptions that we have cited, the studies mentioned above deal only with the primitive

elements of the tessellation: in the planar case, the vertices, edges and cells of the planar graph that the

structure creates. In R
3, the two-dimensional polygonal plates which separate the three-dimensional cells

are also considered, along with vertices, edges and cells. All of these entities are convex polytopes.

These primitive elements are sometimes referred to as 0-cells, 1-cells, 2-cells and (in the spatial case)

3-cells, reflecting the dimension of the element – in keeping with cell-complex theory. This has led to

notations such as µij := the expected number of j-cells adjacent to the typical i-cell and λi := the

intensity of i-cells – by which is meant the intensity of the point-process of centroids of i-cells. For

example, µ01 is the expected number of edges ‘adjacent to’ (that is, ‘emanating from’) the typical vertex

– Cowan’s θ in the planar case.

We note that for each class of objects in the realised tessellation there is a point process formed from

the objects’ centroids. When the class comprises a primitive type of element, the point process is simple

– that is, all centroids are distinct points of the Euclidean space, so there are no ‘multiple points’ of

the point process. Later, when we consider other objects, the centroids will often coincide, forming a

non-simple point process with multiplicities. For example in R
2, the corners of cells will induce a point

process with a multiplicity at each vertex of the tessellation – and the centroid of a cell’s side will often

coincide with the centroid of a neighbouring cell’s side, giving a multiplicity of 2. Indeed the two sides

in such cases will often coincide – they are the same geometric object, distinguished by the implicit link

each has to a cell.

Because our study looks at many objects which have the same dimension, we are unable to rely solely on

subscripts which convey the object’s dimension. For example, in R
2 the symbol µ21 would be ambiguous,

meaning both the expected number of edges and the expected number of sides adjacent to a typical cell –

because edges and sides are both of dimension one.
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Instead we use letter subscripts for the primitive elements, namely V,E, P and Z for the following

object-classes – vertices, edges, plates and cells (‘Z for Zellen’, used instead of ‘C for cell’ because one of

us has used ‘C for corner’ in earlier work).

For objects which are the faces of primitives, for example the sides (1-faces) and corners (0-faces) of

polygonal primitives (such as cells in R
2 or plates in R

3), we retain some use of dimensional subscripts

whilst conveying by letter the type of primitive element which ‘owns’ the face.

Definition 1. Let X be a class of convex polytopes, each member of the class having dimension i ≤ 3.

Define Xj , j < i, as the class of objects which are j-dimensional faces (j-faces) of some polytope ∈ X .

Further nesting is allowed, so (Xj)k, k < j < i, denotes the class of objects which are k-faces of a j-face

of some object ∈ X. An object ∈ X is often referred to as “an X-type object” or “an object of type X”.

In R
2 for example, an object of type Z1 is a side of a cell, Z0 denotes the objects which are corners

of cells and E0 is the class of termini of edges. In R
3, objects of types P1 and (Z2)1 are respectively a

side of a plate and a side of a facet (which is a 2-face of a cell). A 0-face or 1-face of a three-dimensional

polyhedral cell – called an apex or ridge respectively – is in the class Z0 or Z1. A terminus of a ridge is

type (Z1)0. Because of possibly multiplicities, discussed above, some of these classes are multi-sets.

Remark 1. For some purposes, it may be necessary to emphasise the ownership of an object in Xj.

For example, when considering a cell-corner z0 ∈ Z0, we might wish to distinguish this corner from the

other cell-corners at the same position. In that circumstance, we must place an ownership ’mark’ on each

element of Z0, and deal with a product space Z+
0 := Z0 × M , where M is the mark space comprising

elements of Z. In this paper, we have no need for this augmentation; Definition 1 is sufficient.

The notation in Definition 1 appears complicated, but many simpler styles were tried and found

inadequate. We shall assist verbally where appropriate, however, referring to an object’s face as facet,

ridge or apex for objects which are polyhedra, side or corner for polygons and terminus for line-segments.

Subsets of the class X are denoted by X[·], with the contents of the [·] being a suitably suggestive

symbol introduced in an ad hoc manner. For example in R
2, the sub-class of π-vertices is V [π].

We now formalize the notation for ‘object intensity’ and concept of ‘adjacent objects’.

Definition 2. The intensity of objects belonging to class X is denoted by λX .

Definition 3. An object x ∈ X is said to be adjacent to an object y ∈ Y if either x ⊆ y or y ⊆ x. For

any x ∈ X, the number of objects of type Y adjacent to x is denoted by mY (x). For a random tessellation

we define µXY as the expected value of mY (x) when x is the typical member of X. Formally, we write

µXY := EX(mY (x)) =
∫

mY (x)PX(dx), where EX denotes an expectation for the typical object of type X

(that is, defined with respect to the Palm measure PX , see [28]). Also µ
(2)
XY := EX(mY (x)2).
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If B(r) is the ball of radius r centred at the origin, µXY can also be defined formally as

µXY := lim
r→∞

∑

{x∈X: centroid of x is ∈B(r)} mY (x)

number of objects of type X with centroid ∈ B(r)
, (4)

when the limit shown is a constant. This is so for ergodic tessellations ([2], [3]) and for regular tilings

with an infinitely-repeated sub-unit of cells (as in [8]). This latter type can be made to fit our random

stationary framework by locating the origin O uniformly distributed within one copy of the repeating

sub-unit. The limit in (4) is also a constant for many tessellations that have a ‘tiling component’, for

example, those randomly constructed from a tiling or those mixed with or superimposed on a tiling.

When X and Y are both primitive-element classes, it has been shown in [11], [30] and [10] that

λXµXY = λY µY X (5)

and this identity also holds when either X or Y or both are classes of faces of primitives; Møller’s

Theorem 5.1 [18] provides the proof of this extension. For example, when discussing sides of plates,

λP1
µP1Z = λZµZP1

.

We can express θ and φ, symbols used by Cowan in planar tessellations, by using the adjacency

notation; θ = µV E and φ = µ ◦
V Z1

, the expected number of ‘side-interiors’ adjacent to a typical vertex

(where the interior of a side, or indeed of any object x of lower dimension than the space of the tessellation,

is defined using the relative topology on x). Also
◦

X denotes the class comprising the relative interiors

of objects in class X (and ∂X denotes the class comprising boundaries, defined once more using the

appropriate relative topology). Whilst we drop the usage of θ from this point, preferring µV E , we retain

φ.

3. Known results for the primitive elements

For the primitive objects in a planar tessellation, the following table gives the known values of λX and

µXY . The table, based on the studies cited above, includes formula (1).

X λX/λV

vertices V 1

edges E 1
2µV E

cells Z
µV E − 2

2

µ V E Z

V 1 µV E µV E

E 2 1 2

Z
2µV E

µV E − 2

2µV E

µV E − 2
1

(a) (b)

Table 1: Results for the primitive elements in tessellations of R
2. (a) λX values for X ∈ {V, E, Z}. Note that λV − λE + λZ = 0.

(b) µXY when both X and Y are ∈ {V, E, Z}. Note the validity of (5). We also note that λV [π] = φλV .

Also known are the same entities for the primitive elements of spatial tessellations. In Table 2, we write these

in terms of µV E , µEP and µPV , a trio with cyclic subscripts, and use

f(x) := µV E µEP − x (µV E − 2) (6)
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as a useful abbreviation.

X λX/λV

vertices V 1

edges E 1
2
µV E

plates P
µV E µEP

2µPV

cells Z
f(µPV )

2µPV

µ V E P Z

V 1 µV E
1
2
µV E µEP

1
2
f(2)

E 2 1 µEP µEP

P µPV µPV 1 2

Z
µPV f(2)

f(µPV )

µV E µEP µPV

f(µPV )

2µV E µEP

f(µPV )
1

(a) (b)

Table 2: Results in R
3 using the abbreviation f , defined by (6). (a) λX when X ∈ {V, E, P, Z}. Note that λV −λE +λP −λZ = 0.

(b) Values of µXY for primitive-element classes X and Y . Note that µV E − µV P + µV Z = 2 and µZV − µZE + µZP = 2.

4. The faces of primitive elements: planar case

We now calculate some results for faces of the primitive elements, dealing with the planar case first. To find

λZ1 , the intensity of sides, we note that µZ1E − µ ◦

Z1V = 1. Therefore

λZ1 = λZ1µZ1E − λZ1µ
◦

Z1V

= λEµEZ1 − λV µ
◦

V Z1

= 2λE − φλV

= (µV E − φ)λV , (7)

using identity (5), φ = µ ◦

V Z1
(each vertex being adjacent to either 0 or 1 side-interiors) and the obvious µEZ1 = 2

(each edge being adjacent to two sides).

Formulae (7) leads on to formula (2) – with assistance from some new notation which generalizes Cowan’s

entity ν.

Definition 4. Let X be a class of convex polytopes, all members of which have dimension i. For j < i, we define

nj(x) as the number of j-faces of a particular object x ∈ X. Define νj(X) := EX(nj(x)), the expected number for

the typical X-object.

The notation allows nesting; for example νk(Xj) is the expected number of k-faces of the typical object of type

Xj (k < j < i, where i = dimx, ∀x ∈ X). An example with two levels of nesting occurs in spatial tessellations:

ν0((Z2)1) is the expected number of termini of a typical ‘side of a facet’ of a cell.

Some examples of the definition in the fairly simple planar case are as follows.

• ν1(Z) = Cowan’s ν, the expected number of sides of the typical cell. We can write λZ1 = λZ ν1(Z).

Therefore, using (7) and Table 1,

ν1(Z) =
λZ1

λZ

=
2(µV E − φ)

µV E − 2
, (8)
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providing a fresh proof of Cowan’s (2). Of course, ν0(Z) = ν1(Z) and this leads to λZ0 = λZ ν0(Z) =

(µV E − φ) λV .

• ν0(E) = the mean number of edge-termini of the typical edge. Trivially ν0(E) = 2, so λE0 = λE ν0(E) =

µV E λV .

• ν0(Z1) = the mean number of side-termini of the typical side. Obviously ν0(Z1) = 2, so λ(Z1)0 =

λZ1 ν0(Z1) = 2(µV E − φ)λV .

Table 3 summarizes the planar λ- and ν-results expressed in terms of µV E and φ.

X λX/λV

termini E0 µV E

corners Z0 µV E − φ

sides Z1 µV E − φ

side-termini (Z1)0 2(µV E − φ)

X ν0(X) ν1(X)

edges E 2 -

sides Z1 2 -

cells Z
2(µV E − φ)

µV E − 2

2(µV E − φ)

µV E − 2

(a) (b)

Table 3: Results for faces of the primitive elements (and faces of faces) in planar tessellations. (a) λX values for X ∈

{E0, Z0, Z1, (Z1)0}. (b) Values of νj(X), j ≤ 1 for X ∈ {E, Z1, Z}.

Table 4 gives various planar µ-results, proved in Appendix A. Many of these results use the second moment,

µ
(2)
V E , and µV [π]E , the expected number of edges adjacent to the typical π-vertex. The following function is a

useful abbreviation:

g(x) := µ
(2)
V E − x φ µV [π]E , φ > 0 (9)

= µ
(2)
V E φ = 0.

µ V E Z

E0 1
µ

(2)
V E

µV E

µ
(2)
V E

µV E

(Z1)0 1
g(1)

µV E − φ

g(1)

µV E − φ

Z0 1
g(1)

µV E − φ

g(1)

µV E − φ

Z1
2µV E − φ

µV E − φ

µV E

µV E − φ
-
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µ E0 (Z1)0 Z0 Z1

V µV E 2(µV E − φ) µV E − φ 2 µV E − φ

E
2 µ

(2)
V E

µV E

4 g(1)

µV E

2 g(1)

µV E

2

Z
2 µ

(2)
V E

µV E − 2

4 g(1)

µV E − 2

2 g(1)

µV E − 2
-

E0
µ

(2)
V E

µV E

2 g(1)

µV E

g(1)

µV E

2 g( 1
2
)

µV E

(Z1)0
g(1)

µV E − φ

2(g(2) + φ)

µV E − φ

g(2) + φ

µV E − φ

2 g( 3
2
) + φ

µV E − φ

Z0
g(1)

µV E − φ

2(g(2) + φ)

µV E − φ

g(2) + φ

µV E − φ

2 g( 3
2
) + φ

µV E − φ

Z1

2 g( 1
2
)

µV E − φ

2(2 g( 3
2
) + φ)

µV E − φ

2 g( 3
2
) + φ

µV E − φ
-

Table 4: Further µXY values for the primitive-element classes V, E and Z in a planar tessellation, and for those classes,

E0, (Z1)0, Z0 and Z1, whose members are faces of (or faces of faces of) primitives. These supplement those µXY values in Table

2(b). The function g is defined in (9).

We conclude our material on planar tessellations by restating that our results summarised in Tables 1, 3 and

4 should be read with the constraints of (3) in mind.

5. Description of facets in a spatial tessellation

The situation in R
3 has much greater complexity, as seen in Figure 3 which shows a particular facet z2 of a

cell – plus some of the other cells that ‘interact’ with it. In (a), we note that z2 comprises 8 polygonal plates.

The interior of z2 has considerable structure; it contains three vertices and 10 edge-interiors of the tessellation.

These numbers agree with the following Eulerian formula for any facet z2 ∈ Z2,

mV (
◦

z2) −mE(
◦

z2) +mP (z2) = 1. (10)

Formula (10) follows from an application of Euler’s planar-graph formula to yield mV (z2)−mE(z2)+mP (z2) = 1,

combined with mV (∂z2) = mE(∂z2), for all z2 ∈ Z2.

Along each of the 10 edge-interiors mentioned above, the two coplanar plates of z2 which meet along the edge

make a dihedral angle equal to π and, at the three vertices in z2’s interior, all emanating edges are contained in

a closed hemisphere centred on the vertex.

Definition 5. An edge whose interior is contained in the interior of a facet is called a π-edge; the class of π-

edges is E[π]. A vertex contained in the interior of a facet is called a hemi-vertex (and the class called V [h]). The

proportion of π-edges in the tessellation is denoted by ξ := µ ◦ ◦

EZ2
and the proportion of hemi-vertices by κ := µ ◦

V Z2
.

There are 8 other cells positioned above z2 which share a plate of this facet with the cell below z2; two of these

are shown in Figure 3(b) and we note that their facets extend beyond the shared plates. The triangular prism

seen in (c) packs between the two cells of (b) and has one of its ridges lying along two collinear edges of our facet
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(a) (b)

(c) (d)

(e) (f)

Figure 3: A cell facet z2 ∈ Z2 and some neighbouring cells. The cell positioned below z2 has z2 as one of its facets.

(seen in (a)).

Two other “above-cells” which share a plate with the cell below are shown in (d), whilst (e) shows a cell (the tall

dark one) whose only contact with our facet z2 is via one of its apices; the apex coincides with an interior-vertex

of z2. Yet another cell packs in behind the tall dark one in (f) – and there are other cells (not drawn) which fill

the foreground.

From (10), we can derive λZ2 , the intensity of facets.

µ ◦

Z2V − µ ◦ ◦

Z2E + µZ2P = 1.

Therefore

λZ2 = λZ2µ
◦

Z2V − λZ2µ
◦ ◦

Z2E + λZ2µZ2P

= λV µ
◦

V Z2
− λEµ

◦ ◦

EZ2
+ λPµPZ2 using (5) and λ ◦

E = λE

= κλV − ξλE + 2λP because µPZ2 = 2

=
(

κ− 1
2
ξ µV E +

µV E µEP

µPV

)

λV from Table 2. (11)
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Furthermore, since λZ2 can also be written as λZν2(Z), we can derive ν2(Z), the expected number of faces of the

typical cell.

ν2(Z) =
λZ2

λZ

=
2κ µPV − ξ µV E µPV + 2µV E µEP

f(µPV )
from (11) and Table 2

= µZP − µPV

ξ µV E − 2κ

f(µPV )
. (12)

This is our first formula which is analogous to Cowan’s planar formula (8). Other analogies, formula for ν1(Z)

and ν0(Z), follow in the next section.

6. Description of ridges in a spatial tessellation

Figure 4(a) shows two facets of a cell, each containing some edges. These edges create three vertices on the

ridge which is common to the two facets.

(a) (b)

Figure 4: (a) Two facets of a cell and the ridge which is their intersection. (b) Six cells from a tessellation formed by congruent
triangular prisms. The vertical axis is the z-axis, whilst the horizontal axes are the x-axis (pointing right) and the y-axis (pointing
to the back).

There may, however, be other vertices in the ridge interior. For example, another cell may have an apex on

the ridge. Or it might have one of its ridges intersecting with the ridge, creating one or two vertices additional to

those shown in the figure.

So we must recognise that a vertex of the tessellation may lie in a ridge-interior (or indeed in many ridge

interiors). This is true even for hemi-vertices. The expected number of ridge-interiors adjacent to a typical

vertex, ψ := µ ◦

V Z1
, turns out to be an important parameter of spatial tessellations.

Example 1. Consider Figure 4(b). Both triangular end-facets of the prism are equilateral triangles of side-length

equal to 1. These facets are parallel to each other and to the xz-plane. They are orthogonal to the other three

facets (which are 1 × L rectangles). The tessellation is made up of cells of this type. The cells are packed around

a central axis which is orthogonal to the xz-plane (and so parallel to the horizontal y-axis), thereby forming an

infinite-length hexagonal rod. The rods pack to fill R
3.

The positioning of cells is such that whenever the xz-plane cuts a cell, the distance between the cell’s front
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triangular facet and the xz-plane is uniformly distributed in (0, L), independently for each cell which is cut. (The

origin O is uniformly distributed within one such cell.) So triangular facets (which always comprise one whole

plate) never share an edge. The edges of the triangles are π-edges; there is one of these π-edges lying against each

rectangular facet, dividing the facet into two rectangular plates. Every vertex is adjacent to 5 ridge-interiors, so

ψ = 5.

In order to find ν1(Z), we note that

µZ1E − µ ◦

Z1V = 1.

Therefore, using

λZ1µZ1E = λE(µEP − ξ) (13)

together with Table 2, (5) and λ ◦

Z1
= λZ1 ,

λZ1 = λZ1µZ1E − λ ◦

Z1
µ ◦

Z1V

= λE(µEP − ξ) − λV µ
◦

V Z1

= 1
2

(

µV E(µEP − ξ) − 2ψ
)

λV . (14)

Because λZ1 also equals λZν1(Z), Table 2 gives us:

ν1(Z) =
λZ1

λZ

=
µPV (µV E(µEP − ξ) − 2ψ)

f(µPV )
= µZE − µPV

ξ µV E + 2ψ

f(µPV )
. (15)

So, from Euler’s polyhedral formula, supplemented by (12), (15) and the caption of Table 2,

ν0(Z) = ν1(Z) − ν2(Z) + 2 = 2 µPV

µV Z − (κ+ ψ)

f(µPV )
= µZV − µPV

2(κ+ ψ)

f(µPV )
. (16)

Therefore

λZ0 = λZν0(Z) = (µV Z − κ− ψ)λV . (17)

Every ridge is the side of two facets. So

λ(Z2)1 = 2λZ1 (18)

µ(Z2)1E = µZ1E

=
λE

λZ1

(µEP − ξ) from (13). (19)

The identity (18) yields formulae for ν1(Z2) and ν0(Z2), the expected numbers of sides and corners of the typical

facet. Trivially, λZ2ν1(Z2) = λ(Z2)1 . Therefore, using (14) and (11),

ν1(Z2) =
2 λZ1

λZ2

=
2 µPV (µV E(µEP − ξ) − 2ψ)

2µV EµEP − µPV (ξµV E − 2κ)
. (20)

Obviously, ν0(Z2) = ν1(Z2).

7. Sides and corners of the typical plate

Following the methods employed above, we note that

µP1E − µ ◦

P1V = 1.
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So, using Table 2 and µEP1 = µEP ,

λP1 =λP 1µP1E − λP1µ
◦

P1V

= λEµEP1 − λV µ
◦

V P1

= 1
2
λV (µV EµEP − 2µ ◦

V P1
). (21)

Therefore

ν1(P ) =
λP1

λP

= µPV

µV E µEP − 2µ ◦

V P1

µV EµEP

= µPV

(

1 −
2τ

µV EµEP

)

, (22)

where τ := µ ◦

V P1
, the expected number of plate-side interiors adjacent to a typical vertex. In the prism tessellation,

τ = 4. Obviously ν0(P ) = ν1(P ).

Every plate p ∈ P is contained in two cells, z and z′ say. It lies in a facet of each, say z2 of z and z′2 of z′.

Consider a side p1 of p and suppose there exists a vertex v ⊂
◦

p1. If v is not a hemi-vertex of the tessellation, then

(a)
◦

p1 is contained in a ridge of z and also in a ridge of z′ – as is v.

If v is a hemi-vertex, then either (a) is true or

(b)
◦

p1 is contained in a ridge of one of the cells, z or z′, and in the interior of a facet of the other cell – as

is v.

8. λX , νj(X) and µXY and in the spatial case

Using the abbreviation f , defined in (6), together with

t(x) := 2µV EµEP − x(ξµV E − 2κ), (23)

we express νj(X), and the remaining λX in tabular form.

X λX/λV

facets Z2
t(µPV )

2µPV

ridges Z1
1
2
(µV E(µEP − ξ) − 2ψ)

apices Z0
1
2
f(2) − κ− ψ

facet-sides (Z2)1 µV E(µEP − ξ) − 2ψ

facet-corners (Z2)0 µV E(µEP − ξ) − 2ψ

plate-sides P1
1
2
(µV EµEP − 2τ)

plate-corners P0
1
2
(µV EµEP − 2τ)

edge-termini E0 µV E

ridge-termini (Z1)0 µV E(µEP − ξ) − 2ψ

plate-side-termini (P1)0 µV EµEP − 2τ

facet-side-termini ((Z2)1)0 2(µV E(µEP − ξ) − 2ψ)

Table 5: Intensities for non-primitives in spatial tessellations, from (11), (14), (17), (18), (21) and (23).
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X ν0(X) ν1(X) ν2(X)

E 2 - -

Z1 2 - -

P1 2 - -

(Z2)1 2 - -

P µPV

(

1 −
2τ

µV EµEP

)

µPV

(

1 −
2τ

µV EµEP

)

-

Z2 2
µV E(µEP − ξ) − 2ψ

t(µPV ) (µPV )−1
2
µV E(µEP − ξ) − 2ψ

t(µPV ) (µPV )−1
-

Z µZV − µPV

2(κ+ ψ)

f(µPV )
µZE − µPV

ξµV E + 2ψ

f(µPV )
µZP − µPV

ξµV E − 2κ

f(µPV )

Table 6: Values of νj(X), j ≤ 2, from (22), (20), (12), (15), (16) and (23).

We also tabulate, in Table 7, some additional µXY formulae (supplementing Table 2). Tables 2 and 7 contain all

µ-values which can be expressed in terms of our three cyclic mean adjacencies parameters, µV E , µEP and µPV ,

and our four Greek parameters ξ, κ, ψ and τ .

µ V E P Z

Z2 2µPV

κ+ µV E(µEP − ξ)

t(µPV )
µPV

µV E(2µEP − ξ)

t(µPV )

2µV EµEP

t(µPV )
-

Z1 2
µV E(µEP − ξ) − ψ

µV E(µEP − ξ) − 2ψ

µV E(µEP − ξ)

µV E(µEP − ξ) − 2ψ
- -

(Z2)1 2
µV E(µEP − ξ) − ψ

µV E(µEP − ξ) − 2ψ

µV E(µEP − ξ)

µV E(µEP − ξ) − 2ψ
- -

P1 2
µV EµEP − τ

µV EµEP − 2τ

µV EµEP

µV EµEP − 2τ
- -

µ Z2 Z1 (Z2)1 P1

V κ+ µV E(µEP − ξ) µV E(µEP − ξ) − ψ 2(µV E(µEP − ξ) − ψ) µV EµEP − τ

E 2µEP − ξ µEP − ξ 2(µEP − ξ) µEP

P 2 - - -

Z - - - -

Table 7: Other values of µXY , where, either ... x ∈ X ⇒ dim(x) > 0 and Y ∈ {V, E, P, Z} or ...

y ∈ Y ⇒ dim(y) > 0 and X ∈ {V, E, P, Z}. Those entries marked “-”

cannot be expressed in terms of the entities defined in this paper.

We refer the reader to Appendix B which provides techniques of proof for the results in Table 7, whilst also

indicating methods to deal with non-primitive objects of dimension 0 (which have in their formulae various second

moments, or sub-type first moments such as µXY where X = E[π]).

It is impractical to present a full 15×15 table comprising all µXY formulae, many of which are typographically

lengthy. We turn instead to examples.

9. Application to three examples

We consider three examples: the spatial STIT model, which provides a three-dimensional version of Figure

2(a); a tetrahedral model; the prism tessellation illustrated in Figure 4(b).
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The spatial STIT model: The µ-values for primitive elements in the spatial STIT model are known (from

Nagel and Weiss [23]) and are tabulated below in Table 8(a). Using the values in Table 8(a), we can fill out our

Table 6 with STIT results – see Table 8(b). A list of intensities is compiled in Table 8(c).

µ V E P Z

V 1 4 6 4

E 2 1 3 3

P 36
7

36
7

1 2

Z 24 36 14 1

X ν0(X) ν1(X) ν2(X)

P 6
7
(6 − τ) 6

7
(6 − τ) -

Z2
6(6 − 2ξ − ψ)

3κ+ 1

6(6 − 2ξ − ψ)

3κ+ 1
-

Z 24 − 6(κ+ ψ) 36 − 6(2ξ + ψ) 14 − 6(2ξ − κ)

(a) (b)

X V E P Z Z2 Z1 Z0 (Z2)1 (Z2)0 P1 P0 X0, dimX = 1

λX/λV 1 2 7
6

1
6

1 2 4
3

4 4 14
3

14
3

λX0 = 2λX

(c)

Table 8: For the spatial STIT process: (a) adjacencies µ for the primitives; (b) ν-values; (c) intensities.

It is known that the interior of the typical cell of a spatial STIT model has the same distribution as the interior

of the typical cell in a Poisson plane-process. So

ν0(Z) = 8, ν1(Z) = 12, ν2(Z) = 6.

This implies, from the last row of Table 8(b) and the fact obvious from the STIT construction that all edges are

π-edges, that

ψ = 2, κ =
2

3
and ξ = 1. (24)

(a) (b)

Figure 5: (a) A crossing vertex in the STIT tessellation. (b) A hemi-vertex in the STIT tessellation.

These results for ψ and κ are new, arising from the theory of this paper. Also new is the result ν0(Z2) =

ν1(Z2) = 4, proved using Table 8(b) and (24).

A spatial STIT tessellation has two types of vertex, illustrated in Figure 5. Type (a), which we call a crossing

vertex, is adjacent to two plate-side-interiors and four ridge-interiors and no facet-interior. Type (b) is adjacent
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to one plate-side-interior, one ridge-interior and one facet-interior (which makes it a hemi-vertex ). Because κ = 2
3
,

the probabiliy that a typical vertex is hemi-type is 2
3
. So τ = 2× 1

3
+1× 2

3
= 4

3
. We check that ψ = 4× 1

3
+1× 2

3
= 2,

as derived above.

The first row of Table 8(b) now gives us ν0(P ) = ν1(P ) = 4. Interestingly, the typical plate has the same

average number of sides as the typical facet. On average, a typical facet comprises µZ2P = 7
3

plates – a result

coming from Table 7, rewritten as Table 9 below:

µ V E P Z

Z2
26
3

10 7
3

-

Z1 3 2 - -

(Z2)1 3 2 - -

P1
16
7

9
7

- -

µ Z2 Z1 (Z2)1 P1

V 26
3

6 12 32
3

E 5 2 4 3

P 2 - - -

Z - - - -

Table 9: Various adjacencies for the spatial STIT model.

Remark 2. All of the results for this STIT example were unknown prior to this study. Some of the results,

however, have been computed in a study (see Thäle and Weiss [29]) conducted in parallel with our paper, using

only properties of STIT tessellations. The original content in this section is shared with [29]; neither paper has

priority over the other.

A tetrahedral model: A spatial tessellation in which all cells are tetrahedra has ν0(Z) = ν2(Z) = 4 and

ν1(Z) = 6. So two independent equations (in the six unknowns µV E , µEP , µPV , ξ, κ and ψ) can be found from

the last row of Table 6, allowing us to express two of the variables in terms of the other four. Choosing κ and ψ,

we have:

κ = 4 − µV E

(

2 − 1
2
ξ −

µEP

µPV

)

; (25)

ψ = µV E

(

3 + 1
2
(µEP − ξ) − 3

µEP

µPV

)

− 6. (26)

Reassuringly, these equations then prove that the expression in Table 6 for ν0(Z2) collapses to 3, as it should;

facets of tetrahedra are triangles.

The best known example of a spatial tessellation comprising only tetrahedral cells is the Poisson-Delaunay

tessellation. This is a facet-to-facet tessellation, so κ = ξ = ψ = τ = 0 and µPV = 3. It is also known, from [15],

[19], [20] and [18] (see also [24]), that

µV E = 2 +
48π2

35
≈ 15.5355 and µEP =

144π2

24π2 + 35
= 6 −

12

µV E

≈ 5.2276. (27)

Also:

λE =
(

1 +
24π2

35

)

λV ; λP =
48π2

35
λV ; λZ =

24π2

35
λV .

The equality in (27) of µEP and 6 − 12/µV E is predicted by equations (25) and (26), one of which becomes

redundant in this particular case.

We now construct a tetrahedral model which is not facet-to-facet – and we do this by randomly and inde-

pendently dividing each cell of a Poisson-Delaunay tessellation into two tetrahedral cells. This is achieved by
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randomly choosing one of the 6 ridges of the tetrahedral cell (whose vertices we generically label ABCD, for

discussion purposes, with AB the randomly chosen ridge) and a uniformly random point Q on the opposite ridge

CD. Construct a dividing plane containing AB and Q, an exercise repeated for all cells.

Because each cell divides, the new λZ (denoted with ′) is

λ′

Z = 2 λZ .

The new dividing plane ABQ in our generic cell creates two lines, AQ on the original plate ACD and BQ on

the original plate BCD. Focussing on the original plate ACD, we note that it may acquire another line (with

one end placed at either A,C or D) through the division of the other cell adjacent to ACD – and this line might

cross the line AQ forming a vertex of crossing type (see Figure 5(a)). The original plate ACD will become,

post-division, one of the following structures.

• ACD becomes four plates, three being triangular and one four-sided, because of the creation of a crossing-

type vertex. The new lines have also created four π-edges. This outcome has probability 1
6
.

• It remains untouched by new lines, with probability 1
4
.

• Just one of its adjacent cells places a line on ACD (probability 1
2
), creating one π-edge and dividing the

plate ACD into two triangular plates.

• Two non-crossing lines are created on ACD (probability 1
12

), dividing ACD into three triangular plates

and adding two π-edges to the tessellation.

Each of the new π-edges mentioned above is adjacent to three plates.

Accounting for these outcomes, we can write (using P [j] to denote the class of plates with j sides):

λ′

P = λZ + λP

(

1
6
× 4 + 1

4
× 1 + 1

2
× 2 + 1

12
× 3

)

=
128π2

35
λV ;

λ′

P [4] = 1
6
λP =

8π2

35
λV ;

λ′

P [3] = λ′

P − λ′

P [4] =
120π2

35
λV ;

ν′0(P ) = ν′1(P ) =
3λ′

P [3] + 4λ′

P [4]

λ′

P

=
49

16
≈ 3.0625; (28)

λ′

E[π] = λP

(

1
6
× 4 + 1

4
× 0 + 1

2
× 1 + 1

12
× 2

)

=
64π2

35
λV .

Prior to the division, an edge e was adjacent to mP (e) plates and mZ(e) cells; here mP (e) = mZ(e) due to the

facet-to-facet property of the Poisson-Delaunay tessellation. After division, e has been split into a random number

R of non-π edges e1, e2, ..., eR by various generic Q-points. Edge ei is adjacent post-division to a random number

m′

P (ei) of plates. Clearly E(R|mZ(e)) = 1 + 1
6
mZ(e) because each of the mZ(e) cells originally adjacent to e will

place its Q-point on e with probability 1
6
. Also E(m′

P (ei)|mZ(e),mP (e)) = mP (e) + 1
6
mZ(e) = 7

6
mP (e), for all i;

this follows because each of these mZ(e) cells will select e as its AB-ridge with probability 1
6
.
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Therefore, using E[π] to denote the class of non-π edges, we have:

λ′

E[π] =
(

1 + 1
6
µEZ

)

λE =
(

1 + 1
6
µEP

)

λE =
(

1 +
48π2

35

)

λV ;

λ′

E = λ′

E[π] + λ′

E[π] =
(

1 +
16π2

5

)

λV ;

ξ′ =
λ′

E[π]

λ′

E

=
64π2

7(5 + 16π2)
≈ 0.5539; (29)

µ′

EP = 3ξ′ + 7
6
µEP (1 − ξ′) =

72π2(175 + 176π2)

7(5 + 16π2)(35 + 24π2)
≈ 4.3824. (30)

Additionally,

λ′

V = λV + 1
6
λP + 1

6
µEZ λE =

(

1 +
32π2

35

)

λV ,

with the three types – original, crossing-type and Q-point vertex – being in proportions 35 : 8π2 : 24π2. The

latter two types have mE(v) = 4 whilst E(mE(v)|v is original) = µV E + 1
2
µV Z . Therefore,

µ′

V E =
35 × (µV E + 1

2
µV Z) + (8 + 24)π2 × 4

35 + 32π2
=

14(5 + 16π2)

35 + 32π2
≈ 6.5012, (31)

using µV Z = 1
2
f(2) = 1

2
µV EµEP − µV E + 2 = 96π2/35.

Equations (29)–(31) give us three of the seven fundamental parameters; these, combined with the obvious

result, κ′ = 0, enables us to solve (25) for µPV , obtaining

µ′

PV =
9(175 + 176π2)

16(35 + 24π2)
≈ 3.9560. (32)

Now solving (26) for ψ yields

ψ′ =
8π2(35 + 528π2)

(35 + 24π2)(35 + 32π2)
≈ 4.3429. (33)

Finally, the seventh and last fundamental parameter, τ ′, is found from Table 6 combined with (30)–(32) and (28).

τ ′ = 1
2
µ′

V Eµ
′

EP

(

1 −
ν′0(P )

µ′

PV

)

=
32π2(102π2 − 35)

(35 + 24π2)(35 + 32π2)
≈ 3.2176. (34)

All seven parameters are now in place, κ′ = 0 and those displayed as (29)–(34).

The triangular-prism example (Example 1 continued): As this fairly regular tessellation can be visualised

clearly in Figure 4(b), equation (35) and the entries in the following tables are presented without further comment.

ξ =
1

2
, κ = 0, ψ = 5 and τ = 4. (35)

µ V E P Z

V 1 4 9 7

E 2 1 9
2

9
2

P 27
4

27
4

1 2

Z 21 27 8 1

X ν0(X) ν1(X) ν2(X)

P 15
4

15
4

-

Z2
18
5

18
5

-

Z 6 9 5

X E P Z Z2 Z1 Z0 (Z2)1 (Z2)0 P1 P0 X0, dimX = 1

λX/λV 2 4
3

1
3

5
3

3 2 6 6 5 5 λX0 = 2λX
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µ V E P Z

Z2
48
5

51
5

8
5

-

Z1
11
3

8
3

- -

(Z2)1
11
3

8
3

- -

P1
14
5

9
5

- -

µ Z2 Z1 (Z2)1 P1

V 16 11 22 14

E 17
2

4 8 9
2

P 2 - - -

Z - - - -

Table 10: Various parameters in the triangular-prism tessellation.

10. Concluding remarks

For spatial tessellations, we have introduced seven fundamental parameters. These are the three mean

adjacencies µV E , µEP and µPV which are sufficient to describe the more important topological relationships

in facet-to-facet tessellations, and our four Greek parameters ξ, κ, ψ and τ which are needed in other cases. The

constraints which apply to these seven parameters are complicated. So we defer the study of the seven-dimensional

parameter-space to a later paper.

We note that, even in the simpler facet-to-facet case, no study of the constraints operative on µV E , µEP and

µPV has yet been published by other authors.

Appendix A: The planar adjacencies in Table 4

Lemma 1. If a vertex v ∈ V is adjacent to mE(v) edges and m ◦

Z1
(v) side-interiors, then it is adjacent to:

(mE(v) −m ◦

Z1
(v)) corners; (2mE(v) −m ◦

Z1
(v)) sides; mE(v) cells;

mE(v) edge-termini; 2(mE(v) −m ◦

Z1
(v)) side-termini.

Note that m ◦

Z1
(v) equals either 1 or 0, the vertex v being a π-vertex or not respectively.

This obvious Lemma immediately gives us µV Y for any object-class Y in the tessellation– and this leads to

µY V via (5). For example, when Y is the class Z1 of cell-sides,

µV Z1 = EV mZ1(v) = EV (2mE(v) −m ◦

Z1
(v)) = 2µV E − µ ◦

V Z1
= 2µV E − φ.

Therefore

µZ1V =
λV

λZ1

µV Z1 =
2µV E − φ

µV E − φ
.

Objects of dimension 0 lie on the vertices of the tessellation. If X is a class of 0-dimensional objects, that is

X ∈ {V,E0, Z0, (Z1)0}, its point process can be viewed as a marked point process: a process of points located at

the vertices with a mark at a vertex v of mX(v). So it is easily seen that, for any object-class Y in the tessellation,

λXµXY = λV EV (mX(v)mY (v)). (36)

This identity, combined with Lemma 1, provides us with most of the formulae in Table 4. For example, if X is
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the class Z0 of corners and Y is the class Z1 of sides,

µZ0Z1 =
λV

λZ0

EV (mZ0(v)mZ1(v))

=
1

µV E − φ
EV [(mE(v) −m ◦

Z1
(v))(2mE(v) −m ◦

Z1
(v))]

=
1

µV E − φ
EV [2mE(v)2 − 3mE(v)m ◦

Z1
(v) + (m ◦

Z1
(v))2]

=
2µ

(2)
V E − 3φ µV [π]E + φ

µV E − φ
,

using the fact that (m ◦

Z1
(v))2 = m ◦

Z1
(v) (see Lemma 1) and:

EV (m ◦

Z1
(v)) = φEV (m ◦

Z1
(v)|m ◦

Z1
(v) = 1) = φ ;

EV (mE(v)m ◦

Z1
(v)) = φEV (mE(v)m ◦

Z1
(v)|m ◦

Z1
(v) = 1)

= φEV (mE(v)|m ◦

Z1
(v) = 1) = φµV [π]E .

The remaining formulae in Table 4 follow either from the use of (5) or by very simple arguments which we

leave to the reader.

Appendix B: The spatial adjacencies

Objects of dimension 0: In the spatial case also, objects of dimension 0 lie on the vertices of the tessellation.

So the mathematical approach to adjacency relationships such as µXY when the objects ∈ X all have dimension

0 follows the same style as in the planar case. In the spatial case, however, Lemma 2 replaces Lemma 1.

Lemma 2. If a vertex v is adjacent to mE(v) edges, mE[π](v) π-edges, mP (v) plates, m ◦

Z2
(v) facet-interiors,

m ◦

Z1
(v) ridge-interiors and m ◦

P1
(v) plate-side-interiors, then it is adjacent to:

(mP (v) −mE(v) + 2) cells; mE(v) edge-termini;

(m ◦

Z2
(v) + 2mP (v) −mE[π](v)) facets; 2(2mP (v) −mE[π](v) −m ◦

Z1
(v)) facet-sides;

(2mP (v) −mE[π](v) −m ◦

Z1
(v)) ridges; 2(mP (v) −m ◦

P1
(v)) plate-side-termini;

(2mP (v) −m ◦

P1
(v)) plate-sides; (mP (v) −m ◦

P1
(v)) plate-corners;

(2mP (v) −mE[π](v) − 2m ◦

Z1
(v)) ridge-termini; (2mP (v) −mE[π](v) − 2m ◦

Z1
(v)) facet-corners;

2(2mP (v) −mE[π](v) − 2m ◦

Z1
(v)) facet-side-termini; (mP (v) −mE(v) + 2 −m ◦

Z2
(v) −m ◦

Z1
(v)) apices.

Note that m ◦

Z2
(v) equals either 1 or 0, the vertex being a hemi-vertex or not respectively.

This Lemma gives us µV Y for any object Y in the tessellation. For example, when Y is a facet-side (Z2)1,

µV (Z2)1 = EV (m(Z2)1(v)) = 2EV (2mP (v) −mE[π](v) −m ◦

Z1
(v))

= 2(2µV P − µV E[π] − ψ)

= 2(µV E(µEP − ξ) − ψ).
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For X ∈ {V,E0, P0, Z0, (Z1)0, (Z2)0, (P1)0, ((Z2)1)0}, we can use (36) to establish µXY . For example, if X is

the class (P1)0 of plate-side-termini and Y is the class of Z2 facets, then

µ(P1)0Z2
=

λV

λ(P1)0

EV (m(P1)0(v)mZ2(v))

=
1

µV EµEP − 2τ
EV [2(mP (v) −m ◦

P1
(v))(m ◦

Z2
(v) + 2mP (v) −mE[π](v))]

=
2

µV EµEP − 2τ

[

EV (mP (v)m ◦

Z2
(v)) + 2µ

(2)
V P − EV (mP (v)mE[π](v))

− EV (m ◦

P1
(v)m ◦

Z2
(v)) − 2EV (m ◦

P1
(v)mP (v))

+ EV (m ◦

P1
(v)mE[π](v))

]

=
2

µV EµEP − 2τ

[

ψµV [h]P + 2µ
(2)
V P − EV (mP (v)mE[π](v))

− ψµ ◦

V [h]P1
− 2EV (m ◦

P1
(v)mP (v)) + EV (m ◦

P1
(v)mE[π](v))

]

.

We see that expressions can be quite expansive typographically and involve many second moments.

Obviously, all examples of µXY with Y having dimension 0 can be calculated by first finding µY X and then

using (5).

Objects of dimension 1: The following lemma establishes the adjacencies µXY (and µY X) in Table 7, when Y

comprises objects of dimension ≥ 1 and X = E.

Lemma 3. If an edge e ∈ E is adjacent to mP (e) plates and m ◦

Z2
(e) facet-interiors, then it is adjacent to:

(mP (e) −m ◦

Z2
(e)) ridges; (2mP (e) −m ◦

Z2
(e)) facets; mP (e) cells;

mP (e) plate-sides; 2(mP (e) −m ◦

Z2
(e)) facet-sides.

Note that m ◦

Z2
(e) equals either 1 or 0, the edge being a π-edge or not respectively.

For example, µEZ2 = EE(mZ2(e)) = EE(2mP (e) −m ◦

Z2
(e)) = 2µEP − ξ. Then, by using (5),

µZ2E =
λE

λZ2

µEZ2 =
µV EµPV

t(µPV )
(2µEP − ξ) =

µPV

t(µPV )
µV E(2µEP − ξ).

Higher dimensional objects: Formulae for µXY when dim(Y ) ≥ dim(X) ≥ 2 are more difficult to address.

They cannot be expressed in terms of the parameters we have introduced, so they lie outside the scope of this

paper.
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