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Abstract

The probability pn that n points, uniformly and independently distributed within a con-
vex planar body K, have a triangular convex hull is known (at least for some values of
n ≥ 3) when K is either a triangle, an ellipse, a parallelogram or a regular polygon. The
apparent absence of a solution for the case when K is a general quadrilateral was of interest
to us. So, we derived simple expressions for pn when K is a general convex quadrilateral –
for 4 ≤ n ≤ 7. The method, which finds moments of the triangular area formed by three
random points within a convex quadrilateral K, is outlined in this report. It can in principle
be applied for higher n.

Subsequent to the completion of this work, we discovered that Deltheil [8] had addressed
the quadrilateral problem and derived the equivalent of our formula (8). Curiously, the
research literature of the last 40 years appears to have totally overlooked his work. It has
been completely forgotten, it seems (even by referees of our work). We are happy therefore
that we uncovered Deltheil’s work, independently of the refereeing process, before our paper
was published and can help remedy this oversight of the literature. Some results of our’s
extend the basic formula (8) and are therefore new; these will appear in the literature as a
brief letter to the Editor [6].

Keywords: Sylvester’s problem; random geometry; area of random triangle.
AMS classification: 60D05, 60C05.

1 Introduction

Sylvester first posed his famous 4-point problem 140 years ago. This problem, finding the prob-
ability p4 that 4 uniformly-distributed points within a planar, convex body K have a triangular
convex hull – one point lying inside the triangle formed by the other three points – has been
solved for a number of bodies. Explicit results for any triangle, a general ellipse and all parallel-
ograms have been well known for some considerable time (Woolhouse [17], Crofton [7], Deltheil
[8], Blaschke [2]) as have formulae when K is a regular polygon (Alikoski [1]).

A noteworthy feature of these results is that p4 is the same for all triangles; it is also constant
for all elliptical domains and the same for all parallelograms. This lack of dependence on shape

within certain classes of domain follows from the theory of affine transformations; see Santaló
[13]. An affine transformation F is defined by F (x) := Mx + y for x,y ∈ R

2 and M defined as
a matrix with detM 6= 0.

Affine transformations preserve parallelism. They also preserve collinearity and, for points
P,Q and R which lie on a line, the ratio of lengths |PQ| to |QR| is preserved after transformation.
This statement is the simplest version of a more general truth; if a point Q (say) is a convex, linear
combination of other points, it will remain so post-transformation, and with identical weights.
So if Q lies within a triangle formed by other points, F (Q) will be inside the transformed triangle.
Thus a ‘configurational’ property like that posed in Sylvester’s problem is affine invariant.

If Q (say) is constructed geometrically from P,R or from other information, it may not

be true that the same construction applied to the transformed information yields F (Q). For
example, Q may be constructed as the orthogonal projection of another point T onto the line
through P and R. Then F (Q), although located to preserve the ratio stated, is not the projection
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of F (T ) onto the line through F (P ) and F (R). We speak of strong preservation of ratios if the
construction applied post-transformation yields F (Q).

Likewise, the ratio of areas is preserved under affine transformations and, since the uniform
distribution in K is defined by a ratio of areas, points distributed in K uniformly will also be
uniformly distributed in F (K) post-transformation. This is strong preservation at work, albeit
in the context of a random construction method. An example of ‘weak’ preservation of area
ratios is as follows. Let |T | be the area of a triangle T and |C| be the area of its circumdisk C.
The ratio |F (T )|/|F (C)| equals |T |/|C|, but the transformed circumdisk F (C) will usually now
be elliptical and therefore not the circumdisk of the transformed triangle F (T ).

The combined preservation of uniform distribution and point-configuration explains why the
answer to Sylvester’s problem is constant within an affine-invariant class of domains – such
as the class of triangles. The classes of triangles, ellipses and parallelograms are defined by
6 numbers (4 defining position, size and orientation, leaving two to describe shape); an affine
transformation is also defined by 6 numbers. Thus it is not a total surprise that these classes
are affine invariant (even though there exist 6-parameter classes which are not – for example,
the class of convex pentagons with interior angle 3π/5 at each vertex).

2 Affine-invariant subclasses of quadrilaterals

Being defined by four points, and therefore 8 numbers (4 of which describe shape), quadrilaterals
are not affine invariant, so we have looked for invariant sub-classes. Consider a convex quadri-
lateral XPY R. Suppose one diagonal, XY , cuts the other, PR, at a point Q – dividing PR into
two segments (PQ and QR) whose lengths are in the proportion a : 1. This ratio of collinear
segment lengths is preserved, and strongly so because the crossing point Q (determined by X
and Y ) must still be the crossing point after transformation; this follows because the collinear-
ity of {P,Q,R} and {X,Q, Y } are both preserved. Moreover, the segment ratio |XQ| : |QY |,
denoted by b : 1, is preserved. Thus quadrilaterals having ’arm ratios’ of a : 1 and b : 1 are an
affine-invariant class.

We now have a simple two-parameter descriptor of a quadrilateral. It does not define the
‘shape’ of the domain, but our class of (a, b)-quadrilaterals suffices for ‘Sylvester-like’ problems
and we can avoid the complexity of an intricate 4-parameter shape space. One can choose a
canonical member of the (a, b)-class, to allow the easiest analysis (see Figure 1(a)). (Note

added later: Deltheil used the same affine-subclass strategy but used a different canonical
form, namely the quadrilateral having vertices (1, 0), (0, 0), (0, 1) and (a, b). His a and b have
different meaning to ours. See Figure 1(b))

Let A be the area of the triangle formed by three random points (xi, yi), i = 1, 2, 3. This is
1
2 |f | where f := (x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1). Let AK be the area of K shown in
Figure 1, namely 1

2 (a+1)(b+1). Since p4 = 4E(A)/AK for any K, we focus on the ratio A/AK

which, being a ratio of areas, is affine invariant.
Let Ej denote the event that j of the three points lie in the triangular region, denoted by

∆, to the left of the line x = 0. Then

E
( A

AK

)

= α3
E

( A

AK
|E3

)

+ 3α2βE
( A

AK
|E2

)

+ 3αβ2
E

( A

AK
|E1) + β3

E
( A

AK
|E0

)

(1)

where α = 1
a+1 and β = 1 − α. Now, E(A/AK |E3) equals α times ”E(A)/area(∆)”, an entity

which equals 1/12 for all triangles. A similar argument conditional upon E0 can be applied.
Thus we have

E
( A

AK
|E3

)

=
α

12
and E

( A

AK
|E0

)

=
β

12
. (2)
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Figure 1: (a) Our canonical (a, b)-quadrilateral, positioned with diagonals orthogonal and cross-
point on the Cartesian origin. (b) Deltheil’s choice of canonical quadrilateral.

Note that E(A/AK |Ej) is strongly preserved under affine transformations because, given Ej,
the j points in ∆ ⊂ K are uniformly distributed as are the (3 − j) points within K \ ∆. Both
of these statements remain true within the post-transformation regions F (∆) and F (K \ ∆).

Suppose E(A/AK |E1) = g(a, b). Then, by affine-invariance arguments captured by Figure 2,
one can state that E(A/AK |E2) = g(1/a, b). So, from (1) and (2),

E
( A

AK

)

=
α4 + β4

12
+ 3αβ

(

αg(1/a, b) + βg(a, b)
)

=
1 + a4

12(a + 1)4
+

3a

(a + 1)3

(

g(1/a, b) + ag(a, b)
)

. (3)

We shall now find g(a, b) by integration methods.

3 Evaluation, aided by Mathematica

Without loss of generality we assume that x1 ≤ 0 and 0 ≤ x2 ≤ x3 ≤ a. Therefore, E
(

A
AK

|E1

)

equals

2

AK

∫ 0

−1

∫ a

0

∫ a

x2

∫ bx1+b

−(x1+1)

∫ b−bx2/a

x2/a−1

∫ b−bx3/a

x3/a−1

1
2 |f |

8

a2(b + 1)3
dy3dy2dy1dx3dx2dx1. (4)

The difficulty in such calculations is the discernment of regions where f is positive. This occurs
here when y3 > (1 − r)y1 + ry2 = t (say), where r := (x3 − x1)/(x2 − x1) > 1. One can
readily show that t ∈ [x3/a − 1, b − bx3/a] iff y2 ∈ [L,U ], where L := (x3 − a + a(r − 1)y1)/ra,
U := (b(a − x3) + a(r − 1)y1)/ra and L < U . Furthermore, [L,U ] is a subset of the integration
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Figure 2: One can move from the left figure to the centre then to the right figure by affine
transformations.

range of y2 shown in (4) for all permitted values of y1, x3, x2 and x1. Therefore

E
( A

AK
|E1

)

=
8

a2(b + 1)3AK

∫ 0

−1

∫ a

0

∫ a

x2

∫ bx1+b

−(x1+1)

[

∫ L

x2/a−1

∫ b−bx3/a

x3/a−1
|f | dy3dy2+

∫ L

U

(

∫ b−bx3/a

t
|f | dy3 −

∫ t

x3/a−1
|f | dy3

)

dy2−

∫ b−bx2/a

U

∫ b−bx3/a

x3/a−1
|f | dy3dy2

]

dy1dx3dx2dx1

=
4

3a5(b + 1)2AK

∫ 0

−1

∫ a

0

∫ a

x2

∫ bx1+b

−(x1+1)

(a − x3)

(x3 − x1)
h(y1, x3, x2, x1)dy1dx3dx2dx1,

where

h(y1, x3, x2, x1) = 2(1 + b)2(x1 − x2)
2(a − x3)

2 + 3(x3 − x2)u(y1, x3, x2, x1);

u(y1, x3, x2, x1) = (a − x1)[(1 + b)2(ax1 + x2x3) − 2b(ax2 + x1x3) − (1 + b2)(ax3 + x1x2)]

+ 2a(b − 1)(a − x1)(x3 − x2)y1 − 2a2(x3 − x2)y
2
1 .

Further integration yields

g(a, b) := E
( A

AK
|E1

)

=
a(1 + b2)s0(a, b) − 2ab s1(a, b) + 12f1(a, b) log(1 + a) − 12f0(a, b) log(a)

3780a5(a + 1)(b + 1)2
. (5)
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Here

f1(a, b) = (a − 1)(1 + a)5
[

(5 + 4a2 + 5a4)(1 + b2) + (b − 1)2(5(1 − a)(1 − a3) + 8a2)
]

= − a10f1(1/a, b);

f0(a, b) = a7
[

(3 + 2a)(6 + 10a + 5a2)(1 + b2) − 2b(2 + 13a + 15a2 + 5a3)
]

= a10(f1(1/a, b) + f0(1/a, b));

s0(a, b) = 120 + 360a + 334a2 + 74a3 + 315a4 + 346a5 − 334a6 − 360a7 − 120a8

= 210a3(2 + 3a + 2a2) − a8s0(1/a, b);

s1(a, b) = 60 + 150a + 86a2 − 9a3 − 245a4 − 341a5 − 86a6 − 150a7 − 60a8

= − 70a3(5 + 7a + 5a2) − a8s1(1/a, b).

We can see, therefore, that g(1/a, b) equals

a5 (1 + b2)s0(1/a, b) − 2b s1(1/a, b) + 12af1(1/a, b) log(1 + 1
a) + 12af0(1/a, b) log(a)

3780(a + 1)(b + 1)2

=
a5

3780(a + 1)(b + 1)2

[

(1 + b2)(210a−5(2 + 3a + 2a2) − a−8s0(a, b))

+ 2b(70a−5(5 + 7a + 5a2) + a−8s1(a, b))

− 12a−9f1(a, b)(log(1 + a) − log(a)) + 12a−9(f0(a, b) − f1(a, b)) log(a)
]

=
1

3780a4(a + 1)(b + 1)2

[

(1 + b2)(210a4(2 + 3a + 2a2) − as0(a, b))

+ 2b(70a4(5 + 7a + 5a2) + as1(a, b))

− 12f1(a, b) log(1 + a) + 12f0(a, b) log(a)
]

. (6)

The log-terms disappear when we take the calculation one step further. Using (5) and (6) as
providers of g(a, b) and g(1/a, b), we find that

g(1/a, b) + ag(a, b) =
1

54(a + 1)(b + 1)2

[

3(1 + b2)(2 + 3a + 2a2) + 2b(5 + 7a + 5a2)
]

.

(7)

Finally, from (3), we reach the concise result

E
( A

AK

)

quad
=

1

12
−

ab

9(1 + a)2(1 + b)2
. (8)

This formula is applicable to all convex quadrilaterals. In stating this, we remind the reader
that the two distances marked as “1” in Figure 1, need not be equal in the affine-transformed
versions of our canonical (a, b)-quadrilateral. Only arm ratios are important. (Note added

later: This is the formula which Deltheil found in 1926, parametrised (of course) in his way.)
Naturally, the expression (8) is symmetric in a and b and less than the known supremum (of

1/12 for triangles) over all convex domains K (Blaschke [2]). Our (a, b)-quadrilateral collapses
to a triangle when either a or b equal zero and to a parallelogram when a = b = 1; our result
reduces to the corresponding known result, 1/12 and 11/144 respectively.

Other special cases are a = 1 yielding a kite (interpreted to include ‘skewed’ kites with
diagonals not orthogonal) and a = b = c (say) creating a trapezium. This entity c also plays a
role as the ratio of side lengths for the two parallel sides of the trapezium. Results are:

E
( A

AK

)

kite
=

1

12
−

b

36(1 + b)2
; E

( A

AK

)

trapez
=

1

12
−

c2

9(1 + c)4
.
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This caters for the general trapezium, not just an ‘isosceles’ trapezium with two arms actually
equal to 1 and the other two equal to c.

It is noteworthy that the minimum value for (8) occurs when the quadrilateral is a parallelo-
gram. Also, our calculation does not really depend on knowing that the invariant for a triangle
is 1/12, despite appearances. If we inserted x instead of 1/12 in (2), we obtain a result which is
not symmetric in a and b unless x = 1/12.

Of greater importance is the fact that we now have, directly from (8) without further inte-
gration, the expected area of the convex hull of four random points in our quadrilateral. This
comes from an identity, holding for all convex K, established by Buchta [4]. Buchta showed
that, if Aj equals the area of j random points, then E(A4) = 2E(A3).

4 Sylvester’s problem and the higher-n generalisations

We can now state the answer to Sylvester’s problem. The probability p4 that four uniformly
random points inside a general convex quadrilateral have triangular convex hull is:

p4 =
1

3
−

4ab

9(1 + a)2(1 + b)2
.

Effron [9] noted that, for general convex K and n ≥ 3, the probability pn that n independent
uniformly distributed points within K have triangular convex hull is given by

pn =

(

n

3

)

E

(An−3

An−3
K

)

, (9)

where A is, as before, the area formed by three random points. Effron’s relationship is one of a
family of more powerful relationships developed recently by Buchta [5].

As an example of (9), p5 = 10E(A2/A2
K) and so we have repeated our methods to show that

E
( A2

A2
K

)

quad
=

1

72
−

ab

18(1 + a)2(1 + b)2
=

1

2
E

( A

AK

)

quad
−

1

36
. (10)

This second-moment affine invariant is maximized for triangles and minimized for parallelograms,
as before. The variance of A/AK has the same extremal shapes.

The third and fourth moments, from which p6 and p7 can be derived, are:

E
( A3

A3
K

)

quad
=

31

9000
−

a b
(

132 a b + 74 (a + b) (1 + a b) + 41
(

1 + a2
) (

1 + b2
))

1500 (1 + a)4 (1 + b)4
;

E
( A4

A4
K

)

quad
=

1

900
−

a b
(

28 a b + 20 (a + b) (1 + a b) + 13
(

1 + a2
) (

1 + b2
))

900 (1 + a)4 (1 + b)4
.

We note that the coefficient of skewness is minimized for parallelograms and, for fixed a, it is
minimized by kites. We give further expressions, up to the 8th moment. These results yield
pn, for n ≤ 11. The formulae are unlikely to be useful in themselves but may assist in the
recognition (or checking of) a general formula. Introducing row-vectors an := (1 a a2 ... an−1)
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and bn := (1 b b2 ... bn−1), we can write:

E
( A5

A5
K

)

quad
=

1063

2469600
−

a b a5M5b
′

5

617400 (1 + a)6 (1 + b)6
;

where M5 =













5074 16444 23190 16444 5074
16444 50797 70506 50797 16444
23190 70506 97332 70506 23190
16444 50797 70506 50797 16444
5074 16444 23190 16444 5074













;

E
( A6

A6
K

)

quad
=

403

2116800
−

a b a5M6b
′

5

58800 (1 + a)6 (1 + b)6
;

where M6 =













293 858 1220 858 293
858 2263 3170 2263 858
1220 3170 4440 3170 1220
858 2263 3170 2263 858
293 858 1220 858 293













;

E
( A7

A7
K

)

quad
=

211

2268000
−

a b a7M7b
′

7

680400 (1 + a)8 (1 + b)8
;

where M7 =





















2167 9986 21901 28052 21901 9986 2167
9986 43244 91756 116324 91756 43244 9986
21901 91756 191391 241392 191391 91756 21901
28052 116324 241392 304000 241392 116324 28052
21901 91756 191391 241392 191391 91756 21901
9986 43244 91756 116324 91756 43244 9986
2167 9986 21901 28052 21901 9986 2167





















;

E
( A8

A8
K

)

quad
=

13

264600
−

a b a7M8b
′

7

3969000 (1 + a)8 (1 + b)8
;

where M8 =





















8439 36152 78757 100128 78757 36152 8439
36152 139930 293072 366828 293072 139930 36152
78757 293072 607455 756880 607455 293072 78757
100128 366828 756880 941160 756880 366828 100128
78757 293072 607455 756880 607455 293072 78757
36152 139930 293072 366828 293072 139930 36152
8439 36152 78757 100128 78757 36152 8439





















.

As before, the first term in each expression gives the corresponding answer for triangles; we
note that our first terms are in agreement with a general formula for triangles given by Reed
[12], namely

E
( Ak

Ak
K

)

triangle
=

12
(

6(k + 1)2 + (k + 2)2
∑k

r=0

(k
r

)−1
)

(1 + k)3 (2 + k)3 (3 + k) (5 + 2 k)
.

When a = b = 1, our results give a sequence of answers for parallelograms:

11
144 , 1

96 , 137
72000 , 1

2400 , 363
3512320 , 761

27095040 , 7129
870912000 , 61

24192000 , 83711
103038566400 , 509

1873428480 , ...

Reed also offers a general formula in this case, but we do not get agreement with him. Instead,
we agree with a formula of Trott, recently reported by Weisstein [16]. We observe that Reed’s
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formula was very close in form to Trott’s (which we show below).

E
( Ak

Ak
K

)

parallelogram
=

3
(

1 + (k + 2)
∑k+1

r=1 r−1
)

(1 + k) (2 + k)3 (3 + k)2 2k−3
.

5 Other generalisations

Our work appears to be the first for many years extending the range of planar bodies for which
the affine-invariants above have been found. There have been, however, substantial generalisa-
tions of a different nature with the hitherto–solved bodies. General formulae for the expected
area of the convex hull of n uniformly distributed points in K have been developed for triangles,
parallelograms, regular hexagons and ellipses (Buchta [3], Miles [11], Groemer [10]). Formulae
for the probability that n points within K are in convex position are now known for triangles
and parallelograms from Valtr’s work ([14], [15]).

By adapting the methods of Buchta [3], we have found the expected area when n equals 5
or 6 for the general convex quadrilateral.

E
( A5

AK

)

=
43

180
−

a b
(

108 a b + 56 (a + b) (1 + a b) + 29
(

1 + a2
) (

1 + b2
))

90 (1 + a)4 (1 + b)4
;

E
( A6

AK

)

=
3

10
−

a b
(

124 a b + 68 (a + b) (1 + a b) + 37
(

1 + a2
) (

1 + b2
))

90 (1 + a)4 (1 + b)4
.

The method is straightforward and the lengthy calculations are not of great interest per se.
There has also been considerable progress in the understanding of the situation for general

convex K (Buchta, [5]), emphasizing the fundamental nature of the affine invariants that we
have studied. As an example of this, we conclude by stating a simple result for the probability
mass function of the random variable N5, defined as the number of vertices of the convex hull
of 5 random points, when K is a convex quadrilateral. Using Buchta’s theory in combination
with our (8) and (10), it can be shown that N5 takes values 3, 4 or 5 with probabilities

5

36
−

5ab

9(1 + a)2(1 + b)2
,

5

9
,

11

36
+

5ab

9(1 + a)2(1 + b)2

respectively. It is intriguing that the probability of this convex hull being 4–sided does not
depend on a or b.
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