## Some free boundary value problems in mean curvature flow and fully nonlinear curvature flows

Valentina-Mira Wheeler

University of Wollongong

Abstract

In this talk we present an overview of the current research in mean curvature flow and fully nonlinear curvature flows with free boundaries, with particular focus on our own results. Firstly we consider the scenario of a mean curvature flow solution with a ninety-degree angle condition on a fixed hypersurface in Euclidean space, that we call the contact hypersurface. We prove that under restrictions on either the initial hypersurface (such as rotational symmetry) or restrictions on the contact hypersurface the flow exists for all times and converges to a self-similar solution. We also discuss the possibility of a curvature singularity appearing on the free boundary contained in the contact hypersurface. We extend some of these results to the setting of a hypersurface evolving in its normal direction with speed given by a fully nonlinear functional of the principal curvatures.