**SMS scnews item created by Daniel Daners at Fri 5 Jul 2019 1349**

Type: Seminar

Distribution: World

Expiry: 10 Jul 2019

**Calendar1: 10 Jul 2019 1400-1500**

**CalLoc1: AGR Carslaw 829**

CalTitle1: Sickel: The interplay of smoothness and regularity in case of radial functions

Auth: daners@dora.maths.usyd.edu.au

### PDE Seminar

# The interplay of smoothness and regularity in case of radial functions

### Sickel

Winfried Sickel

Friedrich-Schiller-Universität Jena, Germany

Wed 10th Jul 2019, 2-3pm, Carslaw Room 829 (AGR)

## Abstract

At the end of the seventies Strauss was the first who observed that there is an
interplay between the regularity and decay properties of radial functions. We
recall his

Radial Lemma: Let $d\ge 2$.
Every radial function $f\in {H}^{1}\left({R}^{d}\right)$
is almost everywhere equal to a function
$\stackrel{\u0303}{f}$, continuous
for $x\ne 0$,
such that

$$\left|\stackrel{\u0303}{f}\left(x\right)\right|\le c|x{|}^{\left(1-d\right)\u22152}\parallel f\mid {H}^{1}\left({R}^{d}\right)\parallel ,\phantom{\rule{2em}{0ex}}x\ne 0,$$ | (1) |

where $c$
depends only on $d$.

Strauss stated (1) with the extra condition
$\left|x\right|\ge 1$, but
this restriction is not needed.

The Radial Lemma contains three different assertions:

(a) the existence of a representative of
$f$ ,
which is continuous outside the origin;

(b) the decay of $f$
near infinity;

(c) the limited unboundedness near the origin.

These three properties do not extend to all functions in
${H}^{1}\left({\mathbb{R}}^{d}\right)$, of course. In
particular, ${H}^{1}\left({\mathbb{R}}^{d}\right)\u2288{L}^{\infty}\left({R}^{d}\right)$,
$d\ge 2$, and consequently,
functions in ${H}^{1}\left({\mathbb{R}}^{d}\right)$
can be unbounded in the neigborhood of any fixed point
$x\in {\mathbb{R}}^{d}$.
The decay properties of radial functions can be used to prove
compactness of embeddings of radial subspaces into Lebesgue spaces. Let
$R{H}^{1}\left({\mathbb{R}}^{d}\right)$ denote the subspace
of ${H}^{1}\left({\mathbb{R}}^{d}\right)$ consisting of all
radial functions in ${H}^{1}\left({\mathbb{R}}^{d}\right)$.
Then

$$R{H}^{1}\left({\mathbb{R}}^{d}\right)\hookrightarrow \hookrightarrow {L}^{p}\left({\mathbb{R}}^{d}\right)$$

holds, if $2<q<{q}^{*}$
, where ${q}^{*}:=\infty $
if $d=2$ and
${q}^{*}=2d\u2215\left(d-2\right)$ if
$d\ge 3$.

We will give a survey how these classical results extend to functions spaces
with fractional order of smoothness like Besov and Lizorkin-Triebel spaces.

For Seminar announcements you can now subscribe to the Seminar RSS feed.
Check also the PDE Seminar page.

Enquiries to Daniel Hauer or Daniel Daners.