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Abstract. Investigating the entropy distance between the Wiener
measure,Wt0,τ , and stationary Gaussian measures, Qt0,τ on the
space of continuous functions C[t0 − τ, t0 + τ ], we show that in
some cases this distance can essentially be computed. This is
done by explicitly computing a related quantity which in effect
is a valid approximation of the entropy distance, provided it is suf-
ficiently small; this will be the case if τ/t0 is small. We prove that
H(Wt0,τ , Qt0,τ ) > τ/2t0, and then show that τ/2t0 is essentially
the typical case of such entropy distance, provided the mean and
the variance of the stationary measures are set “appropriately”.

Utilizing a similar technique, we estimate the entropy distance
between the Ornstein-Uhlenbeck measure and other stationary Gauss-
ian measures on C[1− τ, 1 + τ ]. Using this result combined with a
variant of the triangle inequality for the entropy distance, which we
devise, yields an upper bound on the entropy distance between sta-
tionary Gaussian measures which are absolutely continuous with
respect to the Wiener measure.

1. introduction

Motivated by the study of stationary approximations to non-stationary
stochastic processes, we ask how well can Brownian motion be approx-
imated by stationary Gaussian processes. We look at a finite time in-
terval and measure the quality of the approximation using the entropy
distance.

Let P and Q be Gaussian measures on a common probability space.
The entropy distance between P and Q, H(P,Q), is finite if and only if
the two measures are absolutely continuous with respect to one another;
in that case:

H(P,Q) = EP (log
dP

dQ
) + EQ(log

dQ

dP
),
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where EP is the expectation under the measure P and dP
dQ

is the Radon-

Nikodym derivative of P with respect to Q (see e.g. [2]).
Let t0 > 0, 0 < τ < t0, and let Wt0,τ be the restriction of the

Wiener measure to the space of continuous functions on [t0 − τ, t0 + τ ],
C[t0 − τ, t0 + τ ]. In other words, Wt0,τ is the measure induced by the
standard Brownian motion observed between times t0−τ and t0+τ . As
a Gaussian measure it is characterized by its correlation R(t, s) = t∧ s
with t, s ∈ [t0 − τ, t0 + τ ], and by its vanishing mean.

A Gaussian measure on C[t0 − τ, t0 + τ ], Qt0,τ , is stationary if its
mean is constant and its correlation, S, is a Töeplitz function. Here S
denotes both the correlation S(t, s) and the auto-correlation S(r) with
r = t − s ∈ [−2τ, 2τ ]. Let S denote the class of stationary Gaussian
measures on C[t0−τ, t0+τ ] that are absolutely continuous with respect
to Wt0,τ .

Consider the 1:1 and onto map ψ : C[t0− τ, t0 + τ ] �→ C[1− τ/t0, 1+

τ/t0] defined by ψ(f)(s)
d
= f(st0)/

√
t0. This map and Wt0,τ induce on

C[1−τ/t0, 1+τ/t0] the measureW1,τ/t0 and, similarly, Qt0,τ induces the

stationary Gaussian measure Q̃, determined by its correlation S̃(t, s) =
S((t − s)t0)/t0. Note that H(Q̃,W1,τ/t0) = H(Qt0,τ ,Wt0,τ ); therefore
infQt0,τ∈SH(Qt0,τ ,Wt0,τ ) depends only on τ/t0.

We start our investigation with a couple of examples, the details
of which can be found in appendix A. Consider the entropy distance

between W τ d
= W1,τ and the Ornstein-Uhlenbeck measure, Qτ d

= Q1,τ ,
defined by its vanishing mean and S = exp(−|t − s|/2). In this case,
H(Qτ ,W τ ) = τ

/
(2(1 − τ)). In the second example, Qτ is defined by

S(t, s)
d
= 1 − |t− s|/2 with |t− s| ≤ 2τ < 4 and, again, H(Qτ ,W τ ) =

τ
/
(2(1 − τ)).
Note that in these examples H → ∞, as τ → 1, and that for small τ ,

H ∼ τ/2. We would like to know how much can we possibly improve on
that. It can be shown that infQt0,τ∈SH(Qt0,τ ,Wt0,τ ) is always attained
(see appendix B). However, as we next show, the minimizer does not
significantly improve on our examples.

Claim 1.1. For any Qt0,τ ∈ S,

H(Qt0,τ ,Wt0,τ ) ≥
√

2

√
2 − τ/t0
1 − τ/t0

− 2.

As a corollary we find that as τ → t0, H → ∞ and H ≥ 1/2(τ/t0)+
7/16(τ/t0)

2. Thus, for small τ/t0, the minimal entropy distance is, up
to leading order, the same as in our examples. As we show next, these
examples are rather typical.
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Let P and Q be two Gaussian measures on C[t0 − τ, t0 + τ ] with
vanishing means. Let Pn and Qn be their restrictions to 2n + 1 equally
spaced points in [t0 − τ, t0 + τ ], with correlations Rn and Sn. Then
H(P,Q) = limH(Pn, Qn) [2]. LetKn be a root of Rn, i.e., Rn = KnK

∗
n,

and let Tn = K−1
n SnK

−∗
n , with K−∗ being a short for (K−1)

∗
. Then, as

we show in [3],

H(Pn, Qn) =
1

2
Tr(Tn + T−1

n − 2In) =
1

2

2n∑
i=0

(λn
i − 1)2

λn
i

,

where λn
i are the positive eigenvalues of Tn. In our case Q = Qt0,τ ∈ S

with an autocorrelation S, and P = Wt0,τ with R = t∧ s. Since R−1
n is

essentially a second order difference operator, if we choose Kn to be the

Cholesky factorization of Rn, with δ
d
= δn

d
= 2τ/2n, and Sk

d
= S(kδ),

we have:

T =




S0

t0−τ
1√

t0−τ
S1−S0√

δ
1√

t0−τ
S2−S1√

δ
1√

t0−τ
S3−S2√

δ
. . . 1√

t0−τ

Sn−Sn−1√
δ

∗ 2S0−S1

δ
2S1−S0−S2

δ
2S2−S1−S3

δ
. . . 2Sn−1−Sn−2−Sn

δ

∗ ∗ 2S0−S1

δ
2S1−S0−S2

δ
. . . 2Sn−2−Sn−3−Sn−1

δ

∗ ∗ ∗ 2S0−S1

δ

. . .
...

. . . 2S1−S0−S2

δ

∗ ∗ ∗ ∗ 2S0−S1

δ




(1)

where the ∗’s are filled in according to the symmetry of T .
Let

ϕ(Wt0,τ , Qt0,τ )
d
=

1

2
lim

n

∑
i

(λn
i − 1)2 =

1

2
lim

n
Tr (Tn − I)2.(2)

Claim 1.2.

ϕ(Wt0,τ , Qt0,τ ) =
1

2

(
S0

t0 − τ
− 1

)2

+
1

2

∫ 2τ

0

S ′′(t)
2
(2τ − t) dt+ 1

t0 − τ

∫ 2τ

0

S ′(t)
2
dt.

The importance of the last claim is that ϕ(Wt0,τ , Qt0,τ ) can be used
to approximate H(Wt0,τ , Qt0,τ ):

Claim 1.3. For ϕ < 1, ∣∣∣∣ϕ−H
ϕ

∣∣∣∣ ≤
√

2ϕ

1 −√
2ϕ
.
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Thus, ϕ(Wt0,τ , Qt0,τ ) is a good approximation of H(Wt0,τ , Qt0,τ ) if it
is small. Suppose Qt0,τ ∈ S, then Shepp shows that on (0, 2τ), S ′ is

absolutely continuous and S ′′ satisfies
∫ 2τ

0
S ′′(t)2(2τ − t) dt < ∞, and

that S+(0) = −1/2 where S+ is the derivative from the right [7]. Thus,
with S fixed, τ sufficiently small and S(0) = t0, ϕ(Wt0,τ , Qt0,τ ) ∼ τ/2t0
and therefore H(Wt0,τ , Qt0,τ ) ∼ τ/2t0, as is the case in our examples.

What if V
d
= S(0) = t0?

Claim 1.4. (i) If V > t0, then

H(Wt0,τ , Qt0,τ ) >
1

2

(V/t0 − 1)2

V/t0
.

(ii) If V < t0, then

H(Wt0,τ , Qt0,τ ) >
1

2

((1 + δ)V/t0 − 1)2

(1 + δ)V/t0
,

where 1 + δ
d
= 1

/
(1 − τ/t0).

(iii) In either case, for a fixed S (corresponding to Q ∈ S),

H(Wt0,τ , Qt0,τ ) =
1

2

(V/t0 − 1)2

V/t0
+ o(1) as τ → 0.

Similarly, when the constant mean, µ, of Q̃t0,τ ∈ S does not vanish,

H(Wt0,τ , Qt0,τ ) is rather large: let Qt0,τ ∈ S be obtained from Q̃t0,τ by
removing the constant drift µ, then:

Claim 1.5.

H(Wt0,τ , Q̃t0,τ ) > H(Wt0,τ , Qt0,τ ) +
1

2

µ2

t0 − τ
,

and if V = t0, then H(Wt0,τ , Q̃t0,τ ) = µ2/t0 + o(1) as τ → 0.

So far we dealt with the entropy distance between W τ = W1,τ and
Qτ ∈ S. We next consider the entropy distance between two stationary
Gaussian measures in S. Again, we start with an example. Let S̃ =
e−|t−s|/2 be the Ornstein-Uhlenbeck correlation, and let S = 1−|t−s|/2.
Using the chain rule, we get

dQ̃

dQ
=
dQ̃

dW

dW

dQ
,

both Radon-Nikodym derivatives on the right-hand side being known
(see appendix A). The entropy is easily obtained:

Hτ (Q̃, Q) =
1

2

e−τ − (1 − τ)
2 − τ =

1

8
τ 2 +O(τ 3).
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This is an order of magnitude smaller than τ/2. As before, the exam-
ple is rather typical and to prove that, we first estimate the entropy
distance between the Ornstein-Uhlenbeck measure, Q̃τ and any other
Qτ ∈ S, and then use a variant of the triangle inequality.

Let K̃n denote the Cholesky factorization of S̃n, and let Tn = K̃−1
n SnK̃

−∗
n .

Again, by Claim 1.3, H(Q̃τ , Qτ ) = limn Tr(Tn + T−1
n − 2In)/2 can be

approximated by ϕ(Q̃τ , Qτ )
d
= limn

∑
i

(
λn

i (τ) − 1
)2
/2, where:

Claim 1.6.

ϕ(Q̃τ , Qτ ) = (S(0) − 1)2 + 2

∫ 2τ

0

S ′(t)
2
dt+

(
S2(2τ) − 1

)
+

1

2

∫ 2τ

0

S2(t) dt

+

∫ 2τ

0

S ′′(t)
2
(2τ − t) dt+ 1

16

∫ 2τ

0

S(t)2(2τ − t) dt

− 1

2

∫ 2τ

0

S ′′(t)S(t)(2τ − t) dt.

(3)

It is not hard to see that if S is fixed with S(0) = 1 and if S ′′ is
bounded on (0, 2τ0) for some τ0 > 0, then the right hand side of (3) is
bounded by cτ 2 for some constant c > 0 and any τ < τ0. Thus, there
exists another constant c such that H(Q̃τ , Qτ ) < cτ 2 in this case. More
generally:

Claim 1.7. Suppose Q̀τ , Qτ ∈ S are two measures on C[1 − τ, 1 + τ ]

such that S̀(0) = S(0) = 1 and that S̀ ′′ and S ′′ are bounded on (0, 2τ0)

for some τ0 > 0. Then, H(Q̀τ , Qτ ) < cτ 2 for some constant c > 0 and
any τ < τ0.

The proof is an immediate corollary of the previous discussion and
of Theorem 1 which follows.

The entropy distance is not a metric; it fails to satisfy the triangle
inequality even for one-dimensional correlations: if P,Q1 and Q2 are
three (mean zero) Gaussian measures on the line with variances 4, 2
respectively 6, then

H(Q1, Q2) =
2

3
>

1

4
+

1

12
= H(Q1, P ) +H(P,Q2).

However, one can prove the following variant of the triangle inequality.
Here P , Q1 and Q2 are Gaussian measures on L2[0, T ] with T <∞.

Theorem 1.

H(Q1, Q2) ≤ 4H(Q1, P ) + 4H(P,Q2) + 4H(Q1, P )H(P,Q2).
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If we define H̄(P,Q)
d
=

√
H(P,Q), then the last inequality leads to

an “almost” triangle inequality:

Corollary 1.

H̄(Q1, Q2) ≤ 2
[
H̄(Q1, P ) + H̄(P,Q2)

]
.

Theorem 1 is set up in the context of Gaussian measures on a Hilbert
space. Such a measure P is completely determined by its covariance
operator R and mean µ. Prohorov proved that P exists if and only if
R is a trace class operator (e.g. [4, thm I.2.3]). In the case of L2[0, T ],
the covariance operator can be identified with a covariance function
R ∈ L2([0, T ] × [0, T ]), the latter being the kernel of the trace class
integral operator. The basic result here is due to Rao and Varadarajan
[5]:

RV-Theorem. H(P,Q) < ∞ if and only if there exists a Hilbert-
Schmidt operator, G with a spectrum σ(G) > −1, such that

S = R +R
1
2GR

1
2 ,

and µ− ν ∈ D(R− 1
2 ) = D(S− 1

2 ),

where D(R− 1
2 ) is the domain of the self-adjoint operator R− 1

2 . In
the finite case, the operator

F
d
= R− 1

2SR− 1
2 +R

1
2S−1R

1
2 − 2I,

is a well defined, symmetric, positive-definite trace class operator, and
a slight variation on a result by Sekine [6] yields:

Lemma 1.8.

H(P,Q) =
1

2
Tr F +

1

2

∣∣∣R− 1
2 (µ− ν)

∣∣∣2 +
1

2

∣∣∣S− 1
2 (µ− ν)

∣∣∣2.
We prove theorem 1 by dealing separately with the entropy “due

to the correlations”, Hc
d
= 1

2
TrF , and the part that comes from the

means Hm
d
= 1

2

∣∣∣R− 1
2 (µ− ν)

∣∣∣2+ 1
2

∣∣∣S− 1
2 (µ− ν)

∣∣∣2. It follows from Lemma

1.8 and some algebraic manipulations, that Hc itself obeys an analogue
of Theorem 1. Hm, however, cannot be bounded independently of Hc.

Finally, in appendix C, we contrast the entropy distance to W τ with
the L2 distance between the correlations. Analogously to the entropy
distance we find that all the correlations representing stationary Gauss-
ian measures that are absolutely continuous with respect to the Wiener
measure are, to leading order, at the same L2 distance from the Wiener
correlation.
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2. The proofs

Proof of claim 1.1. By the scaling argument that was mentioned in the
introduction, it suffices to prove the claim for t0 = 1 and τ < 1. Recall
that W τ

n is the restriction of W τ to the σ-field generated by 2n + 1
equally spaced points in [t0−τ, t0+τ ], and that Rn is the corresponding
correlation matrix. Thus, with S(0) = V and S(2τ) = γV for some γ
with |γ| < 1,

R0
d
=

[
1 − τ 1 − τ
1 − τ 1 + τ

]
S0

d
=

[
V γV
γV V

]
.

H0
d
= H(W τ

0 , Q
τ
0)

=
1

2
Tr

(
R−1

0 S0 + S−1
0 R0 − 2I2

)
=

1

2
V

1 − γ(1 − τ)
τ(1 − τ) +

1

V

1 − γ(1 − τ)
1 − γ2

− 2.

MinimizingH0 with respect to V we find that Vmin =
√

2τ(1 − τ)
/
(1 − γ2)

and therefore

H0 ≥
√

2
1 − γ(1 − τ)√
τ(1 − τ)(1 − γ2)

− 2.

Minimizing the right hand side with respect to γ, we learn that γmin =
1 − τ , whence

H0 ≥
√

2

√
2 − τ
1 − τ − 2.

The proof is completed by the obvious inequality H(W τ , Qτ ) ≥ H0.
Note that

H0 ≥
√

2

√
2 − τ
1 − τ − 2 ≥ τ/2 + 7/16τ 2,

as can be verified directly.

Proof of claim 1.2. With T = Tn(τ) = (tij)0≤i,j≤2n ,

2n∑
i=1

t2i0 + t20i =
2

t0 − τ

2n∑
i=1

(Si − Si−1)
2 1

δ
−→ 2

t0 − τ

∫ 2τ

0

S ′(t)
2
dt.(4)

Let

S̄(r)
d
= S(r) −

(
1 − |r|

2

)
.
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Then S̄ is an even function, with absolutely continuous derivative S̄ ′

on (−2τ, 2τ), and S̄ ′′ ≡ S ′′ on (0, 2τ). Let

S̄ ′′(t, s)
d
= S̄ ′′(t− s).

Then S̄ ′′ is a Töeplitz function of the square Ω
d
= [0, 2τ ] × [0, 2τ ], and∫ 2τ

0

∫ 2τ

0

S̄ ′′(t− s)2
dt ds =

∫ 2τ

0

S ′′(t)
2
(2τ − t) dt <∞,

whence S̄ ′′ ∈ L2(Ω).
Consider Ω equipped with the σ-field Fn, generated by the squares{

[(i − 1)δ, iδ) × [(j − 1)δ, jδ) : i, j = 1 . . . 2n
}

and with Lebesgue’s

measure. Let ψn
d
= E[S̄ ′′|Fn], then

ψn(x, y) =
1

δ2

∫ iδ

(i−1)δ

∫ jδ

(j−1)δ

S̄ ′′(t− s) dt ds (i− 1)δ ≤x < iδ
(j − 1)δ ≤y < jδ ,

and since S̄ ′′ ∈ L2(Ω), by the L2 martingale convergence theorem,
ψn → S̄ ′′ a.e. and in L2, in particular, ‖ψn‖ −→ ‖S̄ ′′‖. Integrating,
one finds that

tij =
1

δ

∫ iδ

(i−1)δ

∫ jδ

(j−1)δ

S̄ ′′(t− s) dt ds 1 ≤ i = j ≤ n

tii − 1 =
1

δ

∫ iδ

(i−1)δ

∫ iδ

(i−1)δ

S̄ ′′(t− s) dt ds 1 ≤ i ≤ n.

Thus,

lim
n

[ ∑
1≤i�=j≤n

t2ij +
2n∑
i=1

(tii − 1)2

]
= lim

n
‖ψn‖2 =

∫ 2τ

0

S ′′(t)
2
(2τ − t) dt,

which together with (4) and (2) completes the proof.

Proof of claim 1.3.

|H − ϕ| =

∣∣∣∣∣12 lim
n

∑
i

[
(λn

i − 1)2

λn
i

− (λn
i − 1)2

]∣∣∣∣∣
≤ 1

2
lim

n

∑
i

(λn
i − 1)2|1 − λn

i |
λn

i

≤ ϕ 1

limn mini λn
i

lim
n

max
i

|1 − λn
i |.
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The proof is completed by noting that

lim
n

max
i

|1 − λn
i | ≤ lim

n

√∑
i

(λn
i − 1)2 =

√
2ϕ,

and that

lim
n

min
i
λn

i ≥ 1 − lim
n

√∑
i

(λn
i − 1)2 = 1 −

√
2ϕ.

Proof of claim 1.4. (i) Suppose t0 = 1, and assume that λn
0 ≥ λn

1 ≥
· · · ≥ λn

2n . With 〈, 〉 being the standard inner-product,

λn
0 ≥ 〈Tne1, e1〉 =

V

1 − τ > V > 1.

It follows that

H ≥ 1

2

(λn
0 − 1)2

λn
0

>
1

2

(V − 1)2

V
,

which proves (i) when t0 = 1. The aforementioned scaling argu-
ment completes the proof.

(ii) Without loss of generality assume that t0 = 1, and let 1 + δ
d
=

(1 − τ)−1. If τ (equivalently δ), is sufficiently small, then

λn
2n ≤ 〈Tne1, e1〉 = V (1 + δ) < 1.

Hence,

H ≥ [V (1 + δ) − 1]2

V (1 + δ)
.

(iii) Again, without loss of generality t0 = 1 and assume V > 1. Then,
as we saw in the proof of (i), λn

0 = λn
0 (τ) > V/(1 − τ), therefore

(λn
0 − 1)2 >

(
V

1 − τ − 1

)2

.(5)

Since by Claim 1.2∑
i

(λn
i (τ) − 1)2 =

(
S0

1 − τ − 1

)2

+

∫ 2τ

0

S ′′(t)
2
(2τ − t) dt+ 2

1 − τ

∫ 2τ

0

S ′(t)
2
dt

=

(
V

1 − τ − 1

)2

+ τ + o(τ),

it follows that:
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(a)

lim
n

2n∑
1

(λn
i (τ) − 1)2 ≤ τ + o(τ).

Note that λn
0 is not included in the summation above.

(b)

lim
n

(λn
0 − 1)2 ≤

(
V

1 − τ − 1

)2

+O(τ).

As in claim 1.3, we can deduce from (a) that limn

∑2n

1 (λn
i (τ) − 1)2/λn

i =
O(τ). From (b) we learn that for some constant c,

V

1 − τ ≤ lim
n
λn

0 (τ) ≤ lim
n
λn

0 (τ) ≤ V + cτ.

SinceH = limn

∑2n

0 (λn
i (τ) − 1)2/2λn

i , it follows thatH = (V − 1)2/2V+
o(1) as τ → 0. The case V < 1 is proved similarly.

Proof of claim 1.5. Let µ ∈ R
2n+1 be the vector with constant entries

µ. Then, with EP denoting expectation with respect to the P measure
and x ∈ R

2n+1:

H(W τ
n , Q̃

τ
n) = −1

2
EW τ

n

[ 〈
R−1

n x,x
〉
−

〈
S−1

n (x − µ) ,x − µ
〉 ]

+
1

2
EQ̃τ

n

[ 〈
R−1

n x,x
〉
−

〈
S−1

n (x − µ) ,x − µ
〉 ]

= H(W τ
n , Q

τ
n) +

1

2

〈
S−1

n µ,µ
〉

+
1

2

〈
R−1

n µ,µ
〉
.

It happens that with e1 = (1, 0, . . . , 0) ∈ R
2n+1, µKe1 =

√
t0 − τµ and

therefore 〈
R−1

n µ,µ
〉

=
µ2

t0 − τ
〈
R−1

n Ke1, Ke1

〉
=

µ2

t0 − τ
.

Hence, H(Wt0,τ , Q̃t0,τ ) > H(Wt0,τ , Qt0,τ ) + 1
2
µ2/(t0 − τ). Note that

〈R−1
n µ,µ〉 = µ2/t0 + o(1) as τ → 0, and since S(0) = t0 implies that

limn maxi |λn
i (τ)−1| = o(1), it follows that limn maxi |λn

i − 1|−1 = o(1)
and therefore,

lim
n

〈
S−1

n µ,µ
〉

= lim
n

µ2

t0 − τ
〈
T−1

n e1, e1

〉
= µ2/t0 + o(1).
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Proof of claim 1.6. Let K̃ = K̃n denote the Cholesky factorization of
S̃n, i.e., K̃ is a lower triangular matrix with S̃ = K̃K̃∗, and let Tn =
K̃−1SnK̃

−∗. As in (1) we can explicitly compute Tn:

(6) Tn =


S0 yS1 − xS0 yS2 − xS1 yS3 − xS2 . . . ySn − xSn−1

∗ bS0 − 2aS1 bS1 − a(S0 + S2) bS2 − a(S1 + S3) . . . bSn−1 − a(Sn−2 + Sn)
∗ ∗ bS0 − 2aS1 bS1 − a(S0 + S2) . . . bSn−2 − a(Sn−3 + Sn−1)

∗ ∗ ∗ bS0 − 2aS1
. . .

...
. . .

∗ ∗ ∗ bS1 − a(S0 + S2)
∗ ∗ ∗ bS0 − 2aS1



,

where Sk = S(kδ) and

a =
e−δ/2

1 − e−δ
, b =

1 + e−δ

1 − e−δ
, c =

1

1 − e−δ
,

x =
e−δ/2

√
1 − e−δ

, y =
1√

1 − e−δ
.

The following estimates are based on

a =
1

δ
− 1

24
δ +O(δ3), b =

2

δ
+

1

6
δ +O(δ3),

x =
1√
δ
− 1

4

√
δ +O(δ3/2), y =

1√
δ

+
1

4

√
δ +O(δ3/2).

2n∑
k=1

t20k =
2n∑

k=1

(ySk − xSk−1)
2

=
∑ [

1√
δ
(Sk − Sk−1) +

√
δ

4
(Sk + Sk−1) +O(δ3/2)

]2

=
∑ [

1√
δ
(Sk − Sk−1)

]2

+
1

2

∑
(S2

k − S2
k−1) +

1

16

∑
δ(Sk + Sk−1)

2

+
∑

O(δ)(Sk − Sk−1) +
∑

O(δ2)(Sk + Sk−1) +
∑

O(δ3).

We have six terms on the right hand side. The last three are all o(1)
as n → ∞, while the first three converge to the corresponding three
terms in (3) (to be precise, one half of each term is obtained this way).
What remains is ∑

1≤i�=j≤2n

t2ij +
2n∑
i=0

(tii − 1)2.
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Note that, with S̄ = S − (1 − |r|/2), and i ≥ 1,

tii − 1 = bS0 − 2aS1 − 1

=

[
2

δ
S0 −

2

δ
S1 − 1

]
+

[
δ

6
S0 +

δ

12
S1

]
+O(δ3)

= −1

δ

∫ iδ

(i−1)δ

∫ iδ

(i−1)δ

S̄ ′′(t− s) dt ds

+

[
1

6
S0 +

1

24
(S−1 + S1)

]
δ +O(δ3).

Similarly, for 1 ≤ i = j ≤ 2n,

tij = bSi−j − a(Si−j−1 + Si−j+1)

= −1

δ

∫ iδ

(i−1)δ

∫ jδ

(j−1)δ

S̄ ′′(t− s) dt ds

+

[
1

6
Si−j +

1

24
(Si−j−1 + Si−j+1)

]
δ +O(δ3).

Hence, with ψn = E[S̄ ′′|Fn] as in the proof of claim 1.2,

∑
1≤i�=j≤n

t2ij +
2n∑
i=0

(tii − 1)2 = ‖ψn‖2 +
∑
i,j

[
1

6
Si−j +

1

24
(Si−j−1 + Si−j+1)

]2

δ2

− 2
∑
i,j

[
1

6
Si−j +

1

24
(Si−j−1 + Si−j+1)

] ∫ iδ

(i−1)δ

∫ jδ

(j−1)δ

S̄ ′′(t− s) dt ds

+ o(1).

Recall that ‖ψn‖ −→ ‖S̄ ′′‖ and let n → ∞ to obtain the last three
terms in (3).

Proof of lemma 1.8. Let P ∼ (R, µ), i.e. P is the Gaussian measure
on H = L2[0, T ] which is determined by the correlation R(t, s) and
mean µt (t, s ∈ [0, T ]), and let Q ∼ (S, ν) be absolutely continuous
with respect to P . Note that neither is assumed to be stationary. The
proof is essentially a translation of a result by Sekine [6] which is set in

the context of an abstract Wiener space [4, Sec I.4]. Let D
d
= D(R− 1

2 ).
If we equip D with the inner-product

(x, y)R
d
= (R− 1

2x,R− 1
2y),

then the resulting space, DR, is a Hilbert space and R
1
2 is a unitary

map from H onto DR. With i being the natural inclusion of DR in H,
the triplet (i,DR, H) is an abstract Wiener space.
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Since P ∼ Q, by the RV-theorem there exists a Hilbert-Schmidt
operator G on H with σ(G) > −1 such that

A
d
= RS−1 = R

1
2 (I +G)−1R− 1

2 ,

is a well defined linear operator on D. Moreover, one can show that A
is a bounded, symmetric, positive-definite operator on DR, and A− I
is a Hilbert-Schmidt operator on DR: The Hilbert-Schmidt norm of
A− I is the same as that of (I +G)−1 − I (a Hilbert-Schmidt operator
on H). Note that for x, y ∈ D,

(x, y)S = (Ax, y)R.

Indeed, one can define A in this manner in the more general setting
of an abstract Wiener space where the RV-theorem does not apply [8,
thm 10.1].

Sekine shows that, with αi being the eigenvalues of A,

H(P |Q) =
1

2

∣∣∣A− 1
2 (µ− ν)

∣∣∣2
R
− 1

2
log

∏
α−1

i e
(α−1

i −1).

Since SR−1 and RS−1, as operators on DS, respectively DR, have re-
ciprocal eigenvalues, it follows that

H(P,Q) =
1

2

∑ (
αi + α−1

i − 2
)

+
1

2

∣∣∣S− 1
2 (µ− ν)

∣∣∣2 +
1

2

∣∣∣R− 1
2 (µ− ν)

∣∣∣2 .
Finally, since RS−1|DR

and R
1
2S−1R

1
2 |H have the same eigenvalues, our

lemma is proved.

Proof of theorem 1. For Gaussian measures P ∼ (R, µ) and Q ∼ (S, ν),
we define

Hc(P,Q)
d
=

1

2
Tr

(
R− 1

2SR− 1
2 +R

1
2S−1R

1
2 − 2I

)
.

Note that Hc is the distance “due to the correlations”, i.e., Hc(P,Q) =
H(P ′, Q′) where P ′ ∼ (R, 0) and Q′ ∼ (S, 0). We also define

Hm(P,Q)
d
=

1

2

∣∣∣S− 1
2 (µ− ν)

∣∣∣2 +
1

2

∣∣∣R− 1
2 (µ− ν)

∣∣∣2 ,
so that

H(P,Q) = Hc(P,Q) +Hm(P,Q).

Let P ∼ (R, µ), Q1 ∼ (S1, ν1) and Q2 ∼ (S2, ν2) be three Gaussian
measures on L2[0, T ].

Lemma 2.1.

Hc(Q1, Q2) ≤ 2Hc(Q1, P ) + 2Hc(P,Q2) + 2Hc(Q1, P )Hc(P,Q2).
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Proof. Let A1 and A2 be boundedly invertible operators on L2. Then(
A1A2 + (A2A1)

−1 − 2I
)

+
(
A1A

−1
2 + A−1

1 A2 − 2I
)

= (A1 + A−1
1 − 2I)(A2 + A−1

2 − 2I)

+ 2(A1 + A−1
1 − 2I) + 2(A2 + A−1

2 − 2I).

Assume now that for i = 1, 2, Ai = I + Gi where Gi are Hilbert-
Schmidt operators with spectra σ(Gi) > −1. It is not hard to see that
there exist Hilbert-Schmidt operators G̃i such that A−1

i = I + G̃i (and

σ(G̃i) > −1). In this case,

A1A2 + (A2A1)
−1 − 2I = G1 +G2 +G1G2 + G̃1 + G̃2 + G̃1G̃2.

Since Gi + G̃i = Ai + A−1
i − 2I are trace class, and the product of

two Hilbert-Schmidt operators is trace class too, we find that A1A2 +
(A2A1)

−1 − 2I is a trace class operator and that

Tr
(
A1A2 + (A2A1)

−1 − 2I
)

= Tr
(
A1A2 + (A1A2)

−1 − 2I
)
.

Similarly, A1A
−1
2 + A−1

1 A2 − 2I is trace class and hence

Tr
(
A1A2 + (A1A2)

−1 − 2I
)

+ Tr
(
A1A

−1
2 + A2A

−1
1 − 2I

)
= 2 Tr

(
A1 + A−1

1 − 2I
)

+ 2 Tr
(
A2 + A−1

2 − 2I
)

+ Tr
(
A1 + A−1

1 − 2I
) (
A2 + A−1

2 − 2I
)
.

Note that

Tr
(
A1A2 + (A1A2)

−1 − 2I
)

= Tr
(
A

1
2
2A1A

1
2
2 + A

− 1
2

2 A−1
1 A

− 1
2

2 − 2I
)
≥ 0,

and that for the positive-definite trace class operators Fi = Ai+A
−1
i −2,

(with {xj} the orthonormal basis of eigenvectors of F2),

TrF1F2 =
∑

j

〈F1F2xj, xj〉 ≤
∑

j

‖F2‖〈F1xj, xj〉 ≤ (TrF1)(TrF2),

so that

(7) Tr
(
A1A

−1
2 + A2A

−1
1 − 2I

)
≤ 2 Tr

(
A1 + A−1

1 − 2I
)

+ 2 Tr
(
A2 + A−1

2 − 2I
)

+ Tr
(
A1 + A−1

1 − 2I
)

Tr
(
A2 + A−1

2 − 2I
)
.

We can assume that Hc(Q1, P ) < ∞, and Hc(P,Q2) < ∞. In this

case Ai
d
= R− 1

2SiR
− 1

2 satisfy the conditions imposed above and it can
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be verified that R− 1
2S

1
2
1 and S

− 1
2

1 R
1
2 are well defined and bounded, so

Hc(Q1, Q2) =
1

2
Tr

[
S
− 1

2
1 S2S

− 1
2

1 + S
1
2
1 S

−1
2 S

1
2
1 − 2I

]
=

1

2
Tr

[
R− 1

2S
1
2
1 (S

− 1
2

1 S2S
− 1

2
1 + S

1
2
1 S

−1
2 S

1
2
1 − 2I)S

− 1
2

1 R
1
2

]
=

1

2
Tr

[
(R− 1

2S2R
− 1

2 )(R
1
2S−1

1 R
1
2 ) + (R− 1

2S1R
− 1

2 )(R
1
2S−1

2 R
1
2 ) − 2I

]
=

1

2
Tr

[
A1A

−1
2 + A2A

−1
1 − 2I

]
≤ 2Hc(Q1, P ) + 2Hc(P,Q2) + 2Hc(Q1, P )Hc(P,Q2).

The last inequality is due to (7) and lemma 1.8.

Lemma 2.2. If H(Q1, P ) <∞ and H(P,Q2) <∞, then

Hm(Q1, Q2) ≤ 4Hm(Q1, P ) + 4Hm(P,Q2)

+ 4Hm(Q1, P )Hc(P,Q2) + 4Hc(Q1, P )Hm(P,Q2).

Proof. We can assume without loss of generality that µ ≡ 0, thus

ν1, ν2 ∈ D(R− 1
2 ) = D(S

− 1
2

1 ) = D(S
− 1

2
2 ). The next claim is the heart of

the proof.

Claim 2.3. ∣∣∣S− 1
2

1 ν2

∣∣∣2 ≤ 2
∣∣∣R− 1

2ν2

∣∣∣2 + 2Hc(Q1, P )
∣∣∣R− 1

2ν2

∣∣∣2
Proof. Since Hc(Q1, P ) <∞, T = R− 1

2S1R
− 1

2 is a symmetric, positive-

definite and bounded operator with a bounded inverse T−1 = R
1
2S−1

1 R
1
2

(e.g. [4, thm I.3.2]). Note that for x ≥ 0,

1

x
≤

(
1

x
+ x− 2

)
+ 2,

so for the symmetric, positive-definite operator T we have

T−1 ≤
(
T−1 + T − 2I

)
+ 2I = F + 2I.

It follows that∣∣∣S− 1
2

1 ν2

∣∣∣2 = 〈T−1R− 1
2ν2, R

− 1
2ν2〉 ≤ 〈FR− 1

2ν2, R
− 1

2ν2〉 + 2
∣∣∣R− 1

2ν2

∣∣∣2 .
We finish by noting that for any symmetric, positive-definite F and a
vector x,

〈Fx, x〉 ≤ TrF |x|2.
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Using the last claim we prove the lemma:

Hm(Q1, Q2) =
1

2

∣∣∣S− 1
2

1 (ν1 − ν2)
∣∣∣2 +

1

2

∣∣∣S− 1
2

2 (ν1 − ν2)
∣∣∣2

≤
∣∣∣S− 1

2
1 ν1

∣∣∣2 +
∣∣∣S− 1

2
1 ν2

∣∣∣2 +
∣∣∣S− 1

2
2 ν1

∣∣∣2 +
∣∣∣S− 1

2
2 ν2

∣∣∣2
≤

∣∣∣S− 1
2

1 ν1

∣∣∣2 + 2
∣∣∣R− 1

2ν2

∣∣∣2 + 2Hc(Q1, P )
∣∣∣R− 1

2ν2

∣∣∣2
+

∣∣∣S− 1
2

2 ν2

∣∣∣2 + 2
∣∣∣R− 1

2ν1

∣∣∣2 + 2Hc(P,Q2)
∣∣∣R− 1

2ν1

∣∣∣2
≤ 4Hm(Q1, P ) + 4Hm(P,Q2)

+ 4Hm(Q1, P )Hc(P,Q2) + 4Hc(Q1, P )Hm(P,Q2).

Theorem 1 is now a trivial consequence of the last couple of lemmas.

Appendix A. Concrete Examples

A.1. Triangle correlation:

S(t, s) = 1 − |t− s|
2

with t, s ∈ [1 − τ, 1 + τ ] and |t− s| < 4.

In this case, the Radon-Nikodym derivatives can be found explicitly.
One way is by computing

R−1 =




1
δ

+ 1
1−τ

−1
δ

0 0 . . . 0
−1

δ
2
δ

−1
δ

0 . . . 0
0 −1

δ
2
δ

−1
δ
. . . 0

...
. . .

0 0 . . . −1
δ

2
δ

−1
δ

0 0 . . . 0 −1
δ

1
δ




(8)

S−1 =




1
δ

+ 1
4−2τ

−1
δ

0 . . . 0 1
4−2τ

−1
δ

2
δ

−1
δ

0 . . . 0
0 −1

δ
2
δ

−1
δ
. . . 0

...
. . .

0 . . . 0 −1
δ

2
δ

−1
δ

1
4−2τ

0 . . . 0 −1
δ

1
δ

+ 1
4−2τ






ENTROPY : WIENER AND STATIONARY GAUSSIAN MEASURES 17

S−1 −R−1 =




τ−3
(4−2τ)(1−τ)

0 . . . 0 1
4−2τ

0 0 . . . 0 0
...

...
0 0 . . . 0 0
1

4−2τ
0 . . . 0 1

4−2τ




S−1R =




1−τ
2−τ

∗ ∗ . . . ∗ −1−τ
2−τ

0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

. . .
...

0 0 . . . 0 1 0
1−τ
2−τ

∗ ∗ . . . ∗ 3−τ
2−τ



,

from which you find

detS−1R =
1 − τ
2 − τ

3 − τ
2 − τ +

1 − τ
2 − τ

1 − τ
2 − τ =

2(1 − τ)
2 − τ ,

and

dWn

dQn

=
1√

detS−1R
exp

{
1

2

〈
(S−1 −R−1)x,x

〉}

=

√
2 − τ

2(1 − τ) exp

{
1

2

(
τ − 3

(4 − 2τ)(1 − τ)x
2
0 +

2

4 − 2τ
x0xn +

1

4 − 2τ
x2

n

)}
.

This is just the Radon-Nikodym derivative of the two distributions
sampled only at the end points, i.e., it is the Radon-Nikodym derivative
of the 2 dimensional (mean 0) Gaussian vectors with correlations R0 =(

1−τ 1−τ
1−τ 1+τ

)
and S0 =

(
1 1−τ

1−τ 1

)
.

Claim A.1. dWn

dQn
is independent of n, therefore it is dW

dQ
.

We just showed that dWn

dQn
is independent of n. Let Fn be the σ-field

generated by sampling the paths at 2n + 1 points. Then dWn

dQn
is Fn

measurable, and
(

dWn

dQn
,Fn

)
is a martingale which obviously converges

in L1(dQ) to itself, i.e. it is dW
dQ

.

There is an alternative way to find dW
dQ

. Let L(t;α, β) be the linear

interpolation between the points (τ, α) and (σ, β), i.e.,

L(t;α, β)
d
=
t− τ
σ − τ (β − α) + α.

Let X ∈ C[τ, σ] be a generic path, and define Y ∈ C[τ, σ] as

Yt
d
= Xt − L(t;Xτ , Xσ).
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It is easy to check thatEQ(YtXτ ) = EQ(YtXσ) = 0 and alsoEW (YtXτ ) =
EW (YtXσ) = 0. As the means are 0, we find that Y is independent of
Xτ and Xσ under both measures. Furthermore,

EWYtYs =
(s− τ)(σ − t)

σ − τ = EQYtYs τ ≤ s ≤ t ≤ σ,

that is, Y has exactly the same distribution under W as under Q. In
fact, under both measures, Y is just a tied Brownian motion. Here is

the gist of how to use the above for computing dW
dQ

. Let f
W/Q
τ,s,t,σ be the

joint density of (Xτ , Xs, Xt, Xσ) underW , respectively Q. Let f
W/Q
(s,t)|(τ,σ)

be the associated conditional density. Obviously,

fτ,s,t,σ(xτ , xs, xt, xσ) = f(s,t)|(τ,σ)(xs, xt|xτ , xσ)f(τ,σ)(xτ , xσ)

and also

f(s,t)|(τ,σ)(xs, xt|xτ , xσ) = f(Ys,Yt)|(Xτ ,Xσ)

(
xt − L(t;xτ , xσ), xs − L(s;xτ , xσ)

∣∣(xτ , xσ)
)

= f(Ys,Yt) (xt − L(t;xτ , xσ), xs − L(s;xτ , xσ))

as Y is independent of the end points of the X process under both
measures. Hence

fQ
τ,s,t,σ(xτ , xs, xt, xσ) = fQ

(Ys,Yt)
(xt − L(t;xτ , xσ), xs − L(s;xτ , xσ)) fQ

(τ,σ)(xτ , xσ)

= fW
τ,s,t,σ(xτ , xs, xt, xσ)

fQ
(τ,σ)(xτ , xσ)

fW
(τ,σ)(xτ , xσ)

.

A standard argument now shows that dW
dQ

=
fQ
(τ,σ)

(xτ ,xσ)

fW
(τ,σ)

(xτ ,xσ)
.

Once you have dW
dQ

, computing the entropy is trivial:

H =
τ

2(1 − τ) .

It should be noted that the entropy itself can be recovered by computing
T (cf (1)) and T−1; both are rather easy to compute due to their special
structure.

A.2. The Ornstein-Uhlenbeck Process:

S(t, s) = e−|t−s|/2.

Here also you can compute the Radon-Nikodym derivative. Let WT be
the Wiener measure on C[T, T + 2τ ]. By the chain rule,

dQ

dW1−τ

=
dQ

dW1

dW1

dW1−τ

.
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The Ornstein-Uhlenbeck process satisfies: dX = db − 1
2
Xdt, with a

standard Brownian motion b, so Girsanov’s formula implies:

dQ

dW1

= exp

{
−

∫ 2τ

0

1

2
Xs dXs −

1

2

∫ 2τ

0

1

4
X2

s ds

}

= exp

{
−1

4

[
X2

t − t
]2τ

0
− 1

8

∫ 2τ

0

X2
s ds

}

and, with considerably less effort, we get

dW1

dW1−τ

=
√

1 − τ exp

{
−1

2
X2

0

(
1 − 1

1 − τ
)}

.

Now you have the Radon-Nikodym derivative in front of you and from
it you compute:

EQ log
dQ

dW1−τ

=
1

2
log(1 − τ) − 1

2
+
τ

4
+

1

2(1 − τ)

EW1−τ log
dW1−τ

dQ
= −1

2
log(1 − τ) − τ

4
.

Finally,

H =
1

2

τ

1 − τ ,

exactly as for the triangle correlation. In this case, you can also com-
pute the Radon-Nikodym derivative as a limit of finite-dimensional
derivatives since the matrix S is readily invertible.

Appendix B. The existence of a minimizer

The following is adopted from [1, pp.32-40]. Let X be a Polish space,
i.e., a complete separable metric space, and let P(X) denote the set of
probability measures on X. Using weak-convergence one can introduce
a (metrizable) topology on P(X). Let P,Q ∈ P(X), then the relative
entropy of P given Q is defined by

H(P |Q)
d
= EP log

dP

dQ
.

It can be shown thatH(P |Q) is a convex lower semicontinuous function
of (P,Q) ∈ P(X) × P(X), and that for every finite M the set {Q :
H(Q|P ) ≤ M} is compact. It follows that H(P,Q) = H(P |Q) +
H(Q|P ) is a lower semicontinuous function of (P,Q). Thus, if for a
given P the set {Q : H(Q|P ) <∞} is non empty, there exists a Q0 ∈
P(X) which minimizes H(P,Q). Finally, since the set of stationary
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Gaussian measures is closed, the above argument will yield a stationary
minimizer in our case as well.

Appendix C. On the L2 distance

The L2 distance between correlations R and S is

‖R− S‖2 =

∫ 1+τ

1−τ

∫ 1+τ

1−τ

|R(t, s) − S(t, s)|2 dt ds.

If R is any correlation, then the best L2 approximation to R by a
Töeplitz operator is obtained by averaging R along its diagonals:

S(r) =
1

2τ − r

∫ 1+τ−r

1−τ

R(s+ r, s) ds 0 ≤ r ≤ 2τ.

The problem is that, in general, S would not be positive-definite. Be-
sides, this L2 distance seems unnatural from a probabilistic standpoint.
In the case of R = t ∧ s, S turns out to be 1 − |r|/2 which happens
to be positive-definite (see appendix A.1) and we get ‖R− S‖2 = 2

3
τ 4.

More generally, if S is stationary with S(r) = 1 − |r|
2

+ o(r), then

‖R − S‖2 = 2
3
τ 4 + o(τ 4) so, as in the case of the entropy, we find (to

leading order) that the distance between Brownian motion and any
stationary process that is absolutely continuous with respect to it is
always the same. This may be contrasted with the entropy distance

between Brownian motion and S(r) = 1 − |r|
2

+ |r|3/2 which is infinite.
It is also easily verified that the L2 distance between any two sta-

tionary correlations of the above type (S(r) = 1 − |r|
2

+ o(r)) is o(τ 2)
which is reminiscent of the case of the entropy distance in the sense
that it is smaller than the distance to the Brownian motion.

The L2 (as opposed to the entropy) distance to Brownian motion
remains finite for stationary correlations such as S(r) = 1−α|r|+o(|r|)
with α = 1

2
:

‖S −R‖2 =
4

3
(2α2 − 2α+ 1)τ 4 + o(τ 4).

This is minimized for α = 1
2
, as it should be.
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