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Abstract

This paper discusses the Complementary Theorem for the typical n–tuple of a Poisson
point process, first presented by Miles in 1970 [4], discussed by Santaló in 1976 [7] and, within
a Palm-measure framework, by Møller and Zuyev in 1996 [6]. The theorems presented by
these authors are not correct on all the examples that they consider, suggesting that further
consideration of their work is needed if one wishes to bring all examples within the ambit
of the Complementary Theorem. We give another analyses of the errant examples and,
with a modification of the technicalities of the authors cited above, move toward a more
comprehensive Complementary Theorem. Some open issues still remain.

Keywords: Random geometry, Poisson point process, Poisson flat process, Complementary
Theorem.

AMS 1991 Subject Classification: .

1. Introduction

Consider firstly a Poisson point process in R2 of intensity ρ. This is also called a Poisson particle
process by some authors, to allow easy distinction between the random ‘particles’ of the process
and other points of the space.

Miles [4] showed that any ‘equivariant’ random domain ∆ constructed from a typical n-tuple
of Poisson particles and containing m ≥ 0 other particles (or ‘m-filled’ in Miles’ terminology)
has Γ(n + m − 1, ρ)-distributed volume. We define later the term ‘equivariant’. Miles called
this the Complementary Theorem because the problem of finding the distribution of volume for
a random domain filled by a given number of particles is the complement of the more direct
problem, namely the distribution of the random count of particles within a given domain. In
his later work [5], Miles generalised the theorem to Poisson particle processes in Rd and indeed
to Poisson flat processes. His definition of a typical collection of n particles (or flats) was an
ergodic one.

In Theorem 4 of Møller and Zuyev [6], the result of Miles for s-dimensional flats within d-
dimensional space is given, proved by those authors using a Palm-measure definition of typicality.
When s = 0, that is when the flats are points (or, as we say, particles), the result is a domain
with Γ(n + m− 1, ρ)-distributed volume – in agreement with Miles.
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One difference between the authors is the way of constructing ∆. Miles allows ∆ to depend
on the order of the particles within the typical n-tuple; Møller and Zuyev do not, but their
framework can be adjusted easily to allow this feature and we do this below when establishing
our technical framework.

Another difference is the provision in Miles [4] for domains ∆ which could have zero volume
for some n-tuples; the mathematics in [6] make no allowance for this feature. Care on this
issue is only important in the m = 0 case; Miles is careful in those cases to state the Gamma-
distributional results for volume V as conditional upon V > 0 (thus avoiding the obvious mass
of probability that would accrue at V = 0 due to domains ∆ of zero volume being 0-filled almost
certainly). The spirit of his Complementary Theorem requires a focus on domains of positive
volume which have a positive chance of being hit by other particles. Our treatment will follow
Miles in this matter.

Two examples worked through in both [4] and [6], and again in Santaló [7], concern n = 3
and d = 2. One of these is treated incorrectly in all three studies.

• Example A: Define ∆ as the closed circumdisk having the three particles on its boundary.

• Example B: Define ∆ as the convex hull of the three particles or, in other words, the
triangle having the particles as vertices.

In both these examples, the theorem says that an m-filled ∆ has an area which is Γ(m + 2, ρ)-
distributed. We show below that this result is wrong in the second problem, Example B. The
area derived in our analysis is actually Γ(m + 1, ρ)-distributed.

We have found other examples as well where the shape parameter in the Gamma distribution
is not the same as one would expect from a glib application of the existing Complementary
Theorems of [4] and [6]. These examples are presented in the course of our discussion.

The classical Complementary Theorem for typical n–tuples is discussed in Cowan, Quine
and Zuyev [1], but none of the examples considered there violate the classical theorem of Miles
– and so do not concern us here. Some different Complementary Theorems, for domains which
are not constructed from typical n–tuples, have been presented: for domains which evolve as
stopping sets, by Zuyez in 1999 [10]; for domains uniquely determined by the realised Poisson
process, in the early sections of [6]. The current paper does not discuss these.

2. Technical framework

Our notation follows the text of Stoyan, Kendall and Mecke [9] in most respects, with some
changes as our needs dictate. We are also concious of compatibility with the logical flow of [4]
and [6] (especially the latter, in this early stage of our discussion). Since these two studies are
rather different in style, however, our theory has a hybrid character.

Let (Ω,A,P) be the probability field and (Rd,Bd, νd) be the usual measure space for d-
dimensional space, νd being Lebesgue measure on the Borel sets Bd. Let N be the set of all
σ-finite measures on Bd of the form ϕ =

∑
i niδxi where the points xi ∈ Rd are distinct and the

integers ni ≥ 1 are the point multiplicities. Here δx is the Dirac measure on Bd and so each
ϕ ∈ N is a counting measure. We endow N with a σ-field N which is generated by all sets of
the form {ϕ ∈ N : ϕ(B) = n} for B ∈ Bd and n = 0, 1, 2, . . . ,∞.

Let Φ be the stationary Poisson particle process on Rd with intensity ρ > 0. In other
words, Φ is a mapping from Ω to N having the defining characteristic of a stationary Poisson
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particle process – for disjoint sets B1, . . . , Bk ∈ Bd, the counts Φ(B1), . . . , Φ(Bk) are mutually
independent random variables. These counts are also Poisson distributed, Φ(Bi) having mean
ρνd(Bi). Particles xi each have multiplicity ni = 1 in the process Φ.

Since we have an interest in n-tuples of distinct particles of Φ, we consider an n-fold product
process: a Cartesian product of Φ, modified to remove n-tuples which have two or more equal
components. For example, when n = 2, we define Φ[2](A × B) := Φ(A)Φ(B) − Φ(A ∩ B) for
A,B ∈ Bd and extend this to (Bd)2, all Borel sets of Rd × Rd. This random counting measure
Φ[2] is a particle process (not Poisson) on Rd × Rd having intensity ρ2. Figure 1 shows the
“product process” for an example using d = 1 and n = 2.

For general n, we can use the construct from [6] as our definition of Φ[n] on (Bd)n.

Φ[n](dx1 × . . . dxn) := Φ(dx1)(Φ− δx1)(dx2) . . . (Φ−
n−1∑

i=1

δxi)(dxn), (1)

creating a random “product process” on (Rd)n with intensity ρn. For ease of reference, call these
particles in the product process, germs.

B

Figure 1: At the top is the realisation of a Poisson particle process on R shown within I := [−L, L]. Below is the product

process on J × J ⊂ R2, where J ⊂ I. Heavier dots in the product process indicate that the associated domain ∆, using the

example mapping in (2), is 0-filled. At the bottom are two marked point processes constructed from the product process in

a manner discussed in the text. The marks are given by the lengths of lines eminating upward from the points. Note that

germs in the darkly-shaded region have ∆ with volume (length) less than v.

For each germ in the product process, equivalently for each n-tuple of original Poisson par-
ticles, we wish to define a domain ∆ ∈ Bd of finite volume. We do this by defining a mapping,
∆ from (Rd)n to Bd such that the resulting domain ∆ := ∆(x1, x2, . . . , xn) has finite volume
for all (x1, x2, . . . , xn) ∈ (Rd)n. We also impose the condition that ∆ be non-random, have no
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superfluous arguments and have a form of ‘scale and translation equivariance’ as follows.

Let a be an affine transformation of the space Rd, that is, a transformation of the form ax =
αx+y for all x ∈ Rd, where α > 0 and y ∈ Rd. We require that ∆ satisfy ∆(ax1,ax2, . . . ,axn) =
a∆(x1, x2, . . . , xn) for all affine transformations a of Rd. Miles refers to such ∆ as homothetically
invariant but we shall use the term equivariant. Each germ has its associated domain ∆ via the
equivariant mapping ∆.

We note in passing that this form of equivariance implies that n ≥ 2 (save for the trivial n = 1
case where ∆(x1) = {x1}, a one-point set) and that the domain ∆ does not use any points of Rd,
other than those in the n-tuple argument of ∆, in its definition. The condition of no superfluity
of arguments rules out domains constructed from a subset of the components of the n-tuple.
Note also that ‘rotational invariance’, namely ∆(r(x1, x2, . . . , xn)) = r∆(x1, x2, . . . , xn) where
r is a rotation about O, is not implied by equivariance (because rotations are not in the affine
class). Examples of equivariant ∆ may, however, have the additional property of ‘rotational
invariance’.

• Example C: An equivariant ∆ illustrating for n = 2 a dependence on the order within the
n-tuple, a feature allowed in [4] but not in [6], is the following ‘annulus’ centred on x1:

∆(x1, x2) := B‖x1−x2‖(x1) \B‖x1−x2‖/2(x1). (2)

where Br(x) is the closed ball with centre x and radius r. There is, of course, no superfluity
of arguments.

• Example D: Let d = 2, n = 2 and define ∆ as the rectangle having the two particles
as opposite corners and sides parallel to the Cartesian axes. We have equivariance and
order-invariance; the lack of ‘rotational invariance’ does not invalidate the Complementary
Theorem.

• Example E: Let ∆(x1, · · · , xn) :=
⋃n

i=1 B1(xi). This is not equivariant as the radii of the
balls is fixed in the definition of ∆.

• Example F: Let d = 2, n = 2 and define ∆ as the closed circumdisk having both particles
and the origin O on its boundary. This is not equivariant. Note that a reference point
outside the n-tuple is used in the construction.

• Example G: The diametrical disk. Let d = 2, n = 2 and define ∆ as the disk having x1x2

as a diameter. More generally, let ∆(x1, x2) := Bβ‖x2−x1‖/2((x1 + x2)/2) where β > 0.
Now x1x2 lies on a diameter if β ≥ 1 and covers a diameter if β ≤ 1. This example is
equivariant.

• Example H: Let n = 3. Define ∆ by the equivariant map

∆(x1, x2, x3) = B‖x3−x1‖∨‖x2−x1‖(x1) \B‖x3−x1‖∧‖x2−x1‖(x1), (3)

This is an annulus centred on x1 with radii dictated by the other two particles. So the
definition is order dependent. We show later that the Complementary Theorem of earlier
authors cannot be applied to this example.

• Example I: Use the mapping of Example H if the volume of the annulus is greater than
the volume of its hole; otherwise, define ∆ := ∅. This mapping is still equivariant.
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• Example J: This is a censored version of Example B. Define ∆ as in Example B when the
triangle formed by the 3-tuple is acute-angled; if not, ∆ := ∅. The mapping is equivariant
and order-invariant.

Figure 1 shows, with heavier dots, the germs whose associated ∆ (using the map ∆ of Example
C) are 0-filled.

We wish to assign a reference point (or anchor) for each ∆, or more precisely, for each germ
(x1, · · · , xn). One choice, used by Miles and named the base particle, is the first component of
the n-tuple, namely x1. More generally, we define an anchor map z : (Rd)n → Rd, a map which
is equivariant under scaling and translation. By this we mean (as before)

z(ax1,ax2, . . . ,axn) = az(x1, x2, . . . , xn) (4)

for all affine transformations a. The base particle is a valid anchor, but sometimes other choices
are more natural of more convenient technically. Obviously the mapping z may depend on the
order of particles in the germ.

We now focus attention on a new marked point process ΨV |m,{V >0} in the original space
Rd generated from the germs of the product process which have m-filled associated domains
∆. The construction of ΨV |m,{V >0} is as follows. For each germ with an m-filled ∆ of positive
volume, place a point in Rd at the location of that germ’s anchor. Endow that point with a
(necessarily positive) mark which is the volume V of the germ’s associated domain ∆. Note that
the first part of the subscript in ΨV |m,{V >0} tells us that the mark is V ; the text to the right of
‘|’ reminds us of the candidature condition for a germ’s anchor.

For Example C, shown in Figure 1, two versions of this marked point process (using m = 0)
are shown beneath the product process. The first version uses the base particle as anchor, a
seemingly natural choice; with this choice, the region in product space where germs have their
anchor in B is shown as a lightly shaded rectangle. We also see that ΨV |0,{V >0} has points
with multiplicities (shown in a vertical stack of dots). Furthermore each contributing germ to a
point’s multiplicity provides a mark (shown schematically in Figure 1 by the length of a slanted
line eminating from the anchor generated by that germ).

If instead we define the anchor of (x1, x2) by (x1 +3x2)/4, we get the second drawing, which
we note has no multiple points and only one vertically-drawn mark per location.

Why do we emphasise that the mark V must be positive for the inclusion of a point in
ΨV |m,{V >0}? This stipulation deals with an issue that arises when m = 0. Examples H and
J have ∆ := ∅ for some n-tuples. These empty domains will be 0-filled with certainty. When
m = 0, our theorems are based (following the style of Miles) on domains of positive area which,
by chance, are 0-filled – not domains which are 0-filled simply because they are the null set, or
have zero volume for other reasons (for example, being of lower dimension).

Marked point processes are discussed in Stoyan, Kendall and Mecke, [9], Section 4.2. A
marked point process is an ordinary point process, Ψ say, on the space Rd ×M, where M is the
mark space (a space endowed with its σ-algebra M). We say that Rd is the carrier space. A
marked point process creates a point process in the carrier space, the projected process, when
the marks are ignored.

Our concern is with stationary marked point processes. A marked point process Ψ is station-
ary if the distribution of Ψ is invariant under any translation applied within the carrier space.
In such circumstances, the projected process is also stationary with intensity denoted by ⊥, say.
Stationarity implies that, for any L ∈M, EΨ(·, L) is proportional to Lebesgue measure; we let
⊥L be the proportionality constant (so ⊥ is short for ⊥M).
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In general, the projected process may have multiplicities, though Stoyan, Kendall and Mecke
[9] do not emphasise this aspect. The structures in [9] do, however, accommodate multiple points
in the projected point process (if the reader thinks of the simple counting-measure space N in
[9] as having multiplicities allowed, like our N). Following [9], let M be the Palm distribution
of marks. For each L ∈M, this is defined (in the stationary case) as

M(L) =
E(count of points ∈ B with mark ∈ L)

E(count of points ∈ B)

=
E Ψ(B × L)
E Ψ(B ×M)

=
E Ψ(B × L)
⊥ νd(B)

=
⊥L

⊥ (5)

provided both numerator and denominator are finite and positive. Here B ∈ Bd is an arbitrary
Borel set of positive, finite volume. Applied to our ΨV |m,{V >0} whereM = (0,∞), a well-behaved
(5) satisfying the provision gives the distribution function for marks (that is, for positive volumes
V of m-filled domains), as

FV |m,{V >0}(v) := P{typical mark ≤ v}
= M((0, v])

=
E ΨV |m,{V >0}(B × (0, v])
E ΨV |m,{V >0}(B × (0,∞))

=
⊥m,{V ∈(0,v]}
⊥m,{V >0}

, (6)

for v > 0. Here ⊥m,{V >0} is the intensity of anchors for n-tuples whose ∆ is m-filled with positive
volume and ⊥m,{V ∈(0,v]} is the intensity of the subset whose volume lies in (0, v]. Equivariance
of z ensures that both of these entities are independent of the choice of z used. Now ⊥m,{V ∈(0,v]}
νd(B) equals

E
∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆(x1,··· ,xn)>0

1
[[[
νd(∆(x1, · · · , xn)) ≤ v, (Φ−

n∑

i=1

δxi)∆(x1, · · · , xn) = m
]]]
Φ[n](dx1 × · · · × dxn)

(7)
using the indicator function 1

[[[ · ]]]. The denominator of (6) can be found similarly, but with the
constraint involving v removed. Accordingly,

⊥m,{V >0} νd(B) = E
∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆(x1,··· ,xn)>0

1
[[[
(Φ−

n∑

i=1

δxi)∆(x1, · · · , xn) = m
]]]
Φ[n](dx1×· · ·×dxn). (8)

Our definition (6) for the distribution of volume for m-filled domains ∆, augmented with (7)
and (8), is essentially the same as that used by Møller and Zuyev [6] – except that our technical
setting using marked point processes differs from their’s. Moreover, they omit the {V > 0}–
conditioning and possible order dependence. There can be troubles with definition (6), however,
and the similar definitions in [6], if the numerator and denominator in (6) are infinite. We shall
see that this is the case in some examples, notably Example B.

Another representation of the distribution of the ‘volume’ mark V is given by the moment
generating function. Using just ∆ as shorthand for ∆(x1, · · · , xn), without forgetting the de-
pendence on the germ, E(esV |m, {V > 0}) equals

1
⊥m,{V >0} νd(B)

E
∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆)>0

esνd(∆)1
[[[
(Φ−

n∑

i=1

δxi)∆ = m
]]]
Φ[n](dx1 × · · · × dxn). (9)
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Marks can, of course, be more general. The most general for our purposes is the full con-
figuration of each n-tuple of particles whose ∆ is m-filled. The configuration cn of an n-tuple
lists the position of each particle relative to the anchor z; thus cn = (x1− z, x2− z, · · · , xn− z),
where order may be important. The space of configurations, denoted by C, is the space of all
n–tuples of points (which may not be particles) in Rd whose anchor lies at the origin. Because
a configuration is invariant under translations of its defining n-tuple in the carrier space, the
resulting marked point process (arising from n-tuples of particles whose ∆ is m-filled with pos-
itive volume) is stationary and (5) can be used to provide the distribution Mcn|m,{V >0} of the
typical ‘configuration mark’. From (5),

Mcn|m,{V >0}(L) =
E Ψcn|m,{V >0}(B × L)

⊥m,{V >0} νd(B)
=

⊥m,{V >0,cn∈L}
⊥m,{V >0}

, (10)

where we note that the denominator is the same as in (6). When V > 0, a mark may also take
the form of g(cn), where g is a real-valued function on C; V itself is an example of g. Note that
any function g on (Rd)n invariant under translations has a restriction to C and any g on C has
a unique extension to a translation–invariant function on (Rd)n. An expression, similar to (9),
provides the expected mark when ∆ is m-filled with positive volume.

E(g(cn)|m, {V > 0}) =
1

⊥m,{V >0} νd(B)
×

E
∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆)>0

g(cn)1
[[[
(Φ−

n∑

i=1

δxi)∆ = m
]]]
Φ[n](dx1 × · · · × dxn).

(11)

Formula (11), with g(cn) := 1
[[[
cn ∈ L

]]]
, provides a way of calculating (10).

3. The Mecke–Slivnyak formula, with Møller–Zuyev extension.

The analysis of integrals like those in (7–11) would be rather difficult, were it not for an identity
established by Mecke [3] (and also establishable from earlier work of Slivnyak [8]). In our context,
for a stationary Poisson particle process Φ of intensity ρ on (Rd,Bd, νd), Mecke’s identity is

E
∫

Rd

h(x,Φ)Φ(dx) = ρ

∫

Rd

Eh(x,Φ + δx)νd(dx) (12)

for any non-random Borel function h : Rd ×N→ [0,∞). The domain of integration stated here
is the whole space Rd, but could be any non-random measurable subset because an indicator
function subsumed within the function h would provide the needed restriction. (Mecke also
establishes a converse: a random counting measure satisfying (12) for all such h is a stationary
Poisson process.) Note that, although h is non-random in the identity, h(x,Φ) inherits the
randomness of the counting measure Φ and is random.

Møller and Zuyev [6] have pointed out the extension of this, by induction, to integrals
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involving the product process of a stationary Poisson process.

E
∫
· · ·

∫

(Rd)n

h(x1, · · · , xn,Φ)Φ[n](dx1 × · · · × dxn)

= ρn

∫
· · ·

∫

(Rd)n

Eh(x1, · · · , xn, Φ +
n∑

i=1

δxi)νd(dx1) · · · νd(dxn)

(13)

for any non-random Borel function h : (Rd)n × N → [0,∞). Their result also applies to non-
random domains of integration which are subsets of (Rd)n. This important extension is obviously
the ideal tool for a study of the Complementary Theorem, that is, for evaluation of expressions
like (7–11).

Using (13) applied to (8),

⊥m,{V >0} νd(B) = ρn

∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆(x1,··· ,xn)>0

E
(
1
[[[
Φ∆ = m

]]])
νd(dx1) · · · νd(dxn)

= ρn

∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆(x1,··· ,xn)>0

P{Φ∆ = m} νd(dx1) · · · νd(dxn)

= ρn

∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆(x1,··· ,xn)>0

[ρνd(∆(x1, · · · , xn))]m

m!
e−ρνd(∆(x1,··· ,xn))νd(dx1) · · · νd(dxn) (14)

=
∫
· · ·

∫

z(
u1

ρ1/d
,··· , un

ρ1/d
)∈B

νd(∆(
u1

ρ1/d
,··· , un

ρ1/d
)>0

[ρνd(∆( u1

ρ1/d , · · · , un

ρ1/d ))]m

m!
e
−ρνd(∆(

u1

ρ1/d
,··· , un

ρ1/d
))
νd(du1) · · · νd(dun),

(15)

where we have introduced the change of variable ui := ρ1/dxi, which implies that νd(dui) =
ρνd(dxi). Now, using the equivariant properties of the mappings ∆ and z, (15) becomes

∫
· · ·

∫

z(u1,··· ,un)∈ρ1/dB
νd(∆(u1,··· ,un)>0

[νd(∆(u1, · · · , un))]m

m!
e−νd(∆(u1,··· ,un))νd(du1) · · · νd(dun) = ⊥(1)

m,{V >0} νd(ρ1/dB),

(16)
where ⊥(ρ)

m,{V >0} is our former ⊥m,{V >0} augmented with an extra argument to emphasise the
intensity of the Poisson process, here in (16) that intensity being 1. Thus (15–16) lead to the
identity

⊥(ρ)
m,{V >0}= ρ ⊥(1)

m,{V >0} . (17)

Similar change-of-variable arguments and notational augmentations applied to (7) show that

⊥(ρ)
m,{V ∈(0,v]}= ρ ⊥(1)

m,{V ∈(0,ρv]} (18)
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so we see from (6) and (17–18) that

F
(ρ)
V |m,{V >0}(v) =

⊥(ρ)
m,{V ∈(0,v]}
⊥(ρ)

m,{V >0}
=

⊥(1)
m,{V ∈(0,ρv]}
⊥(1)

m,{V >0}
= F

(1)
V |m,{V >0}(ρv). (19)

The functional relationship (19) does not identify F
(ρ)
V |m,{V >0}, but assists later theory.

4. Calculations for some simple examples.

To aid familiarity with our structure, some calculations are desirable. We firstly show the
calculations related to Example C, illustrated in Figure 1. Other examples are discussed; we
demonstrate that various expressions are infinite in the misbehaving examples. The anchor used
in the calculations is always the base particle. The intensity is ρ throughout this section, so
the just–introduced notational augmentation is not needed (or used); absence of the intensity
‘superscript’ implies that the intensity is ρ.

In Example C, used with d = 1 in Figure 1, n = 2 and ν1(∆(x1, x2)) = ‖x1 − x2‖. Choose
z(x1, x2) := x1. Thus (14) becomes

⊥m,{V >0} ν1(B) = ρ2

∫

B

∫ ∞

−∞

(ρ‖x1 − x2‖)m

m!
e−ρ‖x1−x2‖dx2dx1 (20)

= 2ρ2

∫

B

∫ x1

−∞

(ρ(x1 − x2))m

m!
e−ρ(x1−x2)dx2dx1

= 2ρ

∫

B

∫ ∞

0

ρm+1um

m!
e−ρududx1 = 2ρν1(B),

the integration region in (20) being the lightly shaded region in Figure 1, extending infinitely
in the vertical direction (and under the darker region). So ⊥m,{V >0}= 2ρ. Integration over the
intersection of the lighter and darker regions yields a simplified (7).

⊥m,{V ∈(0,v]} ν1(B) = ρ2

∫

B

∫ x1+v

x1−v

[ρ‖x1 − x2‖]m
m!

e−ρ‖x1−x2‖dx2dx1

= 2ρ

∫

B

∫ v

0

ρm+1um

m!
e−ρududx1 = 2ρ Gm+1,ρ(v) ν1(B),

where, for k ≥ 1, Gk,ρ is the distribution function of a Γ(k, ρ)–distributed variate. So, from
(6), FV |m,{V >0}(v) = Gm+1,ρ(v). Thus the distribution of the m-filled domain is Γ(m + 1, ρ) as
anticipated.

Example B has d = 2, n = 3 and let x1 be the anchor. Now ν2(∆) = 1
2r2r3| sin θ|, where

ri := ‖xi − x1‖ and θ is the angle x3x1x2. So, using these ‘polar’ coordinates relative to x1,
⊥m,{V ∈(0,v]} ν2(B) equals

ρ3

∫

B

∫ ∞

0

(
2

∫ π

0

∫ 2v/r2 sin θ

0

(1
2ρr2r3 sin θ)m

m!
e−

1
2ρr2r3 sin θr3dr3 dθ

)
2πr2 dr2 ν2(dx1)

= 2ρ3

∫

B

∫ ∞

0

4(m + 1)Gm+2,ρ(v)
r2
2ρ

2

(∫ π

0

dθ

sin2 θ

)
2πr2 dr2 ν2(dx1). (21)

We note that the inner-most integral is divergent, so the numerator of (6) is infinite, as is
the denominator (shown by (21) with v replaced by ∞). The integral diverges because of the

9



contribution from a vast number of very long, thin triangles, m-filled and of small area. The
substantial effect of these very elongated triangles has been overlooked by others studying the
problem; in effect, huge numbers of particles x2 and x3 (at least one of which may be a large
distance from x1) must be counted.

The analysis for Example A proceeds in the same way, but with ν2(∆) = π
4 sin2 θ

(r2
2 + r2

3 −
2r2r3 cos θ). The calculations become lengthy and are omitted, but the rotund nature of ∆,
combined with the e−ρ area(∆) weighting of the integrand, mitigates against distant x2 and x3

having any influence on the results. Both the numerator and denominator of (6) are finite.

Example G, a simpler example with a rotund domain ∆, illustrates this mitigation. Let
d = 2, n = 2. The area of this ‘scaled diametrical disk’ is πβ2r2/4, where r := ‖x2 − x1‖. So,

⊥m,{V ∈(0,v]} ν2(B) = ρ2

∫

B

(∫ 2π

0

∫ √
4v/π/β

0

(1
4ρπβ2r2)m

m!
e−

1
4ρπβ2r2

rdr dθ
)
ν2(dx1)

=
4ρ

β2
ν2(B)Gm+1,ρ(v) v→∞−→ 4ρ

β2
ν2(B), (22)

Thus, from (6), FV |m,{V >0}(v) = Gm+1,ρ(v), in line with the traditional Complementary Theo-
rem, and ⊥m,{V >0}= 4ρ/β2.

In Example H, n = 3 and we set d = 2 for simplicity. Now ν2(∆) = π|r2
2 − r2

3|, where
ri := ‖xi − x1‖, so ⊥m,{V ∈(0,v]} ν2(B) equals

ρ3

∫

B
2

∫ ∞

0

(∫ √
r2
2+v/π

r2

(ρπ(r2
3 − r2

2))
m

m!
e−ρπ(r2

3−r2
2)2πr3dr3

)
2πr2 dr2 ν2(dx1)

= ρ2

∫

B
2Gm+1,ρ(v)

∫ ∞

0
2πr2 dr2 ν2(dx1). (23)

This is infinite, as is the equivalent result when v → ∞. The reader will be aware, from
elementary considerations, that such an annulus has a Γ(m + 1, ρ)-distributed area, when m-
filled. The Complementary Theorem would suggest a Γ(m+2, ρ) distribution if it were carelessly
invoked. Also note that if ∆ were redefined to be the ‘hole’ in the annulus of area π(r1 ∧ r2)2,
the Theorem still does not apply as the numerator and denominator of (6) are still infinite.

Example I introduces a constraint to the workings of (23) which prevents very thin annuli of
very large radius – the abundance of these being the reason for the pathologies of Example H.
∆ = ∅ unless the area π[(r3 ∨ r2)2 − (r3 ∧ r2)2] of the annuli is greater than the area π(r3 ∧ r2)2

of the hole. So, and here we note that the integrating condition {νd(∆) > 0} bites for the first
time, ⊥m,{V ∈(0,v]} equals

2ρ3

∫ √
v/π

0

(∫ √
r2
2+v/π

√
2r2

(ρπ(r2
3 − r2

2))
m

m!
e−ρπ(r2

3−r2
2)2πr3dr3

)
2πr2 dr2

= 2ρ2

∫ √
v/π

0
(Gm+1,ρ(v)−Gm+1,ρ(πr2

2)) 2πr2 dr2

= 2ρ2
(
vGm+1,ρ(v)−

∫ v

0
Gm+1,ρ(u) du

)

= 2ρ2

∫ v

0
u dGm+1,ρ(u)

= 2(m + 1)ρGm+2,ρ(v) v→∞−→ 2(m + 1)ρ, (24)

10



where we have deleted the outer integral with respect to x1, because this parametrization makes
it superfluous. So the constraint has brought the example back into line with the Complementary
Theorem: FV |m,{V >0}(v) = Gm+2,ρ(v) and ⊥m,{V >0}= 2(m + 1)ρ.

Finally we consider the important Example J, which has been discussed extensively by the
other authors. One might anticipate that the taboo on triangles with an obtuse angle would
eliminate the problems seen in Example B. This turns out to be the case. We impose on Example
B the ‘acute-angles conditions’ {θ < π/2} ∪ {θ > 3π/2}, {r3 > r2 cos θ} and {r2 > r3 cos θ}. So,
applying these conditions, ⊥m,{V >0} equals

ρ3

∫ ∞

0

(
2

∫ π/2

0

∫ r2
cos θ

r2 cos θ

(1
2ρr2r3 sin θ)m

m!
e−

1
2ρr2r3 sin θr3dr3 dθ

)
2πr2 dr2

= 4πρ

∫ ∞

0

(∫ π/2

0

4(m + 1)[Gm+2,ρ(1
2r2

2 tan θ)−Gm+2,ρ(1
2r2

2 cos θ sin θ)]
r2 sin2 θ

dθ
)
dr2

= 16π(m + 1)ρ
∫ π/2

0

(∫ ∞

0

[Gm+2,ρ(1
2r2

2 tan θ)−Gm+2,ρ(1
2r2

2 cos θ sin θ)]
r2 sin2 θ

dr2

)
dθ

= 16π(m + 1)ρ
∫ π/2

0

log(sec θ)
sin2 θ

dθ

= 8π2(m + 1)ρ < ∞. (25)

Thus this ‘censored’ example now lies within the domain of the existing Complementary Theo-
rem. The abundance of very thin, very long triangles which created the pathology of Example
B has been removed. So the other authors have been correct in quoting results based on the
Complementary Theorem. Incidentally, the amazing simplification of the integral with respect
to r2, leading to a result independent of m and ρ even though the integrand depends on both,
was found with the help of Mathematica; space does not permit a proof.

5. The change-of-measure technique yields a general proof.

To this point, the Poisson process Φ has intensity ρ, except in certain comparative statements
(16–19). This can be cemented notationally by indexing the probability measure P by ρ. Thus
each P and E in the earlier sections (except those used in (16–19) where intensity changes can

11



be viewed in a different way – see below) can be read as Pρ and Eρ. From (11),

Eρ(g(cn)|m, {V > 0}) =
1

⊥(ρ)
m,{V >0} νd(B)

×

Eρ

∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆)>0

g(cn)1
[[[
(Φ−

n∑

i=1

δxi)∆ = m
]]]
Φ[n](dx1 × · · · × dxn)

=
ρn

⊥(ρ)
m,{V >0} νd(B)

∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆)>0

g(cn)
[ρνd(∆)]m

m!
e−ρνd(∆)νd(dx1) · · · νd(dxn)

=
ρn+m ⊥(τ)

m,{V >0}
τn+m ⊥(ρ)

m,{V >0}
× τn

⊥(τ)
m,{V >0} νd(B)

×
∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆)>0

g(cn)e(τ−ρ)νd(∆) [τνd(∆)]m

m!
e−τνd(∆)νd(dx1) · · · νd(dxn)

= (
ρ

τ
)n+m−1Eτ (g(cn)e(τ−ρ)V |m, {V > 0}) (26)

In particular, following Møller and Zuyev [6] who derived (26) within their slightly more restric-
tive setting, we consider the Laplace transform of V using E1.

E1(e−sV |m, {V > 0}) = E1(e(1−(1+s))V |m, {V > 0}) =
1

(1 + s)n+m−1
E1+s(1|m, {V > 0})

=
1

(1 + s)n+m−1
. (27)

Therefore, F
(1)
V |m,{V >0}(v) = Gn+m−1,1(v). Invoking the functional relationship (19) yields

F
(ρ)
V |m,{V >0}(v) = Gn+m−1,ρ(v), and hence the traditional Complementary Theorem of Miles

and Møller/Zuyev.

Theorem 1: The Classical Complementary Theorem. For a typical n-tuple whose
associated equivariant domain ∆ has positive volume and is m-filled, the volume V of ∆ is
Γ(n + m− 1, ρ)-distributed provided (8) is finite and positive. ¤

In closing this section, we note that the interplay between intensities ρ and τ can be discussed
in different ways. In this section, we have two probability measures, Pρ and Pτ and one point-
process mapping Φ. In Section 3, the reader may have envisaged one probability measure P and
two point-process mappings with different intensities, ρ and 1. Either approach is valid and the
results of each section can be written in the language of the other.

6. Independence of volume V and configuration cn.

Both [4] and [6] note a type of independence between the volume V and the configuration cn

of a typical m-filled n-tuple. Recall that cn := (x1 − z, x2 − z, . . . , xn − z). In this section, we
clarify the nature of this independence, and when it occurs, within our context.

Lemma 1: For a typical n-tuple configuration cn, whose associated equivariant domain ∆ has
positive volume V and is m-filled, the random variate V and any other random variable X are
independent iff the distribution of X, conditional upon m and {V > 0}, does not depend on ρ.

12



Proof: Using (26),

E1(e−sV−tX |m, {V > 0}) = E1(e(1−(1+s))V e−tX |m, {V > 0})
=

1
(1 + s)n+m−1

E1+s(e−tX |m, {V > 0})

= E1(e−sV |m, {V > 0}) E1+s(e−tX |m, {V > 0}).
¤

Theorem 2: In the context of Lemma 1, V is conditionally independent, given m and {V > 0},
of:

• 1
[[[

cn

V 1/d ∈ L
]]]

for any L ∈M;

• 1
[[[
ρ1/dcn ∈ L

]]]
for any L ∈M;

• 1
[[[
cn ∈ L

]]]
for any equivariant L ∈ M, where L is called eqivariant iff {cn ∈ L} implies

{acn ∈ L} for any affine transformation a and any cn.

Proof: From (11) and (13),

⊥ρ
m,{V >0} νd(B) Eρ(1

[[[ cn

V 1/d
∈ L

]]]|m, {V > 0})

= ρn

∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆(x1,··· ,xn)>0

1
[[[ cn

V 1/d
∈ L

]]]
Eρ

(
1
[[[
Φ∆ = m

]]])
νd(dx1) · · · νd(dxn)

= ρn

∫
· · ·

∫

z(x1,··· ,xn)∈B
νd(∆(x1,··· ,xn)>0

1
[[[(x1 − z(x1, · · · , xn), · · · , xn − z(x1, · · · , xn))

[V (x1, · · · , xn)]1/d
∈ L

]]] ×

[ρνd(∆(x1, · · · , xn))]m

m!
e−ρνd(∆(x1,··· ,xn))νd(dx1) · · · νd(dxn)

= ρn

∫
· · ·

∫

z(
u1

ρ1/d
,··· , un

ρ1/d
)∈B

νd(∆(
u1

ρ1/d
,··· , un

ρ1/d
)>0

1
[[[( u1

ρ1/d − z( u1

ρ1/d , · · · , un

ρ1/d ), · · · , un

ρ1/d − z( u1

ρ1/d , · · · , un

ρ1/d ))

[V (u1/ρ1/d, · · · , un/ρ1/d)]1/d
∈ L

]]] ×

[ρνd(∆( u1

ρ1/d , · · · , un

ρ1/d ))]m

m!
e
−ρνd(∆(

u1

ρ1/d
,··· , un

ρ1/d
))
νd(du1) · · · νd(dun)

=
∫
· · ·

∫

z(u1,··· ,un)∈ρ1/dB
νd(∆(u1,··· ,un)>0

1
[[[(u1 − z(u1, · · · , un), · · · , un − z(u1, · · · , un))

[V (u1, · · · , un)]1/d
∈ L

]]] ×

[νd(∆(u1, · · · , un))]m

m!
e−νd(∆(u1,··· ,un))νd(du1) · · · νd(dun)

= ⊥1
m,{V >0} νd(ρ1/dB) E1(1

[[[ cn

V 1/d
∈ L

]]]|m, {V > 0}) (28)

In view of (16), 1
[[[

cn

V 1/d ∈ L
]]]

satisfies the requirements of the variate X in Lemma 1. So the first
assertion of the Theorem is proved. The remaining assertions are proved in a similar way. ¤.

Intuitively, a constraint L on the configuration is equivariant if it constrains only the shape
of the configuration. For example, L := {c3 : the three points form an acute–angled triangle} is
an equivariant constraint.
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7. Miles’ methods have similar problems.

If a marked point process Ψ is ergodic, and all of our processes are (due to the mixing character
of Poisson processes), then there is a definition of the typical mark, alternative to that given in
(5).

Without loss of generality, we can take the reference domain B to be the ball BR := BR(O) of
radius R, centre O. When R is large, the number Ψ(B×M) of points in B is large, with a fairly
representative collection of marks. The proportion Ψ(B × L)/Ψ(B ×M) of these whose marks
lie within L ∈ M approximates the mark distribution M(L). As R → ∞ the approximation
converges almost surely to M(L) (see [9]). So

M(L) := lim
R→∞

( Ψ(BR × L

Ψ(BR ×M
)
. (29)

It is assumed that, when R is finite, the numerator and denominator in (29) are finite with
probability 1.

The theory of Miles [4] is based on this ergodic definition of the typical configuration of
n-particles (which have an m-filled associated domain ∆). Miles’ anchor is always the base
particle.

His theory has difficulties, however, in situations like Examples B and H. In Example B, for
example, the number of m-filled triangles with base particle in BR is infinite with probability 1
for any R.

8. A definition of typicality when (8) is infinite.

In the pathological cases where existing definitions do not apply, we typically see infinite nu-
merator and denominator in (6). This suggests the following approach.

Instead of the marked point process ΨV |m,{V >0}, we use an alternative marked point process
ΨV |m,{V >0},R. We construct this as follows: for each n-tuple whose ∆ has positive volume V and
is m-filled, we place a point (with mark V) at the n-tuple’s anchor z if and only if all particles
of the n-tuple are in the ball BR(z).

The typical mark has a distribution given, from the arguments leading to (6), by

FV |m,{V >0},R(v) :=
E ΨV |m,{V >0},R(B × (0, v])

⊥m,{V >0},R νd(B)
=

⊥m,{V ∈(0,v]},R
⊥m,{V >0},R

, (30)

for v > 0. Expressions in the RHS of (30) are the obvious extensions of earlier notations and it
is easy to adapt arguments (15–19) to show the following comparative relationships:

⊥(ρ)
m,{V >0},R = ρ ⊥(1)

m,{V >0},ρ1/dR
; (31)

⊥(ρ)
m,{V ∈(0,v]},R = ρ ⊥(1)

m,{V ∈(0,ρv]},ρ1/dR
; (32)

F
(ρ)
V |m,{V >0},R(v) = F

(1)

V |m,{V >0},ρ1/dR
(ρv). (33)
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The change-of-measure result, (26), also takes a revised form in this new context.

Eρ(g(cn)|m, {V > 0}, R) = (
ρ

τ
)n+m

⊥(τ)
m,{V >0},R

⊥(ρ)
m,{V >0},R

Eτ (g(cn)e(τ−ρ)V |m, {V > 0}, R)

= (
ρ

τ
)n+m−1

⊥(1)

m,{V >0},τ1/dR

⊥(1)

m,{V >0},ρ1/dR

Eτ (g(cn)e(τ−ρ)V |m, {V > 0}, R). (34)

Furthermore the statements in (27) become

E1(e−sV |m, {V > 0}, R) = E1(e(1−(1+s))V |m, {V > 0}, R)

=
1

(1 + s)n+m−1

⊥(1)

m,{V >0},(1+s)1/dR

⊥(1)
m,{V >0},R

E1+s(1|m, {V > 0}, R)

=
1

(1 + s)n+m−1

⊥(1)

m,{V >0},(1+s)1/dR

⊥(1)
m,{V >0},R

. (35)

The introduction of the ‘bounding’ ball BR(z), suggests the following new definition of
typicality for the marks of the ‘unbounded’ process ΨV |m,{V >0}. The distribution function
FV |m,{V >0} for the typical mark in ΨV |m,{V >0} is now defined by

FV |m,{V >0}(v) := lim
R→∞

FV |m,{V >0},R(v) (36)

for all v > 0, whenever this limit exists. This agrees with (6) when (8) is finite and extends the
definition otherwise. In view of (35), the distribution function FV |m,{V >0} will clearly depend
on how the moderating factor

lim
R→∞

⊥(1)

m,{V >0},(1+s)1/dR

⊥(1)
m,{V >0},R

(37)

behaves.

In making this definition, I aware of some limitations. To date, I have not established in
any complete fashion that this definition is consistent with other similar definitions where, for
example, the ‘bounding domains’ are not balls, but instead form some other nest of increasing
domains which eventually fill the space. Nor have I established that (37) is independendent of
the choice of z in all cases. Further work is needed, but since the recognition that the classical
Complementary Theorem is not universally valid is an important finding, I shall proceed with
this new definition as given in (36). In section 11, we discuss this issue further.

9. Application to the Examples

Examples with this new definition will help cement ideas. In the mundane Examples C and G,
one can readily calculate that ⊥(1)

m,{V >0},R equals 2Gm+1,1(R) and 4Gm+1,1(πβ2R2/4), respec-
tively. So the moderating factors for these examples are 1. In the miscreant Example H with
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d = 2, following the logic of (23),

⊥(1)
m,{V >0},R = 2

∫ R

0

(∫ R

r2

(π(r2
3 − r2

2))
m

m!
e−π(r2

3−r2
2)2πr3dr3

)
2πr2 dr2

= 2
∫ R

0
Gm+1,1(π(R2 − r2

2)) 2πr2 dr2

= 2
∫ πR2

0
Gm+1,1(u) du

= 2[πR2Gm+1,1(πR2)− (m + 1)Gm+2,1(πR2)]. (38)

Recalling that 1/d = 1
2 , the moderating factor can be calculated as follows.

⊥(1)

m,{V >0},(1+s)1/dR

⊥(1)
m,{V >0},R

=
2[π(1 + s)R2Gm+1,1(π(1 + s)R2)− (m + 1)Gm+2,1(π(1 + s)R2)]

2[πR2Gm+1,1(πR2)− (m + 1)Gm+2,1(πR2)]

R→∞−→ (1 + s).

Thus, from (35), E1(esV |m, {V > 0}) = 1/(1 + s)n+m−2 and therefore, substituting n = 3,
we have F

(1)
V |m,{V >0}(v) = Gm+1,1(v) as claimed in Section 4. Thus the volume of an m-filled

annulus is Γ(m + 1, ρ)-distributed.

In the interesting Example B, (21) is modified.

⊥(1)
m,{V >0},R =

∫ R

0

(
2

∫ π

0

∫ R

0

(1
2r2r3 sin θ)m

m!
e−

1
2 r2r3 sin θr3dr3 dθ

)
2πr2 dr2

= 16π(m + 1)
∫ π

0

(∫ R

0

Gm+2,1(1
2r2R sin θ)
r2

dr2

) dθ

sin2 θ

= 32π(m + 1)
∫ π

2

0

(∫ 1
2R2 sin θ

0

Gm+2,1(u)
u

du
) dθ

sin2 θ

= 32π(m + 1)
∫ 1

2R2

0

Gm+2,1(u)
u

(∫ π
2

sin−1( 2u
R2 )

dθ

sin2 θ

)
du

= 16π(m + 1)R2

∫ 1
2R2

0

Gm+2,1(u)
u2

√
1− 4u2

R4
du. (39)

We shall show, using the Dominated Convergence Theorem, that for any α > 0,

lim
R→∞

∫ ∞

0
1
[[[
[0, αR2]

]]]Gm+2,1(u)
u2

√
1− u2

α2R4
du =

∫ ∞

0

Gm+2,1(u)
u2

du =
1

m + 1
.

An integrable function, f say, which dominates the integrand for all R is

f(u) :=
um

(m + 2)!
0 ≤ u ≤ 1

=
1
u2

u > 1.

This is so because

1
[[[
[0, αR2]

]]]Gm+2,1(u)
u2

√
1− u2

α2R4
<

Gm+2,1(u)
u2

u>1
<

1
u2

,
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since Gm+2,1 is a distribution function, and,

Gm+2,1(u)
u2

=
1
u2

∫ u

0

tm+1

(m + 1)!
e−tdt <

1
u2

∫ u

0

tm+1

(m + 1)!
dt <

um

(m + 2)!
.

Therefore, using α equal to 1
2 and (1 + s)2/d and d = 2, (39) implies that the moderating factor

in (37) is (1 + s). Thus, E1(esV |m, {V > 0}) = 1/(1 + s)n+m−2 as in Example H, and therefore,
F

(1)
V |m,{V >0}(v) = Gm+1,1(v) as claimed in Section 1.

The moderating factor can be (1 + s)κ where κ > 1. Three examples are:

• Example K: For general n and d, let ∆ be the closed ball Bmini ri(x1), where ri := ‖xi−x1‖.
Here κ = n− 2. So κ can be large.

• Example L: For n = 4, d = 2, let ∆ be the triangle x1x2x3 if x4 is not contained in this
triangle. Otherwise, ∆ is the triangle x1x2x4. One can show that κ = 2.

• Example M: For n = 4, d = 2, let ∆ be the triangle of smallest area using three of the four
available particles. Conjecture: κ = 2.

Details of proof are omitted and left as an exercise for the reader.

10. A revised complementary theorem.

We can summarise our theory and arguments, based on the definition given in Section 8, as
follows.

Theorem 3: Revised Complementary Theorem. For a typical n-tuple whose associated
equivariant domain ∆ has positive volume and is m-filled, the volume of ∆ is Γ(n + m− 1, ρ)-
distributed provided (8) is finite and positive. When (8) is infinite, the Laplace transform of V
is given by

1
(1 + s)n+m−1

lim
R→∞

⊥(1)

m,{V >0},(1+s)1/dR

⊥(1)
m,{V >0},R

involving the so-called moderating factor (37) defined in Section 8. ¤
One might hope that the moderating factor always takes the form (1 + s)κ, for κ ≥ 0, but I

have been unable to date to prove this for general ∆, d, n and m. If this is so, then the volume
of V retains its Gamma distribution.

11. Discussion: open questions

Clearly Theorem 3 is uncontroversial in circumstances where (8) is finite, for then it reduces
to the classical theorem (Theorem 1). In that case, there is no issue concerning the choice of
anchor z, used as the centre of our nest of bounding balls.

In the other cases, one should perhaps consider different choices of z. In Example B, I have
worked through the analysis defining z as the circumcentre of the three particles and using a
parametrisation based on Santaló ([7], formula 2.18). The distributional results concerning the
area of ∆ remain unchanged.
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It is noteworthy, however, that questions pertaining to the configuration shape may depend
on z and this can be of great importance in examples where ∆ is defined as ∅ for some configura-
tions. This must be done, as in Example J, in such a way as to conserve the equivariant property
of the mapping. This means that the constraint L := {cn : ∆ = ∅} must be equivariant.

A question then arises. What is the probability that the typical n-tuple has an associated
domain ∆ which is not ∅? In Example J, this question becomes — what is the probability
that a typical 3–tuple of particles from a Poisson process on the plane forms a triangle which is
acute-angled? Miles [4] and Santaló [7] state that this probability is 1

2 . Note that the question
answered by these authors is not cast in terms of m-filled triangles; all triangles are under
consideration regardless of their filling.

We approach this problem within the confines of the marked point process Ψc3|R constructed
as follows. A point is placed in R2 at the anchor z := x1 of the 3-tuple if and only if all 3 particles
lie in the closed ball BR(z). The mark placed at this location is the configuration cn. Note that
this marked point process is the superposition of a countable collection of marked point processes,
each based on the filling condition m. So ⊥(1)

R is the sum of (39) for m ≥ 0. Thus

⊥(1)
R = 8πR2

∫ 1
2R2

0

√
1− 4u2

R4
du = π2R4, (40)

an obvious result. The probability that the typical mark lies in L := {c3 : ∆ is acute− angled}
is ⊥(1)

L,R / ⊥(1)
R where

⊥(1)
L,R =

∫ R

0
2

∫ π/2

0

∫ min(R,
r2

cos θ
)

r2 cos θ
r3dr3 dθ 2πr2 dr2

= 2π
∫ π/2

0

(∫ R cos θ

0

( r2
2

cos2 θ
− r2

2 cos2 θ
)

r2 dr2 +
∫ R

R cos θ

(
R2 − r2

2 cos2 θ
)

r2 dr2

)
dθ

= 1
4π2R4. (41)

Thus, for all R > 0, the probability that the 3-tuple forms an acute-angled triangle is 1
4 . If we

define the probability that the typical 3-tuple satisfies L as the limit of ⊥(1)
L,R / ⊥(1)

R as R →∞,
we get the result 1

4 .

We get an entirely different answer, however, if z is defined to be the circumcentre of the 3
particles. The answer is now 1

3 . It is of considerable interest that this shape entity depends on
the choice of z, yet the area of ∆ does not. Our Section 6 which sets out the independence of
shape and size explains this intuitively.

Close inspection of the statements of Miles and Santaló reveal a reason for their answer
being 1

2 ; they have actually answered a different question. Santaló’s calculation ([7], pp. 16-17),
which incidentally has a number of inaccuracies that cancel each other and so do not distort
his final answer, restricts attention to 3-tuples whose circumdisk lies wholly within BR with
the circumcentre anywhere within BR. This removes from consideration many obtuse triangles,
creating a huge bias in favour of acute triangles. Miles focusses his attention on 3-tuples whose
circumradius is less than a constant, R0; this creates a similar bias.

Our results of 1
4 and 1

3 also differ from the probability that 3 points uniformly and in-
dependently distributed within a ball form an acute triangle. Hall [2] showed this to be
ξ = 4/π2 − 1

8 = 0.2803. So shape issues are delicate, size issues less so.

In conclusion, further work is needed on Theorem 3, but the results of this paper correct
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certain misapprehensions which have appeared in the literature. With these fixed, progress in
the right direction is possible.

References

[1] Cowan, R., Quine, M. and Zuyev, S. (2003). Decomposition of Gamma-distributed domains
constructed from Poisson point processes. Adv. Appl. Prob. 35, 56–69.

[2] Hall, G. R. (1982). Acute triangles in the n–ball. J. Appl. Prob. 19, 712–715.
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