
Discrete Applied Mathematics 138 (2004) 253–263
www.elsevier.com/locate/dam

On spaced seeds for similarity search

Uri Keicha ;∗ , Ming Lib , Bin Mac , John Trompd
aComputer Science & Engineering Department, University of California, San Diego, CA 92093, USA
bBioinformatics Lab, Computer Science Department, University of California, Santa Barbara, CA

93106, USA
cComputer Science Department, University of Western Ontario, London Canada N6A 5B8

dCWI, P.O. Box 94079 1090 GB Amsterdam, Netherlands

Received 16 June 2002; received in revised form 8 May 2003; accepted 30 June 2003

Abstract

Genomics studies routinely depend on similarity searches based on the strategy of 1nding
short seed matches (contiguous k bases) which are then extended. The particular choice of the
seed length, k, is determined by the tradeo3 between search speed (larger k reduces chance
hits) and sensitivity (smaller k 1nds weaker similarities). A novel idea of using a single deter-
ministic optimized spaced seed was introduced in Ma et al. (Bioinformatics (2002) 18) to the
above similarity search process and it was empirically demonstrated that the optimal spaced seed
quadruples the search speed, without sacri1cing sensitivity. Multiple, randomly spaced patterns,
spaced q-grams, and spaced probes were also studied in Califano and Rigoutsos (Technical
Report, IBM T.J. Watson Research Center (1995), Burkhardt, K<arkk<ainen, CPM (2001), and
Buhler, Bioinformatics 17 (2001) 419) and in other applications [(RECOMB (1999) 295, RE-
COMB (2000) 245)]. They were all found to be better than their contiguous counterparts. In
this paper we study some of the theoretical and practical aspects of optimal seeds. In particular
we demonstrate that the commonly used contiguous seed is in some sense the worst one, and
we o3er an algorithmic solution to the problem of 1nding the optimal seed.
? 2003 Elsevier B.V. All rights reserved.

MSC: 92D20

Keywords: Gapped seeds; Seeded alignment; BLAST; Similarity search

∗ Computer Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853, USA. Tel.: 607-2550983;
fax: 607-2554428.

E-mail address: keich@cs.cornell.edu (U. Keich).

0166-218X/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-218X(03)00382-2

mailto:keich@cs.cornell.edu

254 U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263

1. Introduction

Today, in the post-genomics era [8,16], the most common computer task performed
in molecular biology labs is similarity search. That is, to compare one DNA sequence
against another, or to a database, to 1nd any similar regions between them. Many
programs have been developed for the task. These include FASTA [9], SIM [7], the
Blast family [1,2,6,15,18] SENSEI [14], and recently Pattern Hunter [10]. The popu-
larity of such practice can be seen from the fact that the original Blast paper [1] is
the most referred scienti1c paper of the last decade: cited over 10,000 times. Almost
all these programs, including NCBI’s widely used Blastn, use the simple strategy of
1rst 1nding short exact “seed” matches (hits), which are then extended into longer
alignments. This approach to similarity search exhibits a key tradeo3: increasing seed
size decreases sensitivity, whereas decreasing seed size slows down the computation.
In order to alleviate this problem, a novel idea of using a single deterministic and

optimized spaced seed was introduced in [10]. Using this spaced seed yields, a simi-
larity search which is as sensitive as the one based on the naive, contiguous seed but
produces 4 times fewer chance hits and hence is about 4 times faster [10]. Multiple,
possibly randomized, spaced patterns, spaced q-grams, and spaced probes were also
studied by Califano and Rigoutsos [5], Burkhardt and K<arkk<ainen [4], Buhler [3], and
Preparata et al. [11], Preparata and Upfal [12] in other applications. They were all
found to be signi1cantly better than their contiguous counterparts.
At 1rst glance it seems surprising that spaced seeds could have an advantage over

contiguous ones. Indeed, in a region of similarity 06p6 1, the probability of a match
between a pair of W positions is pW for any seed. Since a contiguous seed can 1t
in a given region in more ways than a, necessarily longer, spaced seed, the expected
number of matches of the contiguous seed is higher than that of any spaced seed in the
same region [10]. In this paper we study some of the theoretical and practical aspects
of optimal seeds as de1ned in [10]. In particular we demonstrate that a contiguous seed
is in some sense the worst one, and we o3er an algorithmic solution to the problem
of 1nding the optimal seed.

2. Mathematical formulation

The traditional seed that is used in programs such as Blast consists of k consecutive
positions. That is, the program looks for a word of length k which appears in each of
the studied pair of sequences. Ma et al. [10] empirically observed that better results
can be obtained if we are allowed to space the preserved k positions. The authors of
[10] call the speci1c pattern of the matching positions a “model seed” (or just “seed”)
and describe it by a 0-1 string, where the 1s correspond to the matching positions. For
example, if we use the seed 1110111, then the pair of words actgact and acttact
is a seed match, and so is the pair actgact and actgact. The number of 1s is called
the “weight” of the seed and it has direct impact on the sensitivity as well as on the
cost of the similarity search. The length, or “span” of the seed is its overall length, or
the number of 0s plus the number of 1s in the seed.

U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263 255

The following notations are adopted from Burkhardt and K<arkk<ainen [4]. By the
shape, Q, of the seed we mean the relative positions of the 1s in the seed. In other
words, the shape is a set of non-negative integers including 0. With this de1nition, the
weight of Q 1 is simply |Q|, and its span is s(Q) = maxQ + 1. For any integer i and
shape Q, the positioned shape i+Q is the set {i+j : j∈Q}. Let, i+Q={i0; i1; : : : ; iW−1},
where i= i0¡i1¡ · · ·¡iW−1, and let S=s0s1 : : : sL−1 be a string. For 06 i6L−s(Q),
the Q-gram at position i in S, denoted by S[i + Q], is the string si0si1 : : : siW−1 . Two
strings S and S ′ have a common Q-gram at position i if S[i + Q] = S ′[i + Q].

Example 1. Let Q = {0; 1; 3; 6} be a shape. Then, Q is the seed 1101001. Its weight
is |Q| = 4 and its span s(Q) = 7. The string S = ACGGATTAC has three Q-grams:
S[0 + Q] = s0s1s3s6 = ACGT; S[1 + Q] = CGAA and S[2 + Q] = GGTC.

The problem presented in [10] is 1nding the optimal shape (seed) of a given weight,
W , for detecting identities in a region of similarity level p. More precisely, assuming
we have two (aligned) strings S and S ′ of length L such that the events Ei = {S[i] =
S ′[i]} are mutually independent and P(Ei) =p, what is the shape Q which maximizes
the sensitivity

P(∃i∈{0; 1; : : : ; L− s(Q)} with S[i + Q] = S ′[i + Q]):

By translating a match at position i; S[i] = S ′[i], to the digit 1, and a mismatch to 0, this
problem is transformed to the following equivalent one: Let S be a random sequence
of iid Bernoulli random variables with P(S[i] = 1) = p. Let 1W = 11 : : : 1 denote the
string of W consecutive 1s. If for some 06 i6L − s(Q); S[i + Q] = 1W , then we
say that Q hits S (at i). We look for the shape Q, of weight W which maximizes
P(Q hits S). In this paper we suggest a practical approach for solving this problem.
We also identify conditions under which we can prove that the naive, contiguous, seed
Q̃ = {0; 1; : : : ; W − 1} is the worst possible seed: any (equally weighted) spaced seed
will do better.

3. Toward proving the advantage of spaced seeds

Even in the framework of our model spaced seeds are not always better than the
naive seed which consists of a contiguous block of 1s. In general, the sensitivity of the
seed varies not only with the seed itself but it is also a function of the similarity level,
p, and of the length of the similarity region, L. Consider for example looking for a
weight W seed in a region of length L=W + 1. Clearly, the shorter, contiguous seed
is the most sensitive for this problem. Similarly, the authors of [10] report that the
optimal seed of weight 11 for a 64 random bits string, 2 S, is 111010011001010111.
While this is certainly the case for any practical value of p, it should be noted that
there are some ps for which the naive, or contiguous, seed will do better than the

1 In what follows we identify the seed with its shape.
2 More precisely, S is made of a sequence of 64 independent Bernoulli trials with P(1) = p.

256 U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263

otherwise optimal spaced seed. One reason for this is that for a given string length the
two seeds or shapes are not on equal footing as the spaced seed has a longer span so
it can match only 64–17 possible substrings, or words, of S while the naive motif gets
seven “extra attempts”. 3

Given these examples, it is clear that in order to make any mathematical statement
regarding the advantage of spaced seeds we have to restrict the setup. For exam-
ple, it turns out that if we “level the playing 1eld” between a spaced seed and the
naive one, then the former is a better seed independently of p and L. More precisely,
let Q be the shape of a spaced seed. Then for any increasing sequence of indices
06 i0¡i1¡ · · ·¡in−1, let Aj be the event Aj = {S[ij +Q] = 1W}, or in other words,
the seed matches the ijth word of S. Similarly, for 06 j¡n, let Ãj={S[j+Q̃]=1W},
or the jth word of S matches the naive (all-1) seed. Note that Aj is de1ned as a match
(of Q) at ij, whereas Ãj is de1ned as match (of Q̃) at j.

Claim 1. For any increasing sequence of indices 06 i0¡i1¡ · · ·¡in−16 |S|−s(Q),

P

(⋃
j¡n

Aj

)
¿P

(⋃
j¡n

Ãj

)
: (1)

Moreover, for ij = j; n¿ 2, (1) holds with strict inequality.

Corollary 1. For any n, a spaced seed is more likely to match one of the =rst n
words of S than the contiguous seed is.

Corollary 2. Assume S is an in=nite string and let �Q be the =rst position i for which
S[i + Q] = 1W , or the =rst time the seed hits. Then, E[�Q]¡E[�Q̃].

4

Proof of corollaries. The 1rst corollary is simply the claim specialized to ij = j. As
for the second corollary, letting ij = j,

E[�Q] =
∞∑
k=0

P(�Q ¿k)

=
∞∑
k=0

(1− P(k∪
j=0

Aj))

¡
∞∑
k=0

(1− P(k∪
j=0

Ãj))

= E[�Q̃]:

3 One might hope that for a circular string S a spaced seed is always better than the contiguous one;
unfortunately, even for a circular string that is not necessarily the case. For example, one can show that the
probability that the seed 110011 is detected in a circular region of length 16 with p = 0:96 is 0.9999749
which is less than 0.9999756 for the contiguous seed 1111.
4 Note that E�Q̃ =

∑W
j=1 p

−j − W (e.g. [13]).

U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263 257

Proof of claim. We 1rst prove the weak inequality (1). Considering the indices ij − i0
we can assume without loss of generality that i0 = 0 and we prove the claim by
induction on n. For n= 1,

P(A0) = pW = P(Ã0):

Assuming now that the claim holds for all n6N we show it holds for n=N +1. For
06 k ¡W let Ẽk={S[0]=S[1]=· · ·=S[k−1]=1; S[k]=0} and ẼW={S[0+Q̃]=1W}.
Similarly, with Q[j] denoting the jth o3set index of Q, let Ek = {S[Q[0]] = S[Q[1]] =
· · · = S[Q[k − 1]] = 1; S[Q[k]] = 0} and EW = {S[Q] = 1W}. Clearly, both {Ẽk} and
{Ek} (06 k6W) are partitions of the sample space and since for all k, P(Ek)=P(Ẽk),
it suSces to show that for any 06 k6W ,

P


 N⋃

j=0

Aj|Ek


¿P


 N⋃

j=0

Ãj|Ẽk


 : (2)

Clearly, for k =W both sides of (2) equal 1. For k ¡W note that (∪j6k Ãj) ∩ Ẽk = ∅
and that {Ãk+1; Ãk+2; : : : ; ÃN} are mutually independent of Ek , thus

P


 N⋃

j=0

Ãj|Ẽk


= P


 N⋃

j=k+1

Ãj


 : (3)

The analysis of the 1rst term in (2) is slightly more involved. Fix a k ∈{0; : : : ; W −1}
and note that at most k+1 of the events Aj satisfy Aj∩Ek=∅. Indeed, Aj∩Ek=∅ if and
only if Q[k]∈ ij+Q if and only if Q[k]− ij ∈Q, which leaves at most k+1 choices for
ij. Thus, there exists indices 0¡mk+1¡mk+2¡ · · ·mN 6N such that Amj ∩ Ek �= ∅.
Since the occurrence of Ek implies that S[Q[0]] = S[Q[1]] = · · · = S[Q[k − 1]] = 1 it
is clear that Ek is non-negatively correlated with ∪N

j=k+1Amj , thus

P


 N⋃

j=0

Aj|Ek


¿P


 N⋃

j=k+1

Amj |Ek


¿P


 N⋃

j=k+1

Amj


 : (4)

The inductive hypothesis (applied to the indices {imj}) yields

P


 N⋃

j=k+1

Amj


¿P


 N⋃

j=k+1

Ãj


 :

The latter inequality combined with (3) and (4) completes the proof of (2) and therefore
of (1).
Finally, we have to prove that for ij = j,

P


n−1⋃

j=0

Aj


¿P


n−1⋃

j=0

Ãj


 : (5)

We prove (5) by induction on n. For n= 2 we have

P


 1⋃

j=0

Aj


= 2pW − p2W−|Q∩(1+Q)| ¿ 2pW − pW+1 = P


 1⋃

j=0

Ãj


 :

258 U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263

As for the inductive step, note that the proof of (1) shows that for all k = 0; 1; : : : ; W ,

P


n−1⋃

j=0

Aj|Ek


¿P


n−1⋃

j=0

Ãj|Ẽk


 :

Thus, (5) will be established if we can prove that

P


n−1⋃

j=0

Aj|E0

¿P


n−1⋃

j=0

Ãj|Ẽ0

 :

The latter follows from the inductive hypothesis as follows:

P


n−1⋃

j=0

Aj|E0

= P


n−1⋃

j=2

Aj


¿P


n−1⋃

j=2

Ãj


= P


n−1⋃

j=1

Ãj|E1

 :

We next establish an upper bound on E[�Q] which is sharp for the naive seed Q̃.
Let M = s(Q) then,

Claim 2.

E[�Q]6
M−1∑
k=0

p−g(k) −M;

where for k =0; 1; : : : ; M − 1; g(k) = |Q0 ∩Qk |, in other words it is the number of 1s
that coincide between the seed and a k units shifted version of it.

Remark. Let (Q) =
∑M−1

k=0 p−g(k) −M . Since we know that for the contiguous seed
Q̃; E[�Q̃] = (Q̃), we can also prove (the weak version of) Corollary 2 by showing
that for all Q, (Q)6 (Q̃). The latter inequality can be established by induction on
the weight, W .

Proof of Claim 2. The proof is a variation on a classical betting scheme (e.g. [17, E
10.6]). Consider the following gambling game: a random 0-1 string, S, is generated
by Bernoulli trials with P(1)=p. For n=0; 1; : : :, just before the nth trial, or round, a
new gambler comes in and bets $1 that the next bit will be 1 (or that S[n+Q[0]]=1).
If he loses he quits; otherwise, our gambler wins 1=p dollars which he then bets on
S[n+Q[1]]=1 in round (n+Q[1]). If he loses this second bet of his he quits; otherwise,
he gets 1=p2 dollars which he will bet on S[n + Q[2]] = 1 in round (n + Q[2]), and
so on. When a gambler wins all his W bets he quits with all his winnings. Let Xn

be the bank’s total winnings after the nth round. Since the game is fair it is not hard
to see that X is a martingale. Let �Q be the 1rst time a gambler walks out winning
(note that �Q = �Q + M − 1). Then it is easy to see that �Q is a stopping time and
that if p¿ 0 then E[�Q]¡∞. Since X has bounded increments, by Doob’s optional
stopping theorem (e.g. [17]) E[X�Q]=0. After the �Qth round the bank received �Q+1
dollars from that many gamblers who joined the game at the various rounds. On the

U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263 259

other hand the bank paid Y dollars to the, up to M players, who did not loose yet
(clearly Y ¿p−W , the amount paid to the 1rst lucky winner). Thus,

E[�Q] + 1 = E[Y] =
M−1∑
i=0

E[Yi];

where Yi is the winnings of the (�Q + i)th (=�Q − (M − 1) + i) gambler immediately
after the �Qth round (for example Y0 ≡ p−W). We 1nish our proof by showing that

E[Yi]6p−g(i) for i∈{0; 1; : : : ; M − 1}:
For i∈{0; 1; : : : ; M − 1} de1ne the shape Qi = (i + Q) ∩ {0; 1; : : : ; M − 1} 5 and let
h(i)=|Qi|. For example, h(0)=W; h(1)=W−1, and h(2) is W−2 or W−1 depending
on whether or not M − 2∈Q. Then Yi = p−h(i) or Yi = 0 depending on whether or
not the (�Q + i)th gambler won all his h(i) bets, or equivalently on whether or not
S[�Q + Qi] = 1h(i). We know he won g(i) of his (potential) bets, since we know that
S[�Q +Q] = 1W and that |(�Q +Q)∩ (�Q +Qi)|= |Q∩ (i+Q)|= g(i). Let Q′=Qi \Q;
then, Yi = p−h(i) if and only if S[�Q + Q′] = 1h(i)−g(i). Suppose for a moment that
P(S[�Q + Q′] = 1h(i)−g(i))6p(h(i)−g(i)), in this case our proof is complete since then

E[Yi] = p−h(i) · P(S[�Q + Q′] = 1h(i)−g(i))6p−h(i) · p(h(i)−g(i)) = p−g(i):

Why is P(S[�Q + Q′] = 1h(i)−g(i))6p(h(i)−g(i))? Clearly, for any k; P(S[k + Q′] =
1h(i)−g(i)) = ph(i)−g(i). The reason we have an inequality is that we are given that the
�Qth gambler was the =rst to win all his bets and conditional on that all other bets
prior to �Q (for which we have no direct knowledge) are less likely to be successful.
More precisely, since (k + Q′) ∩ (k + Q) = ∅ one can easily show that for any vector
b of h(i)− g(i) bits,

P(�Q = k|S[k + Q′] = b; S[k + Q] = 1W)

¿ P(�Q = k|S[k + Q′] = 1h(i)−g(i); S[k + Q] = 1W):

An application of Bayes’ law completes our proof

P(S[�Q + Q′] = 1h(i)−g(i)|�Q = k)

=
P(�Q = k|S[k + Q′] = 1; S[k + Q] = 1W)P(S[k + Q′] = 1)∑
b P(�Q = k|S[k + Q′] = b; S[k + Q] = 1W)P(S[k + Q′] = b)

6
P(S[k + Q′] = 1)∑
b P(S[k + Q′] = b)

=ph(i)−g(i):

5 Strictly speaking Qi is not a shape since 0 �∈ Qi (for i ¿ 0). Nevertheless, for our notational purposes
we can still consider Qi as a shape.

260 U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263

4. Finding optimal seeds

We 1nd the optimal seed of weight W and maximal length (span) M by looking
for a seed that will maximize the hitting probability among all

(M
W

)
such seeds. In

this section, we describe two methods for computing the hitting probability for a given
seed.

4.1. A dynamic programming to compute the exact sensitivity

Let S be a random 0-1 string of length L. Each bit independently is 1 with probability
p. Let Q be a seed with weight W , length M . In what follows we will identify the
notion of Q as a binary string with the notion of Q as a set of W integers. Let Ai be
the event that S[i+Q] = 1W ; 06 i6L−M . In this section, we give an algorithm to
compute the probability that Q hits S, i.e., P(∪L−M

j=0 Aj).
Let b= b0b1 : : : bl−1 be a binary string of length l.
For any M6 i6L and any b such that l = |b|6M , we use f(i; b) to denote the

probability that Q hits the length i pre1x of S that ends with b

f(i; b) = P


i−M⋃

j=0

Aj | S[i − l; : : : ; i − 1] = b


 :

Clearly, P(∪L−M
j=0 Aj) = f(L; �), where � denotes the empty string. The idea of our

dynamic programming is to compute all f(i; b) gradually for i from M to L, and for
all b in a suitably chosen small subset B1 of B= {0; 1}6M .

B1 will contain all b “compatible” with Q, that is all bs for which Ai−M ∩ {S[i −
l; : : : ; i − 1] = b} �= ∅, or equivalently,

(1M−lb)[Q] = 1W : (6)

So bl−j must be 1 whenever Q[M − j] = 1. The size of B1 is bounded by M2M−W ,
since for each length l6M , at most M −W bit positions are not constrained by (6).
For b∈B0 = B \ B1; Ai−M ∩ {S[i − l; : : : ; i − 1] = b}= ∅, so in that case

f(i; b) = f(i − 1; b�1); (7)

where b�j denotes the binary string b0b1 : : : bl−1−j.
If b∈B1 and |b|=M then Ai−M ⊃ {S[i −M; : : : ; i − 1] = b}, thus

f(i; b) = 1: (8)

In the general case b∈B1 and |b|¡M we must consider the bit in S preceding b

f(i; b) = (1− p)f(i; 0b) + pf(i; 1b): (9)

Now we are ready to give the DP algorithm to compute all f(i; b) for M6 i6L
and b∈B1.

U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263 261

Algorithm DP
Input A seed Q, a positive probability p, the length L of the region.
Output The probability that Q hits the region.
1. Compute B1;
2. Let f[i; b] = 0 for all 06 i¡M and b∈B1;
3. for i from M to L do
for b in B1 from the longest to the shortest do
if |b|=M then f[i; b] = 1;
else
let j¿ 0 be the least numbers such that 0b�j∈B1;
let f[i; b] = (1− p)× f[i − j; 0b�j] + p× f[i; 1b];

4. output f[L; �].

The correctness of the algorithm follows directly from Formulas (8), (9) and (7).
Because |B1|¡M2M−W , the algorithm needs O(M 22M−WL) time. When M − W =
O(log L), the dynamic programming needs polynomial time.

4.2. Recurrence relationship

In what follows it is convenient to allow shapes (and corresponding Q-grams) with
negative o3sets. For example, with S as in example 1 and with Q = {0;−2;−4},
S[9 +Q] = s5s7s9 = ATC. Let be the shape of the seed we are looking for, expressed
in negative o3sets, and let ! and ! be two other shapes where the latter also has
negative o3sets. ! can be thought of as the “pre1x” and ! as the “suSx” of S.
Let Q(L; !; !;) be the probability that S[L+]=1W and for all i¡L; S[i+] �= 1W ,

where S is a random 0-1 string that begins with the all 1 Q-gram S[!]= 1|!| and ends
with the all 1 Q-gram S[L+ !] = 1|!|.
Let P(L; !; !;) be the probability that for all i6L, S[i +] �= 1W , where S is as

above. Clearly, the probability we are interested in is 1 − P(L; ∅; ∅;). The following
intertwined recursion relation holds between the Ps and the Qs:

P(L; !; !;) = 1−
L∑

k=s()

Q(k; !; !⊕ (L− k););

where !⊕i is the set {i+j : j∈! and i+j6 0}, intuitively it is the suSx of S after the
last i positions of S are chopped. As for Q, clearly if L¡s(), then Q(L; !; !;) = 0.
Otherwise, if L = s() then Q(L; !; !;) = p|(L+)\(!∪(L+!))|. Finally, if L¿s() then
Q(L; !; !;) can be found by multiplying the probability that S[L +] = 1W by the
conditional probability that for i¡L S[i +] �= 1W given that S[L +] = 1W . More
precisely, for L¿s() we have

Q(L; !; !;) = p|(L+)\(!∪(L+!))|P(L− 1;−[(! ∪)⊕ 1];−!;−[s() +]);

where for a shape $, the set −$ = {−i : i∈ $}.

262 U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263

These recurrence relations can be translated to another algorithm which computes
the probability of a hit, or 1 − P(L; ∅; ∅;). As for the complexity, it is easy to see
that it is bounded by Ls() times the number of di3erent P(k; !; !;) that we need to
compute. Clearly k6L and a look at the recursion equations will show you that the
!s and !s that will come up during the computation are all essentially generated by
unions of translations of the shape (or −). Thus, the complexity can vary sharply
from being polynomial for a shape such as the contiguous one, to being exponential
in s() − | | for certain other shapes. In any case, it is bounded by L2s()22(s()−| |).
The question of the average complexity is yet to be settled.

5. Conclusions

We present an algorithm for computing the sensitivity of a given seed. In order
to 1nd the optimal seed of a given weight, W , and maximal span, M , we simply
enumerate over all such possible seeds, applying our aforementioned algorithm to each
seed. This works reasonably well in practice: the program which is written in Java 1nds
the optimal seed with W = 11 and M6 18 in about 10 min on a 2:8 GHz Pentium 4
PC. We consider this reasonably fast given that this exhaustive search is not likely to
be repeated too often: once an optimal seed has been identi1ed it is coded into the
Blast-like engine.
On the theoretical side we view our results as 1rst steps toward identifying a set

of general conditions under which one can demonstrate that spaced seeds are provably
better than the contiguous one.

Acknowledgements

The 1rst author would like to thank Pavel Pevzner for his encouragement and support
while working on this project.

References

[1] S.F. Altschul, W. Gish, W. Miller, E. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol.
Biol. 215 (1990) 403–410.

[2] S.F. Altschul, T.L. Madden, A.A. Sch<a3er, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped blast
and psi-blast: a new generation of protein database search programs, Nucleic Acids Res. 25 (1997)
3389–3402.

[3] J. Buhler, EScient large-scale sequence comparison by locality-sensitive hashing, Bioinformatics 17
(2001) 419–428.

[4] S. Burkhardt, J. K<arkk<ainen, Better 1ltering with gapped q-grams, In CPM 2001, Lecture notes in
computer science, Jerusalem, Israel, Springer 2089 (2001) 73–85.

[5] A. Califano, I. Rigoutsos, FLASH: fast look-up algorithm for string homology. Technical Report, IBM
T.J. Watson Research Center, 1995.

[6] W. Gish, WU-Blast 2.0. Website: http://blast.wustl.edu.
[7] X. Huang, W. Miller, A time-eScient, linear-space local similarity algorithm, Adv. Appl. Math. 12

(1991) 337–357.

http://blast.wustl.edu

U. Keich et al. / Discrete Applied Mathematics 138 (2004) 253–263 263

[8] International human genome sequencing consortium, Initial sequencing and analysis of the human
genome, Nature 409 (2001) 860–921.

[9] D.J. Lipman, W.R. Pearson, Rapid and sensitive protein similarity searches, Science 227 (1985)
1435–1441.

[10] B. Ma, J. Tromp, M. Li, Patternhunter—faster and more sensitive homology search, Bioinformatics 18
(3) (2002) 440–445.

[11] F.P. Preparata, A.M. Frieze, E. Upfal, On the power of universal bases in sequencing by hybridization.
In S. Istrail, P.A. Pevzner, M.S. Waterman, (Eds.), Proceedings of the Third Annual International
Conference on Computational Molecular Biology (RECOMB-99), pages 295–301, Lyon, France, April
1999. ACM Press.

[12] F.P. Preparata, E. Upfal, Sequencing-by-hybridization at the information-theory bound: an optimal
algorithm. In R. Shamir, S. Miyano, S. Istrail, P.A. Pevzner, M.S. Waterman, (Eds.), Proceedings
of the Fourth Annual International Conference on Computational Molecular Biology (RECOMB-00),
pages 245–253, Tokyo, Japan, April 2000. ACM Press.

[13] S.M. Ross, Stochastic Processes, Wiley Series in Probability and Statistics: Probability and Statistics,
2nd Edition, Wiley, New York, 1996.

[14] D. States, SENSEI website: http://stateslab.wustl.edu/software/sensei/
[15] T.A. Tatusova, T.L. Madden, Blast 2 sequences—a new tool for comparing protein and nucleotide

sequences, FEMS Microbiol. Lett. 174 (1999) 247–250.
[16] J.C. Venter, et al., The sequence of the human genome, Science 291 (2001) 1304.
[17] D. Williams, Probability with Martingales, Cambridge University Press, Cambridge, 1991.
[18] Z. Zhang, S. Schwartz, L. Wagner, W. Miller, A greedy algorithm for aligning DNA sequences, J.

Comput. Biol. 7 (1-2) (2000) 203–214.

http://stateslab.wustl.edu/software/sensei/

	On spaced seeds for similarity search
	Introduction
	Mathematical formulation
	Toward proving the advantage of spaced seeds
	Finding optimal seeds
	A dynamic programming to compute the exact sensitivity
	Recurrence relationship

	Conclusions
	Acknowledgements
	References

