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Abstract. It is known that the entropy distance between two
Gaussian measures is finite if, and only if, they are absolutely con-
tinuous with respect to one another. Shepp [5] characterized the
correlations corresponding to stationary Gaussian measures that
are absolutely continuous with respect to the Wiener measure. By
analyzing the entropy distance, we show that one of his conditions,
involving the spectrum of an associated operator, is essentially ex-
traneous, providing a simple criterion for finite entropy distance in
this case.

1. introduction

Let C[1 − τ, 1 + τ ] (where 0 < τ < 1) denote the space of continu-
ous functions on [1− τ, 1 + τ ]. A standard Brownian motion observed
between times 1 − τ and 1 + τ induces on C[1 − τ, 1 + τ ] the Wiener
measure W τ . As a Gaussian measure, it is characterized by its cor-
relation R(t, s) = t ∧ s for t, s ∈ [1 − τ, 1 + τ ], and by its vanishing
mean.

A Gaussian measure, Qτ , on C[1− τ, 1 + τ ] is stationary if its mean
is constant and its correlation is a Töeplitz function. That is, with
X ∈ C[1− τ, 1 + τ ] being the sample path,

µt
d
= EQτ

Xt ≡ const. t ∈ [1− τ, 1 + τ ],

and

S(t, s)
d
= EQτ

XtXs − µ2 = S(t− s) t, s ∈ [1− τ, 1 + τ ],

where S denotes both the correlation S(t, s), and the auto-correlation
S(r) with r = t− s ∈ [−2τ, 2τ ]. Krein [4] showed that S(r) can always
be extended to R as a continuous positive-definite function, thereby
providing an extension of Qτ to a stationary Gaussian measure, Q, on
C(R).

We would like to characterize the stationary measures Qτ which are
absolutely continuous with respect to W τ . Since the measures are
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Gaussian, this question can be settled in terms of the mean µ and the
correlation S of Qτ . Furthermore, for τ < 1, the Brownian paths bt

and bt + µ with t ∈ [1 − τ, 1 + τ ] induce measures that are absolutely
continuous with respect to one another, and therefore the constant
mean of Q is irrelevant to the question of absolute continuity.

Shepp provides the following necessary and sufficient conditions for
a stationary Gaussian measure Qτ0 with correlation S to be absolutely
continuous with respect to W τ0 [5]:

(i) On (0, 2τ0), S
′ is absolutely continuous and S ′′ satisfies∫ 2τ0

0

S ′′(t)
2
(2τ0 − t) dt <∞.

(ii) S+(0) = −1/2 (the derivative from the right).
(iii) −1 /∈ σ(F ), where σ(F ) is the spectrum of the integral operator

defined by the kernel

F
d
=

∂

∂ s

∂

∂ t

[
S(t− s)− S(t)S(s)

S(0)
− t ∧ s

]
t, s ∈ [0, 2τ0].

Shepp gives an example showing that (iii) is essential:

S(r)
d
=

1

4
− |r|

2
for − 2τ0 ≤ r ≤ 2τ0.

Here (i) and (ii) hold for any τ0 > 0, but (iii) is valid only if τ0 < 1
2

(τ0 ≤ 1
2

is required for S to be positive-definite). Indeed, with τ0 = 1
2

and X ∈ C[1− τ0, 1 + τ0], we have X1/2 = −X3/2 a.s. dQ, thus ruling
out absolute continuity with respect to W τ0 . However, a closer look at
this example yields two interesting facts for τ0 = 1

2
:

• There exists only one positive-definite extension of S from [−2τ0, 2τ0]
to R ([4]).
• S ′′ does not exist at r = 2τ0.

Both observations turn out to be the rule whenever (iii) is violated.
This allows us to rid ourselves of the third condition in Shepp’s theorem
by paying a small price: (i) and (ii) suffice for absolute continuity for
τ < τ0. The precise statement is:

Theorem 1. If Qτ0, a stationary Gaussian measure with correlation
S, is absolutely continuous with respect to W τ0 (0 < τ0 < 1), then (i)
and (ii) hold. If, on the other hand, (i) and (ii) hold, then for any
0 < τ < τ0, Q

τ is absolutely continuous with respect to W τ .

Remarks:

•A simple scaling argument shows that the time interval can be
centered about any point (not necessarily 1).
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•Condition (ii) guarantees that the measure Q is supported on
paths with the same quadratic variation as that of Brownian mo-
tion. This must be so, as it is an “almost sure” property of the
Brownian path.

We next provide a brief overview of the proof which is entirely dif-
ferent from Shepp’s; it relies on our ability to estimate the entropy
distance between Qτ and W τ . Let P and Q be Gaussian measures on
C[1 − τ, 1 + τ ]. It is known that the entropy distance between P and
Q, H(P,Q), is finite if and only if the two measures are absolutely
continuous with respect to one another; in that case:

H(P,Q) = EP (log
dP

dQ
) + EQ(log

dQ

dP
),

where EP is the expectation under the measure P and dP
dQ

is the Radon-

Nikodym derivative of P with respect to Q (see e.g. [3]).
Let Pn and Qn be the restrictions of P and Q to n+1 equally spaced

points in [1− τ, 1 + τ ], with correlations Rn and Sn. Then

H(P,Q) = limH(Pn, Qn).

Let Kn be a root of Rn, i.e., Rn = KnK
∗
n, and let Tn = K−1

n SnK
−∗
n ,

with K−∗ being a short for (K−1)
∗
. If λn

i are the eigenvalues of Tn,
then

H(Pn, Qn) =
1

2

n∑
i=0

(λn
i − 1)2

λn
i

.

Thus, H(W τ0 , Qτ0) <∞ implies

sup
τ≤τ0

lim
∑

(λn
i − 1)2 <∞.(1)

In the case of W τ0 (R = t ∧ s), R−1
n is essentially a second order

difference operator so we can choose Kn so that K−1
n is basically a first

order difference operator. Thus, the typical entry in Tn = K−1
n SnK

−∗
n

is a second order difference of the sampled Töeplitz correlation Sn. Add
to this the identity

lim
∑

(λn
i − 1)2 = lim Tr (Tn − I)2,

and you will understand how (1) implies the existence of S ′ and S ′′ on
(0, 2τ0) as in (i) and (ii) of theorem 1.

This is the easier half of that theorem. As for the other half, with
our choice of Kn we can readily show that (1) follows from (i) and (ii)
of theorem 1. It is left to prove that for τ < τ0, infi,n λ

n
i (τ) > 0 (this
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is the analogue of Shepp’s third condition, which we omit). Indeed, if
infi,n λ

n
i (τ) = 0, then there exist λk −→ 0 and vk ∈ Rnk , such that

Tnk
vk = λkvk.

Appropriately embedded in H d
= R⊕L2[0, 2τ ], vk converge strongly to

a non-zero limit (β, f) ∈ H with the property that almost surely dQ:

βX0 +

∫ 2τ

0

f(t)dXt = 0,

where Q is a stationary extension of Qτ to C(R) and Xt is the sample
path. As we show, this implies that S has a unique positive-definite
extension, from [−2τ, 2τ ] to R. This unique extension has the property
that S ′′ /∈ L2(0, 2τ + ε) for any ε > 0, contradicting (i).

2. Proof of theorem 1

The space C0
d
= C[1 − τ0, 1 + τ0], is equipped with the σ-field F

generated by the cylinder sets. Wiener measure (denoted by W ) is
defined on that space, so any measure Q that is absolutely continuous
with respect to it must live there. On the other hand, an application of
Kolmogorov-Čensov shows that a correlation S subject to (i) and (ii)
of theorem 1 defines a probability measure Q on C0.

Remark. Since the mean of Q is irrelevant to our problem it may be
assumed to vanish.

Let P and Q be Gaussian measures on C0. For 0 < τ ≤ τ0, let P τ ,
Qτ and F τ be the restrictions of P , Q, respectively F , to C[1−τ, 1+τ ].
Let F τ

n be the σ-field obtained by sampling the paths on [1− τ, 1 + τ ]
at n + 1 equally spaced points. Let P τ

n and Qτ
n be the restrictions of

P τ and Qτ to that σ-field. Let

Hτ
n

d
= H(P τ

n , Q
τ
n).

Since F τ is generated by
⋃
F τ

n, it follows that H(P τ , Qτ ) = limHτ
n [3].

A first step is to express the entropy Hτ
n in terms of the (n+1)×(n+1)

sampled correlations, Sτ
n and Rτ

n.

Claim 2.1. Let R and S be the m ×m correlation matrices of the 0-
mean Gaussian measures P , respectively Q on Rm, and let K be a root
of R so that R = KK∗. Then

H(P,Q) =
1

2
Tr(K−1SK−∗ + K∗S−1K − 2I).
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Proof.

EQ log
dQ

dP
= EQ log

{√
detR√
detS

exp

[
−1

2

〈(
S−1 −R−1

)
x,x

〉]}

= −1

2
log detR−1S − 1

2
EQ

〈(
S−1 −R−1

)
x,x

〉
,

with x ∈ Rm.
If A is any m×m matrix, then

EQ 〈Ax,x〉 = EQ
∑
i,j

aijxixj =
∑

i

∑
j

aijsji = TrAS,

so

EQ log
dQ

dP
= −1

2
log detR−1S +

1

2
Tr(R−1S − I).

The same applies to EP log dP
dQ

so the entropy is:

H =
1

2
Tr(R−1S + S−1R− 2I).

The claim follows from TrAB = TrBA.

Let K be a root of Rτ
n as above and put

T
d
= K−1SK−∗.(2)

Then T is symmetric, positive definite, and T−1 = K∗S−1K, so from
claim 2.1,

Hτ
n =

1

2
Tr(T + T−1 − 2I).

In terms of the (positive) eigenvalues λn
i = λn

i (τ), of T :

Hτ
n =

1

2

n∑
i=0

(λn
i − 1)2

λn
i

For 0 < τ ≤ τ0, H
τ ≤ H

d
= Hτ0 , and since Hτ = limHτ

n, it follows that

H <∞ only if lim
n

∑
i

(λn
i − 1)2 ≤ C <∞,(3)

where C is a constant which depends on τ0. Note that

n∑
i=0

(λn
i − 1)2 = Tr (T − I)2 =

∑
i�=j

t2ij +
∑

i

(tii − 1)2.(4)
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Let δ = δτ
n = 2τ/n be the mesh of the partition. Returning to the case

of R = t ∧ s and a stationary correlation S = S(t− s), we choose

K
d
=




√
1− τ 0 0 0 . . . 0√
1− τ

√
δ 0 0 . . . 0√

1− τ
√
δ
√
δ 0 . . . 0

...
...

. . .√
1− τ

√
δ
√
δ . . .

√
δ 0√

1− τ
√
δ
√
δ . . .

√
δ
√
δ




.

It is easy to verify that Rτ
n = KK∗ and that

K−1 =




1√
1−τ

0 0 0 . . . 0

− 1√
δ

1√
δ

0 0 . . . 0

0 − 1√
δ

1√
δ

0 . . . 0
...

. . .

0 0 . . . − 1√
δ

1√
δ

0

0 0 . . . − 1√
δ

1√
δ




.

It follows that, with Sk = S(kδ),

T =




S0

1−τ
1√
1−τ

S1−S0√
δ

1√
1−τ

S2−S1√
δ

1√
1−τ

S3−S2√
δ

. . . 1√
1−τ

Sn−Sn−1√
δ

∗ 2S0−S1

δ
2S1−S0−S2

δ
2S2−S1−S3

δ
. . . 2Sn−1−Sn−2−Sn

δ

∗ ∗ 2S0−S1

δ
2S1−S0−S2

δ
. . . 2Sn−2−Sn−3−Sn−1

δ

∗ ∗ ∗ 2S0−S1

δ

. . .
...

. . . 2S1−S0−S2

δ

∗ ∗ ∗ ∗ 2S0−S1

δ




(5)

where the ∗’s are filled in according to the symmetry of T (note the
Töeplitz n× n sub-matrix). Using (4) we get:

(6)
n∑

i=0

(λn
i − 1)2 =

(
S0

1− τ
− 1

)2

+ n

(
2
S0 − S1

δ
− 1

)2

+ 2
1

1− τ

n∑
k=1

(Sk − Sk−1)
2

δ

+ 2
n−1∑
k=1

(
2Sk − Sk−1 − Sk+1

δ

)2

(n− k).
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Assume now that Qτ0 is absolutely continuous with respect to W τ0 .
Using (3) and the last equation, with δ = 2τ0/n, we find:

M0 = sup
τ≤τ0

sup
n

n

(
2
S0 − S1

2τ/n
− 1

)2

<∞,(7)

M1 = sup
n

n∑
k=1

(Sk − Sk−1)
2 1

δ
<∞,(8)

and

M2 = sup
n

n−1∑
k=1

(
2Sk − Sk−1 − Sk+1

δ

)2

(n− k) <∞.(9)

It follows from (7) that S is continuous from the right at 0, and since
it is symmetric and positive definite, S is also uniformly continuous on
its domain (see e.g. [1], p.191).

Claim 2.2. S is an absolutely continuous function.

Proof. Let

Sn(r)
d
=

{
S(kδ) for kδ ≤ r < (k + 1)δ,

and

fn(r)
d
=

Sn(r + δ)− Sn(r)

δ
.

It follows from (8) that, with δ = 2τ0/n as before,
∫ 2τ0

0
fn

2 ≤ M1, so
there exists a subsequence fnk

converging weakly in L2 to some function
f . If for any smooth compactly supported ϕ on (0, 2τ0),∫ 2τ0

0

fϕ = −
∫ 2τ0

0

Sϕ′,(10)

then standard Sobolev type arguments show that S is absolutely con-
tinuous (and S ′ = f). To prove (10), note that for sufficiently large n
(ϕ being compactly supported),∫ 2τ0

0

fnk
(t)ϕ(t) dt =

∫ 2τ0

0

Snk
(t + δ)− Snk

(t)

δ
ϕ(t) dt

= −
∫ 2ε0

0

Snk
(t)

ϕ(t)− ϕ(t− δ)

δ
dt.

Since S is continuous and ϕ is smooth, by letting k → ∞ in the last
equation we get (10).

It is a corollary of the last claim and (7) that S+(0) = −1
2
, as in (ii) of

the theorem.
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Claim 2.3. S ′ is absolutely continuous on (0, 2τ0) and
∫ 2τ0

0
S ′′(t)2(2τ0−

t) dt <∞.

Proof. With a slight abuse of notation, define

S ′
n(r)

d
=

{
1

δ

∫ (k+1)δ

kδ

S ′(η) dη for kδ ≤ r < (k + 1)δ,

and let

gn(r)
d
=

S ′
n(r + δ/2)− S ′

n(r − δ/2)

δ

=

{
S((k + 1)δ) + S((k − 1)δ)− 2S(kδ)

δ2
(k − 1

2
)δ ≤ r < (k +

1

2
)δ.

Since, by (9),∫ 2τ0

0

gn(t)2(2τ0 − t) dt =

∑ [
S((k + 1)δ) + S((k − 1)δ)− 2S(kδ)

δ2

]2

(2τ0 − kδ) ≤M2,

there exists a subsequence {gnk
} that converges weakly to a limit g in

L2 ((2τ0 − t)dt). Hence, for every proper subinterval I ⊂ (0, 2τ0), {gnk
}

converges weakly in L2(I, dt). Again,∫ 2τ0

0

gϕ = −
∫ 2τ0

0

S ′ϕ′(11)

will show S ′ is absolutely continuous with g = S ′′. For sufficiently large
n, ∫ 2τ0

0

gnk
ϕ = −

∫ 2τ0

0

S ′
nk

(t)
ϕ(t + δ/2)− ϕ(t− δ/2)

δ
dt.

Since S ′
nk
−→ S ′ in L1 and ϕ is smooth, we get (11) by letting k →∞.

Finally, by its definition, g ∈ L2 ((2τ0 − t)dt); in particular, we get (i)
of theorem 1.

This proves half of theorem 1. Assume now that S satisfies (i) and (ii)
of theorem 1.

Claim 2.4. For any τ ≤ τ0,

sup
n

∑
i

(
λn

i (τ)− 1
)2 ≤

(
S0

1− τ
− 1

)2

+

∫ 2τ

0

S ′′(t)
2
(2τ − t) dt

+
2

1− τ

∫ 2τ

0

S ′(t)
2
dt <∞.
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Proof. Note that, with T = Tn(τ) = (tij)0≤i,j≤n,

n∑
i=1

t2i0 + t20i =
2

1− τ

n∑
i=1

(Si − Si−1)
2 1

δ
≤ 2

1− τ

∫ 2τ

0

S ′(t)
2
dt.(12)

Let

S̄(r)
d
= S(r)−

(
1− |r|

2

)
.

Then S̄ is an even function, with absolutely continuous derivative S̄ ′

on (−2τ0, 2τ0), and S̄ ′′ ≡ S ′′ on (0, 2τ0). It is not hard to verify that

tij = −1

δ

∫ iδ

(i−1)δ

∫ jδ

(j−1)δ

S̄ ′′(t− s) dt ds 1 ≤ i �= j ≤ n,

tii − 1 = −1

δ

∫ iδ

(i−1)δ

∫ iδ

(i−1)δ

S̄ ′′(t− s) dt ds 1 ≤ i ≤ n.

(13)

Thus, for τ ≤ τ0[ ∑
1≤i�=j≤n

t2ij +
n∑

i=1

(tii − 1)2

]
≤

∫ 2τ

0

∫ 2τ

0

S̄ ′′(t− s)
2
dt ds

=

∫ 2τ

0

S ′′(t)
2
(2τ − t) dt <∞,

which together with (12) and (4) completes the proof of claim 2.4.

We next show that for τ < τ0, infi,n λ
n
i (τ) > 0. It follows that,

Hτ = lim
∑ (λn

i − 1)2

λn
i

≤ 1

infi,n λn
i (τ)

lim
∑

(λn
i − 1)2 <∞,

which completes the proof of theorem 1.
Since S̄ ′′ ∈ L2([0, 2τ ]× [0, 2τ ]), it defines a compact integral operator

on L2(0, 2τ):

(S̄ ′′ ∗ f)(r)
d
=

∫ 2τ

0

S̄ ′′(r − t)f(t) dt.

Let H = Hτ
d
= R ⊕ L2(0, 2τ). Define a bounded symmetric operator

T τ : (β, f) ∈ H �→ H as follows:

T (β, f)
d
=

(
β
S(0)

1− τ
+

1√
1− τ

∫ 2τ

0

S ′(t)f(t) dt,
β√

1− τ
S ′ + f − S̄ ′′ ∗ f

)
.

Let Un be the n dimensional subspace of L2(0, 2τ) populated by
functions which are constant on the intervals [iδ, (i + 1)δ), δ = 2τ/n.

For f ∈ Un and X ∈ C[0, 2τ ], we define
∫ 2τ

0
f(t) dXt in the obvious
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manner. Letˆ: Un �→ Rn be the natural isometry between these spaces,
i.e., for

f(t) =
n∑

i=1

fi1[(i−1)δ,iδ)(t) ∈ Un,

f̂
d
=

(
f1

√
δ, f2

√
δ, . . . , fn

√
δ
)
.

Let Q be a stationary extension of Qτ0 to C(R) corresponding to a
positive-definite extension of S from [−2τ0, 2τ0] to R. A straight for-
ward computation shows that for f ∈ Un and β ∈ R,〈

T (β, f̂), (β, f̂)
〉

Rn+1
= EQ

[
β√

1− τ
X0 +

∫ 2τ

0

f(t) dXt

]2

.

Remark. The last equation might deserve a second look: on the left
hand side we have T which was obtained from S and R, while on the
right hand side R does not appear explicitly.

It follows from (13) that,〈
T (β, f̂), (β, f̂)

〉
Rn+1

=
〈
T (β, f), (β, f)

〉
H
.

Thus, for β = 0 and f ∈ Un,

EQ

[∫ 2τ

0

f(t) dXt

]2

=
〈
T (0, f), (0, f)

〉
H
≤ ‖T ‖ |f |2L2 .

Hence the map

f �→
∫ 2τ

0

f(t) dXt,

defined initially on
⋃

Un, can be extended uniquely as a bounded linear
map from L2(0, 2τ) into L2(Ω, dQ), where Ω = C0 is our probability
space. Furthermore, by continuity, for any f ∈ L2(0, 2τ) and β ∈ R,〈

T (β, f), (β, f)
〉
H

= EQ

[
β√

1− τ
X0 +

∫ 2τ

0

f(t) dXt

]2

.(14)

In particular, T is positive-definite.

Claim 2.5. Suppose that infi,n λ
n
i (τ) = 0, then there exists β ∈ R and

f ∈ L2(0, 2τ), not identically 0, with

β√
1− τ

X0 +

∫ 2τ

0

f(t) dXt = 0 a.s. dQ,(15)
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Proof. Assuming the eigenvalues of Tn satisfy λn
0 (τ) ≤ λn

1 ≤ . . . λn
n,

there exists a sub-sequence nk such that

νk
d
= λnk

0 −→ 0.

Let vk = (vk(0),vk(1), . . . ,vk(nk)) ∈ Rnk+1 be the corresponding nor-
malized eigenvectors, i.e.,

Tnk
vk = νkvk , |vk| = 1.

Let βk = vk(0) and let

fk
d
= ̂(vk(1), . . . ,vk(nk)).

Then ‖(βk, fk)‖H = 1, and without loss of generality you may assume
that

(βk, fk) −→ (β, f) weakly in H.

Let I be the identity in H. The operator T 0
d
= T − I is compact, by

inspection, so

T 0(βk, fk) −→ T 0(β, f) strongly in H.

It follows that

νk − 1 =
〈
T 0(βk, fk), (βk, fk)

〉
H
−→

〈
T 0(β, f), (β, f)

〉
H
,

or 〈
T 0(β, f), (β, f)

〉
H

= −1.

But T is symmetric and positive-definite, so the spectrum σ(T 0) ⊂
[−1,∞), whence ‖(β, f)‖H = 1 and〈

T (β, f), (β, f)
〉
H

= 0.

The claim now follows from (14).

Remarks:

•In hind sight (βk, fk) converge strongly to (β, f).
•S has a unique extension as a symmetric positive-definite function
from [−2τ, 2τ ] to R. Indeed, let ∆ be any spectral distribution
function corresponding to such an extension of S. Using the stan-
dard isometry between L2(R,∆) and L2(Ω, Q), defined by

eitω ←→ Xt,

it follows from (15) that

β√
1− τ

+ iω

∫ 2τ

0

f(t)eiωt dt = 0,
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where the equality is in L2(∆). Thus, there exists a non-trivial
holomorphic function of exponential type ≤ τ , which vanishes in
L2(∆). Krein’s alternative says that in this case the stationary
process governed by any extension of S must be completely pre-
dictable from any interval of length 2τ [2][see sec. 4.8]. This
implies that there exists only one extension ([4] is helpful).

Claim 2.6. If (15) holds with a non-trivial f ∈ L2(0, 2τ), then there
exists τ ′ ∈ (τ, τ0), such that the eigenspace,

V
d
=

{
g ∈ L2(0, 2τ ′) :

∫ 2τ ′

0

S̄ ′′(t− r)g(r) dr = g(t)

}
,

is infinite-dimensional.

Proof. Since Q is stationary, it follows from (15) that for any δ > 0,

β√
1− τ

X2δ +

∫ 2τ

0

f(t) dXt+2δ = 0 a.s. dQ.(16)

Let

g(t)
d
=




β√
1−τ
− f(t) 0 ≤ t < 2δ

f(t− 2δ)− f(t) 2δ ≤ t < 2τ

f(t− 2δ) 2τ ≤ t < 2τ + 2δ

0 elsewhere.

Subtracting (15) from (16), we find∫ 2(τ+δ)

0

g(t) dXt = 0 a.s. dQ.

Fix τ ′ ∈ (τ, τ0) and choose δ > 0 so small that τ + δ < τ ′. By (14),

〈
T τ ′(0, g), (0, g)

〉
Hτ ′

= EQ

[∫ 2τ ′

0

g(t) dXt

]2

= 0.

For any α > 0 such that τ + δ + α < τ ′, let gα(t)
d
= g(t − α). By

stationarity,

〈
T τ ′(0, gα), (0, gα)

〉
Hτ ′

= EQ

[∫ 2τ ′

0

g(t− α) dXt

]2

= 0.

But T τ ′ is symmetric and positive-definite, so

T τ ′(0, gα) = 0,
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which implies

gα = S̄ ′′ ∗ gα.

These α-translates of g span an infinite dimensional subspace ⊂ V .

The next lemma shows that V cannot be continuously embedded in
L∞(0, 2τ ′).

Lemma 2.7. Let U be an infinite-dimensional subspace of L2(0, T ),
with T <∞. Then U cannot be continuously embedded in L∞(0, T ).

Remarks:

•Undoubtedly, this lemma is known. However having no citation
to provide, we give here a proof.
•T < ∞ is crucial here. Assume without loss of generality that
T = 1.

Proof. Let {ϕn} be an orthonormal set in U . If M
d
= supn ‖ϕn‖∞ is

infinite, we are done, so assume M <∞. Let

An
d
= {x ∈ [0, T ] : ϕn(x) >

1√
2
},

Bn
d
= {x ∈ [0, T ] : ϕn(x) < − 1√

2
}.

Let λ(A) be the Lebesgue measure of A. Then

λ(An ∪Bn) ≥ 1

2M2
= 2α > 0.

We can assume, without loss of generality, that λ(An) ≥ α for all n.

Let N
d
= [n/α + 1] and let

ϕ(x)
d
=

N∑
k=1

1Ak
(x).

Then ∫ 1

0

ϕ(x) dx ≥ Nα.

Necessarily,

λ

({
x :

N∑
k=1

1Ak
≥ n

})
> 0,

whence there are n indices, k1, . . . , kn, such that

λ (Ak1 ∩ Ak2 ∩ · · · ∩ Akn) > 0.
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Now ∥∥∥∥∥
n∑

j=1

1√
n
ϕkj

∥∥∥∥∥
∞

>

√
n

2
but

∥∥∥∥∥
n∑

j=1

1√
n
ϕkj

∥∥∥∥∥
2

= 1,

which completes the proof.

The proof that infi,n λ
n
i (τ) > 0 is now complete: else, by claims 2.5

and 2.6 there exists τ ′ ∈ (τ, τ0) and an infinite dimensional eigenspace
V as described in claim 2.6. Hence by the last lemma, there exist a
sequence fn ∈ V such that,

‖fn‖L2 = 1 , fn = S̄ ′′ ∗ fn and ‖fn‖∞ > n.

But this implies S̄ ′′ /∈ L2(0, 2τ ′), contradicting the assumption that (i)
holds.
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