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Abstract

The iterative division of a triangle by chords which join a randomly-selected vertex of a
triangle to the opposite side is investigated. Results on the limiting random graph which
eventuates are given. Aspects studied are: the order of vertices; the fragmentation of chords;
age distributions for elements of the graph; various topological characterisations of the tri-
angles. Different sampling protocols are explored. Extensive use is made of the theory of
branching processes.
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1. Introduction

Consider a convex polygon with k sides. Suppose there is a well-defined random rule which
divides this polygon with a straight chord. Two convex polygons, called the daughters of the
original mother cell result. The rule is now applied independently to each daughter, and to their
daughters, and so on. A population of random polygons emerges.

A number of interesting problems can be posed. If geometric entities (distances, angle sizes,
areas, etc.) are involved, the problems are random geometric in character, and usually very
difficult. I have found, however, a range of interesting stochastic problems which are mainly
topological in character.

In Cowan [2] and Cowan and Morris [4], numerous rules involving a chord which hits two
randomly chosen sides of the polygon (at any position on the sides but not at a corner of the
polygon) were explored, with some fascinating results. For example, in the limit as the number
of generations n becomes large, the number of sides S of a randomly chosen polygon converges
in distribution. Moreover, if the random chord of a j–gon is selected by an equally-likely choice
of the 2 sides to be hit from the 1

2j(j − 1) pairs of sides, then S − 3 converges in distribution to
the Poisson(1) law.

Other side-to-side (SS) division rules in [4] involve avoidance of, or liking for, polygons of x
sides. For example, in the so-called tri–phylic case when at every opportunity a j–gon divides to
give a triangle and a (j+1)–gon (by choosing two adjacent sides to be joined by the chord), S−3
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converges to a Geom0(1) distribution, where Geomr(µ) denotes Geometric on {r, r+1, r+2, . . .}
with mean µ.

I am encouraged to embark on a more systematic study of the random topology of polygon
division. A key feature of this new work, and indeed that of [2] and [4], is its use of the theory
of branching processes. Because Chris Heyde made fundamental contributions to branching-
process theory, I hope that this small contribution to his Festschrift is a suitable tribute to his
long and productive career.

In this paper I shall apply the theory of branching processes to explore questions which arise
with corner-to-side (CS) rules for the dividing chords. All new chords which divide polygonal
cells at successive generations join a corner to a side.

The words corner and side are used when discussing polygons; I use the words vertex and
edge in the context of the planar graph that arises in the iterative division process. Many of my
results focus on the randomly-sampled entities of the graph, its vertices, edges and faces (also
called polygons or cells). Other results deal with randomly-sampled elements such as chords,
polygon–sides and angles.

Note that the planar graph that is created still incorporates some “geometry” since the chords
are straight lines and the faces of the graph are polygons. So there will be, at most vertices in
the graph, an angle which is geometrically constrained to be π. The problem of sequentially
dividing the faces of a purely topological planar graph by edges (which are not straight lines)
has been studied elsewhere (Cowan and Chen, [3]).

2. Corner–to–side rules

We start with a k–gon at generation 0. Choose a corner of the polygon randomly and then join
this corner to a randomly-chosen side (excluding the two sides which are incident at the chosen
corner). This straight joining–line, called a chord, has a C-end and an S-end, C for corner and S
for side. Iterate the procedure, dividing all polygons in all generations by the same rule applied
independently. Eventually, only triangles and quadrilaterals are left. After this happens, the
number of quadrilaterals remains static as the generation number n increases, whilst the number
of triangles grows like 2n, dominating the quadrilaterals.

(a) (b)

Figure 1: The corner–to–side division process at generation n = 4. In (a), all vertices inside the initial triangle have one

angle which is π due to the offset rules mentioned in the text. In the non–offset variant shown in (b), this is not true since

the S-end is always placed at the mid–point of the triangle’s side (dividing the area into two equal parts).

So let us eliminate the nuisance of quadrilaterals by simply starting with k = 3, namely,
a triangle (whose boundary we shall denote by ∆). Choose a corner randomly (equally-likely
choice) and draw the chord by joining the corner to the opposite side. Then divide the two
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daughter triangles in the same random way, and so on. Ensure that, when the chord hits the
opposite side, the new vertex is a topological T, not a topological X as it could be if a chord
from another triangle puts its S-end at the same point. An offset of the two S-ends is employed
in this circumstance. Figure 1(a) shows a realisation of the first few generations, whilst Figure
1(b) demonstrates a variant which is presented for contrast (but not analysed in this paper).

3. The basic elements: their prevalence and age profiles.

Let Fn, En and Vn be the numbers of faces, edges and vertices of the planar graph at generation
n, or as we now prefer to say, time n (each face living for one time unit). For the CS-system with
offsets, Fn = 2n,Vn = 2n+2 and, from Euler’s planar-graph formula, En = Fn+Vn−1 = 2n+1+1.

Similarly, we let Sn and An denote the numbers of sides and angles of extant triangles at
time n, and Cn the number of chords. Clearly Sn = An = 3Fn and Cn = Vn.

Faces, edges, sides and angles are transient elements of our system – they are born and they
die – whilst vertices and chords, once created, are permanent, merely changing their character.
An angle lives for a random time L which follows the Geom1(3) distribution,

P{L = `} = 1
3(2

3)`−1 ` = 1, 2, 3, . . . , (1)

as does a side. Note, however, that lifetimes of angles within the same triangle are not indepen-
dent; likewise for sides. The lifetime distribution of an edge cannot be stated without further
assumptions on the offset rule.

Let An be the age of a randomly selected vertex at time n ≥ 1. Clearly there are 2n−1−a

vertices of age a, for a = 0, 1, 2, . . . , n− 1, plus the three original vertices which have age n, so
2n + 2 or Vn in total. So

P{An = a} =
3

2n + 2
a = n

=
2n−1−a

2n + 2
a = 0, 1, 2, . . . , n− 1, (2)

which, in the limit for large n, conforms to a Geom0(1) distribution. The age distribution for
extant chords follows the same law, due to the 1–1 correspondence between the new chords and
new vertices at each generation.

We shall frequently see, in the course of this paper, equivalent results for chords and vertices;
a chord–vertex duality exists, as does another duality between angles and sides.

4. Angles and sides: imbedded branching processes.

Each angle, one of the three originals or any newly-created angle later in the process, is the
ancestor of a simple branching process, one which may be viewed either as a Bellman-Harris
(BH) ([5]) or Bienaymé-Galton-Watson (BGW) branching process ([1]).

The Bellman-Harris viewpoint. Suppose the ancestor angle is born at time t. It, and any
descendant angle, lives for a random lifetime L distributed as in (1) before ‘dying’ and producing
(immediately) two daughter angles. All lifetimes are independent. This is a classical Bellman-
Harris process (also called an age-dependent branching process). One of the standard results
for the BH-model is the age distribution of extant individuals at time t + n, as n →∞. Those
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familiar with this theory may care to show that this limiting age distribution, applied here, is
Geom0(1) – the same as the age distribution in Section 3 for all extant chords and vertices.

We hasten to say that this new result is the age distribution for the extant angles descendant
from one angle (and does not describe the ages for all extant angles in the system). The result
does, however, reflect a common phenomenon: the age profile of extant individuals in a BH-
process has a bias toward young individuals. The mean lifetime of an angle is 3, yet the mean
age of extant descendants of a long-dead ancestor angle is 1, less than half of the average life. ¤

The Bienaymé-Galton-Watson viewpoint. Those less familiar with the BH-process may pre-
fer a more prosaic view. The ancestor angle is again born at time t. It may divide in the next
round of division (time t+1) into two angles, each of which may then divide into two, and so on.
Let Zn be the number of angles descendant from the ancestor at time t+n. Clearly Z0 = 1 and
the sequence Z0, Z1, Z2, . . . forms a Bienaymé-Galton-Watson branching process with ‘offspring’
pgf given by

Q(z) = 2
3z + 1

3z2. (3)

The word ‘offspring’ is to be interpreted as either the two daughters if the mother divides or
one ‘daughter’ who is actually the surviving mother, reborn. Let Hn be the pgf of Zn. From
the standard theory of BGW branching processes [1], H0(z) = z and, for n = 1, 2, . . .,

Hn(z) = Hn−1(Q(z)) = Q(Hn−1(z)) = 2
3Hn−1(z) + 1

3 [Hn−1(z)]2 (4)

Since the mean of the ‘offspring’ distribution is 4
3 , EZn = (4

3)n. ¤
Everything in this Section remains true if the word ‘angle’ is replaced by ‘side’. This is an

example of the side-angle duality.

5. The order of a randomly sampled vertex.

What is the order Xn of a randomly chosen vertex of the random graph at time n? Freshly
generated vertices (with the initial T structure) have order 3, but the order of a vertex increases
whenever that vertex is chosen as the C-end of a new chord. So, orders of 4, 5, 6, . . . can be
created, the population of vertices being constantly fed by fresh vertices of order 3. We shall
investigate the distribution of Xn below, but we can find its mean immediately from elementary
counting arguments: EXn = 2En/Vn = (2n+2 + 2)/(2n + 2) n→∞−→ 4.

Each newly created vertex has two angles, ignoring the angle π at the top of the T. Each of
these two angles is the ancestor of a BGW-process, governed by (4) and (3). Indeed, there are
2n−1 newly created T-vertices at time n ≥ 1 and the commencement of two BGW-processes of
angles at each. Additionally, the three original angles each start one BGW-process. There is
some dependence between all these BGW-processes, but it is important to note (when we reach
(5) below) that pairwise independence exists for the two BGW-processes which commence at
any new vertex.

At time n, when we sample our random vertex, these BGW branching processes are at
varying stages of development due to varying ages of the extant vertices (see (2)). Thus the
number Yn of angles (ignoring the one equal to π) at a vertex, randomly–chosen at time n, has
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pgf Dn, given, for n ≥ 1, by

Dn(z) = E[E(zYn |An)]

=
3

2n + 2
Hn(z) +

n−1∑

a=0

2n−1−a

2n + 2
[Ha(z)]2 (5)

=
3

2n + 2
Hn(z) +

2n−1

2n + 2
[H0(z)]2 +

n−1∑

a=1

2n−1−a

2n + 2
[Ha(z)]2

=
3

2n + 2
Hn−1(Q(z)) +

2n−1

2n + 2
z2 +

2n−1 + 2
2n + 2

n−2∑

b=0

2n−2−b

2n−1 + 2
[Hb(Q(z))]2

=
2n−1

2n + 2
z2 +

2n−1 + 2
2n + 2

Dn−1(Q(z)), (6)

with D0(z) = z. It is a simple matter to show from (6) that {Dn(z)}n≥0 is a Cauchy sequence
for |z| ≤ 1, thereby establishing convergence. This establishes that the sequence {Yn} converges
in distribution to a variate, Y say. The limit function, D say, is the solution of the equation

D(z) = 1
2 [z2 + D(Q(z))], (7)

namely

D(z) =
∞∑

a=0

(1
2)a+1[Ha(z)]2. (8)

Whilst I have not found an explicit formula for the coefficient of zn in D(z), I have

D(z) = 9
14z2 + 27

161z3 + 3807
47012z4 + 98901

2667931z5 + · · · (9)

in series form as the generator of Y ’s probability distribution. Note that EY = 3 and VarY = 12,
provable directly from differentiations of (7) with respect to z. We also note the transient result,
EYn = 3 2n/(2n + 2).
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Figure 2: The asymptotic probability mass function of order X for (a) a random vertex, (b) the vertex at a random corner

of a random triangle (as per Section 10), (c) a random vertex on the boundary of the graph [as per (21)]

Obviously the order Xn of a random vertex at generation n is Yn + 1; thus X := Y + 1 is
the variate to which the sequence {Xn} converges in distribution. Note EX = EY + 1 = 4, as
required.

Its distribution, generated by zD(z) and plotted in Figure 2(a), follows from (8) and (9).
This is a long–tailed distribution, longer than the Geometric tail in the distribution of age for
the randomly selected vertex.
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6. Chord fragmentation into edges.

When a chord is first created, it forms a new edge of the planar graph with the C-end of the
chord being an existing graph-vertex and the S-end creating a new vertex. Since this new chord
has just divided a triangle, it has created two new triangle sides on itself. One is a side of
the triangle to the chord’s left and the other a side of the triangle to the right. Here, we have
assigned each chord a direction (running say from its C to S ends).

It is obvious that each of these sides is an ancestor of a BGW-process whose structure
is identical to the BGW-angle process discussed above. These two BGW-side processes are
independent. Thus, the total number of triangle sides on the chord (both right and left) is akin
to the total number of non-π angles at a vertex. The former variate, Y ∗

n say, for a randomly
sampled chord at time n, is therefore identically distributed to the earlier-defined variate Yn.

Let In be the number of edges on the random chord. Clearly In = Y ∗
n − 1 −→ I as n →∞,

I being distributed as Y − 1. Note that EI = 2, reflecting the fact that most chords are too
young to have achieved much fragmentation. The ‘average’ chord is therefore one with two sides
on the left and one on the right (or vice versa) and hence two edges.

7. A branching process of triangles in the C-S system

The trivial branching process is the one related to triangular cells, where each triangle produces
two daughters. This has little intrinsic interest per se. If, however, we classify the triangles in
some way, then we can formulate a multitype branching structure.

The triangular cells that appear in our system can be classified according to the number of
their corners which lie on the original boundary, ∆, be it 0, 1, 2 or 3. If, moreover, there is a
sub-classification of the latter two classes according to the number of their sides covering part
of ∆, we are able to identify a multitype branching process of the triangular cells. It turns out
that types {0, 1, 21, 20, 33, 32, 31} may exist at some stage, where cs means the type of triangle
with c corners and s sides ⊂ ∆.

Each cell produces two daughters, but these may be a mix of types. The mix is determined
randomly, but also independently for each cell dependent only on the type of the mother. For
example, a mother cell of type 21 will produce two type-21 daughters with probability 1

3 or one
type-21 and one type-1 with probability 2

3 independently of how the other cells are reproducing.

Much of the dynamics of multitype branching processes is understood from the mean off-
spring matrix M, whose (i, j)th element is the mean number of offspring of type j from a mother
of type i ([1], [7]). Here, with types listed in the order 0, 1, 21, 20, 33, 32 and 31,

M =




2
2
3

4
3

0 2
3

4
3 0

0 4
3 0 2

3

0 0 0 2 0
2
3 0 0 2

3
2
3

2
3

2
3 0 0 2

3




. (10)
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Entries not shown are zero. We commence with one 33-cell at generation 0. In generation n, let
F (j)

n be the number of j-type triangles (j = c or cs). If the expected values of these 7 variates
are summarised in a row vector mn, we have m0 = (0 0 0 0 1 0 0) and mn = m0Mn. One can
show, either by the spectral theory of matrices or by elementary calculations on the sub-matrices
of M, that mn is (in transpose form)

mT
n :=




EF (0)
n

EF (1)
n

EF (21)
n

EF (20)
n

EF (33)
n

EF (32)
n

EF (31)
n




=




2n + n(n− 1)(2
3)n−1 − 2n(4

3)n−1

2(n− 2)[(4
3)n−1 − n(2

3)n−1]

4(4
3)n−1 − 2(n + 1)(2

3)n−1

(n− 2)(n− 1)(2
3)n−1

0

2(2
3)n−1

2(n− 1)(2
3)n−1




(11)

for n ≥ 2. Note, as a check, that the elements of mT
n sum to 2n which equals Fn. Since Fn is

a constant, the probability that a randomly chosen triangle at generation n is of sub–type cs

is E(F (cs)
n )/Fn. In particular, the probability that it is of type 0 can be calculated and shown

to approach 1 as n → ∞. Thus, as n gets large, the chance that the cell is of type 0, totally
internal to the structure and away from the boundary ∆, tends to 1.

The usual eigenvalue analysis from branching–process theory (see [6]) shows which types
become extinct. The square diagonal blocks in M, which represent reproductive rates within
the 0, 1 , 2 and 3 cliques, have maximal eigenvalues 2, 4

3 , 4
3 and 2

3 respectively. Thus extinction
of the 3-clique is certain (because 2

3 < 1). The 2-clique has maximal eigenvalue > 1 yet a
breakdown into the two sub–type eigenvalues of this clique confirms the intuitive; EF (21)

n grows
like (4

3)n and F (20)
n converges almost surely to zero (since 2

3 < 1) thereby ensuring certain
extinction of type 20. The eigenvalues for types 0 and 1 are > 1 and it is easy to show that
EF (1)

n grows like (4
3)n and EF (0)

n like 2n.

Types 0, 1 and 21 cannot become extinct as each is guaranteed some self-proliferation when
it divides, but the latter two types are overwhelmed in number by the faster growing type-0
cells internal to the structure. The theory of [6] allows one to state almost sure convergence of
the proportionality ratio F0

n/Fn to 1 and of the proportions of the other two surviving types to
zero.

One can show that, if NE := minn>0{n : F (20)
n = F (31)

n = F (32)
n = F (33)

n = 0}, namely
the first time at which all transient types are extinct, then ENE = 11.33; 95% of systems have
achieved the extinction of transients by time 22 and 98% by time 29.

In generation n, let V∆
n be the number of vertices of the planar graph on ∆ . Simple

counting on the graph shows that V∆
n equals the number of graph–edges on ∆, which equals

F (21)
n + 2F (32)

n + 3F (33)
n . So, from (11), one sees that

EV∆
n = 4(4

3)n−1 − 2(n− 1)(2
3)n−1, (12)

an entity which grows like (4
3)n. Moreover, from the almost-sure convergence results noted

above, V∆
n /Vn −→ 0 a.s.. So for large n, the chance that a vertex sampled randomly is internal

is also 1.

7



8. Other taxonomies for triangles

There are many ways, less primitive than that in Section 7, to define the type of an extant
triangle.

The flir system: One way is via a classification of each side of a triangle as f, l, i or r. A
side which occupies the whole length of a chord (or a whole side of ∆) is labelled f , because the
side is a full chord. If the chord on which a side lies extends in both directions beyond the side
itself, the side is labelled i, because the side is an internal part of the chord. If the side lies at
the left end of the chord when viewed from the triangle, it is labelled l; label r is used for sides
at the right end of the chord.

Each triangle can then be labelled by a triad of letters. ∆ is fff . Its two daughters are ffr
and flf , the third generation is some random mix of ffi, ffr, fif , flf , fll, flr, frr, and so
on. Note that, for n ≥ 1, every triangle has at least one f side, namely the side which divided
the triangle’s mother; we call this the base side and write it first in the triad with other labelling
done in an anti-clockwise direction.

fif
ffi

flf
ffr

fir
fir

fli
fli

flr
flr

fll
frr

Figure 3: Minimalistic sketches of six flir-types which appear in the system. For each, the base side is shown at the bottom

and directed from left to right (that is, C-end at left, S-end at right). Labelling of each type, shown inside the shaded

region, is anti-clockwise starting from the base. Other chords (irrelevant to the label and not drawn) may be entrant at

the three vertices, but only within their non–shaded angles. Shown below each picture is the anti-clockwise labelling of its

reflected image about a vertical line. These 6 reflected types, each with its base directed right-to-left, also appear in the

system. To distinguish some cases where the anti-clockwise label remains the same under reflection, an overbar is added.

Our analysis shows that only 13 types can appear in the system; 12 of these survive and
are drawn in Figure 3. The other type is fff , the label of ∆. We have analysed this 13-type
branching process, but shall not present its M matrix here. Instead we point out that a classical
branching process structure still applies if we coalesce each type drawn in Figure 3 with its
reflection. This creates a 7-type process with M matrix shown below. Coalesced-type labels
appear to the right of M.

M =




2
3

1
3

2
3

1
3 0 0 0

2
3

2
3 0 1

3 0 1
3 0

2
3 0 2

3 0 1
3

1
3 0

2
3

1
3 0 2

3 0 1
3 0

2
3 0 0 0 2

3
2
3 0

1
3

1
3

1
3 0 1

3
2
3 0

0 0 2 0 0 0 0




.




fif/ffi 4
15

flf/ffr 14
60

fir/fir 7
60

fli/fli 7
60

flr/flr 1
10

fll/frr 1
6

fff 0




1 : 1
1 : 1
2 : 5
5 : 2
1 : 1
1 : 1

(13)

Here m0 = (0 0 0 0 0 0 1). Obviously type fff becomes extinct at time 1. Denote M’s 6 × 6
sub-matrix of surviving types by Ms. Its maximal eigenvalue, λ say, is 2. One can show, from
multitype branching-process theory [6], that the equilibrium proportions of the first 6 types settle
to the normalised right eigenvector p of Ms, namely the normalised solution of pMs = λp; the
equilibrium vector p is shown in the display (13).
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Also shown is the proportionality within the coalesced types, at equilibrium. I have found
these from a full analysis of the 13-type process, because some information is lost from the
reduction to 7 types. Note the 5:2 imbalance in some of these proportions.

At time n, there are 3 × 2n triangle-sides in the whole graph. One can sample a random
one of these by first sampling a random triangle and then sampling one of its sides. A simple
calculation, based on the equilibrium of the flir–system just derived, shows that, as n → ∞,
the chances that the selected side is f, l, i or r are 1

2 , 1
6 , 1

6 and 1
6 , respectively.

Incidentally, if one restricts attention to the pool of 21-cells (see Section 7), one can show
that the dominant surviving flir-types are fif/ffi, fli/fli and fir/fir. Their equilibrium
proportions are the normalised right eigenvector of the matrix M(21)

s , shown below in (14). Here
λ = 4

3 < 2, reflecting the fact that some daughters of 21-cells are not themselves type-21.

M(21)
s =




2
3

1
3

1
3

1
3

2
3

1
3

1
3

1
3

2
3


 . M(1)

s =




2
3

1
3

1
3 0 0 0

0 1
3

1
3 0 1

3
1
3

0 1
3

1
3

1
3

1
3 0

1
3 0 1

3
1
3

1
3 0

0 0 0 1
3

2
3

1
3

1
3

1
3 0 0 1

3
1
3




. (14)

Clearly, p = (1
3 , 1

3 , 1
3) at equilibrium, with further break down to 1

6 for each of the 6 types
(after demerger). On the other hand, the 4 surviving groups of 1-cells are (in order) ffi/fif ,
flf/ffr, flr and fll/frr, with reproduction rates given by M(1)

s . Their limiting proportions
are p = (1

7 , 2
7 , 2

7 , 2
7), with proportionalities 1:1 for each merged group.

Thought was given to the merging of labels l and r under one label e, for extremity, but this
destroys the Markovian structure of the branching process. ¤

The ciao system: Another classification scheme is based on the three angles of the triangle.
For nearly all vertices in the graph (save the 3 originals), a key feature is the line which passes
through the vertex, leaving an angle of π on one side and various smaller angles on the other.
Amongst these smaller angles, two are distinct in that the angle is partly created by the through
line; call these two angles extremities and the others, if any, internal. Label the extremity angle
at the clockwise end of the group c, that at the anti-clockwise end a and all internal angles i.
The three original angles of ∆ are labelled o (for original), but when an o-angle is divided, we
apply c, a and i labels in the obvious way.

cii
i
a

c
i

i
a

aca

cii

(a) (b) (c)

Figure 4: (a) The ciao-labelling of angles at a vertex. (b) The labelling at a corner of ∆. (c) The shaded triangle, of

cai-type, is being divided by the dashed line, realising the 1
3

chance of aca and cii daughters.

Each extant triangle now has a triad–labelling inherited from the labels of its angles. The
ancestor is ooo and, from time 1 onward, we write the triad in an anti-clockwise order starting
at the S-end of the base side.
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It turns out that 15 triads can appear in the ciao–system. Three types, ooo, aco and coa
become extinct. The 12 surviving types have labels utilising three types of angle (c, i and a),
so it comes as a small surprise that there is a 1–1 mapping between these 12 surviving ciao-
types and the 12 surviving flir-types (whose labels involving four types of side). The reader
can confirm this mapping by observing that the six triangles drawn in Figure 3 are (in order)
cai, cii, caa, cca, cia and cci. Their reflections are aic, aii, aca, acc, aci and aai, respectively.
Having established the mapping, we can find equilibrium results for the ciao-system from our
flir results.

The experiment of sampling randomly one of the angles extant at generation n and then
randomly one of its angles, yields, in the limit, c, a or i angles with equal probability, 1

3 each. ¤
The age of the oldest side (or angle): At time n there are 3× 2n sides of triangles, 3 to each

current triangle. The age of a side is defined as the time since that side first became a side of
some triangle, either of the current one or one of its ancestors. Note that only one side of a
triangle can have an age > 0 and so one can classify triangles by the age of the oldest vertex.

We have a multitype branching process, types being ages 0, 1, 2, . . ., starting with a 0-type
cell. Population dynamics are governed by

M =




0 2

0 4
3

2
3

0 4
3 0 2

3

0 4
3 0 0 2

3

0 4
3 0 0 0 2

3

...
. . .




. (15)

It is easily shown from (15) that a, the age of the oldest side of a randomly selected triangle
has limiting distribution (as n →∞) of Geom1(3

2). Since the other two sides have age zero, this
implies that the equilibrium age distribution of a randomly sampled side is Geom0(1

2). ¤
Note that the results for oldest side carry over exactly if the classification scheme is based

on the age of the oldest angle (due to the duality between angle and side).

9. The line-of-descent Markov chain

The sampling of a random triangle from the 2n triangles in generation n can be achieved by
sampling in an equally-likely way one of the 2n lines of descent. At generation 1, one tosses a
coin and selects one of the two daughters as the focus of one’s attention, repeating the procedure
for her two daughters and so on. This is not a recipe that works for all branching processes,
merely here, where each mother has precisely two daughters.

When this viewpoint is applicable, the sequence of cell types along the line-of-descent is a
Markov chain with transition matrix given by M/λ and the right eigenvector equation becomes
the traditional Kolmogorov equilibrium equation for Markov processes. The examples using (13)
and (15) can be formulated in this way, but the more random multitype branching processes
behind (14) cannot. In the latter case, randomly sampling a line of descent is a biased way of
sampling a cell of the nth generation.

We consider two further ways of classifying triangles and discuss them from the line-of-
descent viewpoint. The first example can also be analysed by the method of Section 8; the
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second cannot.

The two oldest vertices at the corners (or two oldest bounding chords): Classify a triangle
by the ages of the three graph–vertices at the triangle’s corners. It is clear that a corner’s vertex
will be no younger than this corner’s angle, and often older. From generation 1 onward, each
triangle has only one corner where the graph–vertex has zero age. At the other two corners, the
graph–vertices have ages a and b, say, with a ≥ b ≥ 1. So a triangle can be classified as (a, b)
according to bivariate age of the oldest two vertices.

Let pn(a, b) be the probability that the cell type at time n along the line of descent is (a, b). So
p0(0, 0) = 1, pn(a, a) = 0, a 6= n and pn(n, n) = 2

3 × 1
2pn−1(n− 1, n− 1) = (1

3)n−1. Furthermore,
for n ≥ 1,

pn+1(a, b) = 1
3pn(a− 1, b− 1) a > b > 1,

pn+1(a, 1) = 1
3

(
pn(a− 1, a− 1) +

∑a−1
b=1 pn(a− 1, b) +

∑
b≥a pn(b, a− 1)

)
a > 1. (16)

Convergence as n → ∞ is easily established, with the consequential dropping of subscript in
(16). These Kolmogorov equations can readily be solved to find the limiting bivariate probability
mass function for a and b as

p(a, b) = (2
3)a(1

2)b, a > b ≥ 1, (17)

with marginals pA(a) = (2
3)a[1 − (1

2)a−1], a ≥ 2, and pB(b) = 2
3(1

3)b−1, b ≥ 1. Thus, the age
of the vertex at a random corner of a random triangle is zero with probability 1

3 , or equal to
x ≥ 1 with probability 1

3 [pA(x) + pB(x)] = 1
3(2

3)x. So this age ∼ Geom0(2); compare this to the
Geom0(1) law for all extant vertices.

An identical analysis applies if triangles are classified according to the ages of the two oldest
bounding chords. ¤

The Y values of the two oldest vertices: From time 1 onward, there is one angle of every
triangle which we call the base angle; this is the angle just created by the S-end of the recent
dividing chord. The base angle is part of a vertex with Y = 2; the other two angles are at
vertices with Y ≥ 1 (and usually ≥ 2 except for small n). Classify each triangle by (Y, y), these
two other Y -values; here Y ≥ y.

When further augmented with the triangle’s ciao-type, there is a multi-type branching
process on triangles, using this classification, but it is not the usual process where each mother
reproduces independently of other mothers. There is very complex dependence. Yet, the line-of-
descent Markov process is still available for exploitation. Note that the ciao-type is important
information as it is necessary to know if a triangle’s angle is internal or not when tracing potential
changes to (Y, y).

We leave this fairly lengthy and complicated problem to the reader. The solution, which
illustrates how important is the recognition of the line-of-descent Markov chain, is available at
www.maths.usyd.edu.au:8000/u/richardc. The same analyis applies to the Y ∗ values of the two
oldest bounding chords. ¤

10. Y -biased sampling of a vertex.

Consider the sampling of a vertex by first sampling a random triangle and then one of its vertices.
Clearly this is a method biased proportionally to the vertex’s Y value. So, if p(y,v) is the joint
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probability mass function of Y and some vector of attributes v under normal sampling of a
random vertex, then the Y -biased pmf is 1

3yp(y,v).

As an example of this, choose v := a, the vertex’s age. From Section 5 we see that
∑

y≥2

p(y, a)zy = (1
2)a+1[Ha(z)]2.

∴
∑

y≥2

1
3yp(y, a)zy−1 = 2

3(1
2)a+1Ha(z)H ′

a(z).

∴
∑

y≥2

1
3yp(y, a) = 1

3(2
3)a, a = 0, 1, 2, . . . , (18)

in agreement with the earlier result derived from (17). If v is dropped altogether, we have the
simple Y -biased pmf of Y as 1

3yp(y), where p(y) is given by (9). Note that EY = 7. The plot of
vertex order, X := Y + 1, is seen in Figure 2(b).

11. Following a permanent chord (or vertex).

A chord is permanent. We have established in Section 4, through an exercise with the BH-
branching process, the limiting age distribution of extant sides which lie in some chosen chord,
τ . Now we ask the nature of a vertex randomly sampled from those lying on τ . Does such a
vertex differ in characteristics such as age and order to the typical random vertex?

The random sampling of a vertex in τ is achieved by sampling a side on τ , randomly from
all left and right sides, then taking the vertex at the end of the chosen side nearer to the chord’s
S-end. This excludes from the sample the C-end of the chord, but this exclusion does not affect
the results.

We use the 1–1 correspondence between the vertices and the sides to find the age profile of
boundary vertices. Each side can be typed according to the age a of its linked age, defined as
the age of its linked vertex, a ∈ {0, 1, 2, . . .}. With these types, the population of sides forms
another multi-type branching process with mean offspring matrix ML given below. Also shown
is MA, the matrix which would apply if we used the actual age of the side.

ML =




1
3 1
1
3 1
1
3 1
1
3 1

...
. . .




. MA =




2
3

2
3

2
3

2
3

2
3

2
3

2
3

2
3

...
. . .




. (19)

It is a simple matter to show from ML that, if a side extant in generation n is randomly sampled,
its type or linked age has limiting pmf (as n →∞) of 1

4(3
4)a, a = 0, 1, 2, . . ..

Turning to the vertices on τ themselves, we have thus shown that their large-n age has the
Geom0(3) distribution. Compare this to the age distribution for all vertices: Geom0(1).

At each newly-created vertex on τ , the two angles initiate independent BGW-processes
having the familiar structure governed by (4) and (3). Thus, by repeating the argument of (5)
and (6), one establishes that the vertex order X(τ) has probabilities generated by zDτ (z), where
Dτ is the solution of

Dτ (z) = 1
4z2 + 3

4Dτ (Q(z)). (20)
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A series solution begins

Dτ (z) = 3
8z2 + 9

56z3 + 513
5152z4 + 11745

188048z5 + · · · . (21)

Note that this result also applies to vertices on a given side of ∆ and, with slight complication
due to the early dependencies between developments on the three sides of ∆, to all vertices on
∆. A plot of the distribution of vertex order X := Y + 1 is shown in Figure 2(c). It is easily
shown from (20) that the mean order for vertices on τ is infinite.

The analysis above also applies to the Y ∗ value of a randomly-sampled chord entrant to a
chosen vertex. Incidentally, repeating the large-n limit exercise using the matrix MA provides
an alternative proof to the result given in the “Bellman-Harris viewpoint” of Section 4.
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